
 

 

National College of Ireland 
BSc (Honours) in Computing 

Software Development 

2020/2021 

George King 
18106188 

X18106188@student.ncirl.ie 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

SwiftSwipe 

Technical Report 

mailto:X18106188@student.ncirl.ie


1 
 

Contents 
Executive Summary ................................................................................................................................. 3 

1.0 Introduction ................................................................................................................................ 3 

1.1. Background ............................................................................................................................. 3 

1.2. Aims ......................................................................................................................................... 3 

1.3. Technology .............................................................................................................................. 3 

1.4. Structure ................................................................................................................................. 4 

2.0 System ......................................................................................................................................... 4 

2.1. Requirements .......................................................................................................................... 4 

2.1.1. Functional Requirements .................................................................................................... 4 

2.1.1.1. Use Case Diagram ........................................................................................................... 4 

2.1.1.2 Requirement 1: Employee searching the stockroom ......................................................... 5 

2.1.1.2.1 Description & Priority ...................................................................................................... 5 

2.1.1.2.2 Use Case .......................................................................................................................... 5 

2.1.1.3 Requirement 2: Employee creating a sale .......................................................................... 8 

2.1.1.3.1 Description & Priority ...................................................................................................... 8 

2.1.1.3.2 Use Case .......................................................................................................................... 8 

2.1.1.4 Requirement 3: Employee cancelling a sale ..................................................................... 10 

2.1.1.4.1 Description & Priority .................................................................................................... 10 

2.1.1.4.2 Use Case ........................................................................................................................ 10 

2.1.1.5 Requirement 4: Employee applying a discount ................................................................ 12 

2.1.1.5.1 Description & Priority .................................................................................................... 12 

2.1.1.5.2 Use Case ........................................................................................................................ 12 

2.1.1.6 Requirement 5: Customer paying ..................................................................................... 14 

2.1.1.6.1 Description & Priority .................................................................................................... 14 

2.1.1.6.2 Use Case ........................................................................................................................ 14 

2.1.1.7 Requirement 6: Refunding a customer ............................................................................. 16 

2.1.1.7.1 Description & Priority .................................................................................................... 16 

2.1.1.7.2 Use Case ........................................................................................................................ 16 

2.1.1.8 Requirement 7: Registering .............................................................................................. 18 

2.1.1.8.1 Description & Priority .................................................................................................... 18 

2.1.1.8.2 Use Case ........................................................................................................................ 18 

2.1.1.9 Requirement 8: Logging in ................................................................................................ 20 

2.1.1.9.1 Description & Priority .................................................................................................... 20 

2.1.1.9.2 Use Case ........................................................................................................................ 20 

2.1.1.10 Requirement 9: Logging out .......................................................................................... 22 



2 
 

2.1.1.10.1 Description & Priority ................................................................................................ 22 

2.1.1.10.2 Use Case .................................................................................................................... 22 

2.1.2 Data Requirements ........................................................................................................... 24 

2.1.2.1 Requirement 1: Access to the database ........................................................................... 24 

2.1.3 User Requirements ........................................................................................................... 24 

2.1.3.1 Requirement 1: Access to the internet ............................................................................. 24 

2.1.3.2 Requirement 2: Access to the camera .............................................................................. 24 

2.1.2.3 Requirement 2: Access to the Node.js server ................................................................... 24 

2.1.3 Environmental Requirements ........................................................................................... 24 

2.1.4 Usability Requirements ..................................................................................................... 24 

2.1.4.1 Requirement 1: Ability to use the system without error .................................................. 24 

2.2 Design & Architecture ........................................................................................................... 25 

2.3 Implementation .................................................................................................................... 26 

Payment ................................................................................................................................................ 28 

2.4 Graphical User Interface (GUI) .............................................................................................. 33 

2.5 Testing ................................................................................................................................... 50 

2.6 Evaluation ............................................................................................................................. 52 

3 Conclusions ................................................................................................................................... 56 

4 Further Development or Research ............................................................................................... 57 

5 References .................................................................................................................................... 58 

6 Appendices .................................................................................................................................... 59 

6.1 Project Plan ........................................................................................................................... 59 

1.0 Objectives .................................................................................................................................. 61 

2.0 Background ............................................................................................................................... 61 

3.0 Technical Approach ................................................................................................................... 62 

4.0 Special Resources Required ...................................................................................................... 62 

Project Plan ........................................................................................................................................... 63 

5.0 Technical Details ....................................................................................................................... 63 

6.0 Evaluation ................................................................................................................................. 64 

6.1 Reflective Journals ................................................................................................................ 65 

6.1.2 October ............................................................................................................................. 65 

6.1.3 November ......................................................................................................................... 65 

6.1.4 December .......................................................................................................................... 65 

6.1.5 January .............................................................................................................................. 65 

6.1.6 February ............................................................................................................................ 66 

6.1.7 March ................................................................................................................................ 66 



3 
 

6.1.8 April ................................................................................................................................... 66 

6.2 Other materials used ............................................................................................................ 66 

 

Executive Summary 
The purpose of this report is to cover all aspects of my final year project in software development. The 
main points of this report cover the requirements of the system, the architectural design of the 
system, code implementations and GUI designs. I have yet to reach any conclusions at the midpoint 
or have any recommendations. 

1.0 Introduction 
1.1. Background 

I undertook this project because last summer I had the chance to conceptualize the idea 
during a hackathon but did not get the chance to develop beyond the idea. I see this project as 
the opportunity to do that. I also think the application has real world potential and a strong 
likelihood to be a disruptive technology to the traditional way of shopping. 

1.2. Aims 
When looking at the aims of my project there are many that come to mind. The most 

important aim of my project is to make the customer experience seamless. The success or failure 
of my application relies on providing value to said customer. If I am unable to do this, it is unlikely 
that stores will be hypothetically interested in buying my application. There is the possibility that 
my aim of reducing store employees via the functionality of my application would also be 
attractive to potential buyers. When thinking about who my direct customer is for my application, 
which would be stores, it is possible to say that if I am successful in reducing employees in stores 
the application could still be considered successful. Overall, the aim of my project is to innovate 
and disrupt the current status quo of retail stores. 

1.3. Technology 
The first piece of technology that I used is Node.js. This technology is used for executing 

JavaScript code outside of a web browser. I utilized this technology to take and refund payments 
within my application. This helped me achieve my goal of taking payments anywhere in the store 
and reducing employees required in the store. 

The next piece of technology that I used for the project is Java. Java is an object orientated 
programming language that I have been working with for five years. My strong abilities with this 
language give me a key advantage in being able to construct the application I wanted. I used the 
Java language alongside android studio to develop the front and backend of my application. This 
helped achieve my goal by facilitating a user interface for employees to interact with. 

For my database I used firebase. I have picked this database for several reasons with the first 
being familiarity with the software. Having used the database in the past with various projects I 
am comfortable knowing it will be able to provide all the functionality I need. The next reason is 
the scalability of the database. Firebase allows a user to scale as much as they want and only 
charges for end user interaction. The final reason I choose firebase was its compatibility with my 
technology stack which was a key consideration when looking for a database. I also used firebase 
CLI software to evaluate the databases performance at the end of the project. 



4 
 

The final piece of technology that I used is Junit. Junit is a testing language that works well 
with the Java language. With any application it is important to ensure that functions within the 
application work as intended. In order for me to ensure this I decided to use the Junit language. 
Alongside Junit I used espresso, a step through testing language to ensure my layouts were 
working. I was also able to use this test language to test some of the more complex functionality 
in my system. 

1.4. Structure 
For the system section of this report, I have looked at several topics. Included in this is all the 

requirements for the system, the GUI of the system, the design of the system and finally the 
architecture of the system. 

2.0 System 
2.1. Requirements 

2.1.1. Functional Requirements 
2.1.1.1. Use Case Diagram 

 

Figure 1 Overall system use case diagram 

 

 

 



5 
 

2.1.1.2 Requirement 1: Employee searching the stockroom 
2.1.1.2.1 Description & Priority 

 The requirement is about the employee using the associated database with the  
  store to find items stored in it. Due to this being a fundamental aspect of my  
  application I have given it a priority of high. 

2.1.1.2.2 Use Case 
  Scope 

 The scope of this use case is to show an employee using the database to find an item 
  after having logged in. 

  Description 
 This use case describes the process in which an employee logs into the application 

  and either searches for an item manually in the database or scans a barcode to find 
  the item in the database. 

  Use Case Diagram 

  

  Figure 2 Use case diagram for employee searching stock room requirement 

 



6 
 

  Flow Description 

 

  Figure 3 Flow diagram for employee searching stock room requirement 



7 
 

  Precondition 
 The application has been launched and the user has signed into their account. 

  Activation 
 This use case starts when a user clicks the search bar to search for an item in the 

  database or starts the scan activity to scan a barcode which will return the item from 
  the database. 

  Main flow 
1. The system identifies the user wants to log in 
2. The user types in their log in information and hits log in 
3. The system verifies the information and logs in the user 
4. The user clicks the search bar to search for an item 
5. The system returns relevant results to the user 

  Alternate flow 
1. The system identifies the user wants to log in 
2. The user types in their log in information and hits log in 
3. The system verifies the information and logs in the user 
4. The user clicks the scan button 
5. The system opens up the barcode scanning activity 
6. The user scans a barcode and is shown matches for the barcode in the 

database 

  Termination 
  When the results are returned to the user 

  Post condition 
  The user is presented with the results of their search with an individual view of the 
  product with more information on it. 

 

 

 

 

 

 

 

 

 

 

 



8 
 

2.1.1.3 Requirement 2: Employee creating a sale 
2.1.1.3.1 Description & Priority 

 The requirement is about the employee adding an item to the cart of the system. 
  This requirement has a priority of high due to it being a fundamental aspect of the 
  system. 

2.1.1.3.2 Use Case 
  Scope 

 The scope of this use case is to show an employee adding an item to the cart system. 

  Description 
 This use case describes the process in which an employee logs into the application 

  and either adds an item to the cart by either scanning a barcode and adding from 
  there or searching it the database from there and adding to the cart 

  Use Case Diagram 

 

  Figure 4 Use case diagram for employee creating a sale requirement 

   
 
 
 

 



9 
 

  Flow Description 

 

  Figure 5 Flow diagram for employee creating a sale requirement 

  Precondition 
 The application has been launched and the user has signed into their account and 

  either scanned a barcode or searched for an item in the database. 

  Activation 
 This use case starts when a user clicks add item to the cart. 

  Main flow 
1. The system returns relevant results to the user 
2. The user clicks into the item they want to view 
3. The user clicks add item to cart after selecting the size they want 
4. The item is added to the cart 



10 
 

  Alternate flow 
1. The system returns relevant results to the user 
2. The user clicks into the item they want to view 
3. The user clicks add item to cart without selecting a size 
4. The system informs the user that a size must be selected 
5. The user selects a size and tries to add the item to the cart 
6. The system allows this since a size has been selected 

  Termination 
  When the item is added to the cart. 

  Post condition 
  There is an item in the cart. 

2.1.1.4 Requirement 3: Employee cancelling a sale 
2.1.1.4.1 Description & Priority 

 The requirement is about the employee removing an item from the cart. Due to the 
  cart being a fundamental aspect of my application working I am assigning it a  
  priority of high 

2.1.1.4.2 Use Case 
  Scope 

 The scope of this use case is to show an employee removing an item from the cart. 

  Description 
 This use case describes the process in which an item has been added to the cart but 

  is no longer wanted by the customer, so it needs to be removed. 

  Use Case Diagram 

 

  Figure 6 Use case diagram for employee cancelling a sale requirement 

   



11 
 

  Flow Description 

  

  Figure 7 Flow diagram for employee cancelling a sale requirement 

  Precondition 
 There is an item in the cart. 

  Activation 
 This use case starts when the employee clicks the remove button on an item in the 

  cart. 

  Main flow 
1. The system removes the item from the cart 
2. The stock levels for the item are readjusted 
3. The total price of the cart is updated 

  Alternate flow 
  Termination 
  When the item is removed from the cart. 



12 
 

  Post condition 
  The item that was selected was removed from the cart. The total price reflects this 
  change. 

2.1.1.5 Requirement 4: Employee applying a discount 
2.1.1.5.1 Description & Priority 

 This requirement is about an employee applying a discount to the cart if a customer 
  has a coupon. While this requirement is important it is not essential to the system 
  working and so I am giving it a priority of medium. 

2.1.1.5.2 Use Case 
  Scope 

 The scope of this use case is to show an employee applying a discount to the cart 

  Description 
 This use case describes the process in which an item or items have been added to 

  the cart and the customer wishes to apply a discount to the cart. 

  Use Case Diagram 

 

  Figure 8 Use case diagram for employee applying a discount requirement 



13 
 

  Flow Description 

   

  Figure 9 Flow diagram for employee applying a discount 

  Precondition 
 There is an item or items in the cart. 

  Activation 
 This use case starts when the employee clicks into the applying discount box. 

  Main flow 
1. The system checks if the discount code is valid. 
2. If the code is valid the system updates the cost of the cart. 
3. The amount discounted is displayed above the total amount. 

  Alternate flow 
  Termination 
  The user clicks the apply discount button. 

  Post condition 
  The discount has been applied. 



14 
 

2.1.1.6 Requirement 5: Customer paying 
2.1.1.6.1 Description & Priority 

 This requirement is about a customer paying for the items they have selected in the 
  store. This requirement has a priority of high due to it being a fundamental aspect of 
  the system.  

2.1.1.6.2 Use Case 
  Scope 

 The scope of this use case is to show a customer paying for the items in their  
  checkout. 

  Description 
 This use case describes a customer paying for the items they have selected and are 

  in the cart. 

  Use Case Diagram 

 

  Figure 10 Use case diagram for customer paying requirement 



15 
 

  Flow Description 

   

  Figure 11 Flow diagram for customer paying requirement 

  Precondition 
 There is an item or items in the cart. 

  Activation 
 This use case starts when the employee clicks the checkout button. 

  Main flow 
1. The system confirms the items in the cart and the total price. 
2. The system opens up the checkout activity and prompts the customer to pay. 
3. The system validates the payment. 

 



16 
 

  Alternate flow 
1. The system confirms the items in the cart and the total price. 
2. The system opens up the checkout activity and prompts the customer to pay. 
3. The customer enters their card details and clicks pay. 
4. The payment fails and the customer is allowed try again if they want 

  Termination 
  The user clicks the back button to cancel the order. 

  Post condition 
  The user is brought to the home activity with a message letting them know the order 
  has been completed. 

2.1.1.7 Requirement 6: Refunding a customer 
2.1.1.7.1 Description & Priority 

 This requirement is about giving a customer a refund if they are not happy with the 
  products they have received. Being able to refund a customer is essential to the  
  operations of a retail store and so the priority of this requirement is high.  

2.1.1.7.2 Use Case 
  Scope 

 The scope of this use case is to show a customer getting a refund for their entire 
  order.  

  Description 
 This use case describes an employee issuing a refund to a customer for the entirety 

  of their order.  

  Use Case Diagram 

 

  Figure 12 Use diagram for refunding a customer requirement 

 



17 
 

  Flow Description 

   

  Figure 13 Flow diagram for refunding a customer requirement 

  Precondition 
 The employee dealt with the customer when completing their order before and the 

  order went through successfully. 

  Activation 
 This use case starts when the employee is in the order view activity and clicks into 

  the specific order that needs to be refunded. 

  Main flow 
1. The system sends a request to the Node.js server 
2. The Node.js server sends a request to stripes API. 
3. Stripe responds to the Node.js server letting them know the refund was 

successful. 
4. The Node.js server sends a response to the system and displays the toast message 

while disabling the button.   

  Alternate flow 
  Termination 
  The refund button is disabled, and the order has been refunded. 



18 
 

  Post condition 
  The user is presented with a message letting them know that the refund was  
  successful, and the refund button is disabled so no more refunds can be issued on 
  that order. 

2.1.1.8 Requirement 7: Registering 
2.1.1.8.1 Description & Priority 

  This requirement is about allowing an employee to register their account in order to 
  user the system. As a lot of the functionality of the application relies on a user being 
  logged in this requirement is getting a priority of high. 

2.1.1.8.2 Use Case 
  Scope 

 The scope of this use case shows a user registering their account in order to use the 
  system.  

  Description 
 This use case describes the process an employee goes through in order to register an 

  account with the system.  

  Use Case Diagram 

  

  Figure 14 Use case diagram for registering requirement 



19 
 

  Flow Description 

   

  Figure 15 Flow diagram for registering requirement 

  Precondition 
 The employee has the device downloaded on their device and has opened the  

  application. 

  Activation 
 This use case starts when an employee starts the application and clicks the register 

  an account button on the home activity. 

  Main flow 
1. The employee opens up the application and asks to register an account. 
2. They are brought to the register activity and fill in their information. 
3. The employee clicks register after filling in all their information and a request is 

sent to the firebase database to make a user. 
4. The  user is created, and the employee is brought to the main page of the activity. 



20 
 

  Alternate flow 
1. The employee opens up the application and asks to register an account. 
2. They are brought to the register activity and fill in their information. 
3. The employee clicks register but they have not entered a valid email. 
4. The  employee is told this and asked to enter a valid email before trying to create 

an account. 
5. The employee notices the spelling mistake in their email and fixes and clicks 

register again. 
6. The  user is created, and the employee is brought to the main page of the activity. 

  Termination 
  The employee is brought to the main page of the system giving him full access to all 
  functionalities. 

  Post condition 
  The employee can now access all functions on the system and do anything his  
  employer would need him to do. 

2.1.1.9 Requirement 8: Logging in 
2.1.1.9.1 Description & Priority 

 This requirement is about allowing an employee to login once they have registered 
  an account. It will allow the employee to view their past orders as well as their  
  current cart. This requirement has a priority of high.  

2.1.1.9.2 Use Case 
  Scope 

 The scope of this use case is to show an employee logging into the system and any 
  errors they may encounter when doing this. 

  Description 
 This use case describes an employee logging in with an account they have already 

  created themselves. 

  Use Case Diagram 

   

  Figure 16 Use case diagram for logging in requirement 

 



21 
 

  Flow Description 

   

  Figure 17 Flow diagram for logging in requirement 

  Precondition 
 The employee has an account on the system and knows the information required to 

  log in to the account. 

  Activation 
 This use case starts when the employee opens the application and is asked to log in. 

  Main flow 
1. The employee enters their information into the required fields and clicks log in. 
2. A request is sent to the firebase database to authenticate their information. 
3. Firebase sends back a successful authentication message and allows the user to 

log in. 



22 
 

  Alternate flow 
1. The employee enters their information into the required fields and clicks log in. 
2. A request is sent to the firebase database to authenticate their information. 
3. Firebase sends back a failed authentication message and informs the employee 

what the error is. 
4. The employee fixes their mistake and clicks log in again 
5. A new request is sent to the firebase database to authenticate their information 

and it responds back with a successful authentication message. 

  Termination 
  The employee is on the home screen activity of the system. 

  Post condition 
  The employee can now access all functions on the system and do anything his  
  employer would need him to do. 

2.1.1.10 Requirement 9: Logging out 
2.1.1.10.1 Description & Priority 

 This requirement is about allowing a user to log out of the system once they are  
  done using it. This is standard functionality of an application but does not  
  necessarily impact any other functionality on the application. For this reason, it is 
  given a priority of medium. 

2.1.1.10.2 Use Case 
  Scope 

 The scope of this use case is to show an employee logging out of the system. 

  Description 
 This use case describes an employee logging out of the system and the impacts that 

  has on the system. 

  Use Case Diagram 

  

  Figure 18 Use case diagram for logging out requirement 



23 
 

  Flow Description 

   

  Figure 19 Flow diagram for logging out requirement 

  Precondition 
 The employee has logged into the system and is on the home page of the system. 

  Activation 
 This use case starts when the employee clicks the log out button. 

  Main flow 
1. The system signs the user out of the firebase database. 
2. The System logs the user out and brings them to the login activity. 

  Alternate flow 
  Termination 
  The user is on the log in page activity. 

  Post condition 
  The employee has no access to the systems functionality. 

 

 



24 
 

2.1.2 Data Requirements 
2.1.2.1 Requirement 1: Access to the database 

  In order for my application work as intended the user needs access to the connected 
  google firebase database. The functions of the application will still work however 
  they will not be able to return any results if the user is not connected to the firebase 
  database. 

2.1.3 User Requirements 
2.1.3.1 Requirement 1: Access to the internet 

  Expanding on the data requirement of having access to the database, for a user to 
  fulfil that requirement they will need to have a device with internet connectivity. 

2.1.3.2 Requirement 2: Access to the camera  
  In order for the system to work fully the user needs to give the system permission to 

  use the devices camera for the barcode scanner. 

2.1.2.3 Requirement 2: Access to the Node.js server  
  In order for the system to issue refunds and facilitate payments it must have a  

  connection to the Node.js server. 

2.1.3 Environmental Requirements 
2.1.4 Usability Requirements 

2.1.4.1 Requirement 1: Ability to use the system without error 
  With this requirement the aim is to ensure that an end user can use the system with 

  minimal errors after a week of using the application while at work.  

 



25 
 

2.2 Design & Architecture 

 

 Figure 20 System architecture diagram 

From this system architecture diagram, you can see there are several components to my 
 system. The first being the firebase database, one of two external servers that make up the 
 system. All of the product data and employee data is stored on this database. The second  
 component is the Node.js server that acts as a middleman between the mobile application  
 and stripes API. The Node.js server is required in order to facilitate both refunds and 
 payments with the logic for those functionalities being stored on that server. The last 
 external component to the system is Stripes API which we send our refund and payment  
 requests to. Finally, there is the mobile application which the end user interacts with as a 
 front-end side to the system.  

 

 

 

 

 

 

 

 

 



26 
 

2.3 Implementation 
One of the fundamental requirements of the project was to allow the scanning of barcodes. This is 
because barcodes are a fundamental way of creating a sale in a retail store. In this section I will be 
going over how I have implemented my barcode scanner.     
 The first step in using a barcode scanner in my system was finding a library that facilitated the 
functionality. After doing some research I settled on a barcode scanner created by a GitHub user by 
the name of Yury-Budiyev. I chose this library because of its simplicity and its ability to do the 
functionality I required. With my library being selected the next step was to get it working within my 
project. This involved getting permission to use the devices camera when the application is open. In 
order to do this, we have to create a uses-permission tag in the manifest of the project. 

 

Figure 221 Requesting camera permission inside AndroidManifest.xml 

 The next step in this process is to create a view of what the camera sees so the employee can 
see this also. Without this step when the user starts the activity, they would only see a black screen 
and would not be able to see barcodes. This is done by using a widget belonging to the scanner library 
that we place on the relative xml layout. 

 

Figure 222 Layout of the scanner view inside activity_scanner.xml 



27 
 

 Now that when the employee starts the activity, they can see what the camera sees the next 
step is to allow the functionality of scanning barcodes. In order to do this, we need a Code Scanner 
object. To make this object we need the context of the system and a Scanner View object. The Scanner 
View object we have created above in the xml class and just need to instantiate.  

 

Figure 223 Instantiating the Scanner View Object inside Scanner.java 

 Now that we have everything needed to make the Code Scanner object the next step is to 
create that object and use it to scan barcodes. Like I said above we need two things to create this 
object. The Scanner View object and the context of the system. We pass those values into the 
objection and this now leaves us with the ability to scan barcodes. 

 

Figure 224 Creating the barcode Scanner object inside Scanner.java 

 So now that we have the object, we can scan the barcodes, and this is done using the 
setDecodeCallBack method from the library we are using. With this method it returns a result object 
that we can use to find the specific product we want. We can manipulate this result object into a string 
that we then can use to query the firebase database. 

 

Figure 225 decoding a scanned barcode inside Scanner.java 

 You can see above that when we scan a barcode, we are starting the product class. This is a 
java class that will show an individual product for whatever ID is passed in. In my use case my products 
go by numbers from 01 to 10. So, when scanning a barcode with a value of 07 the result object will 
consist of only 07. This is what allows the system to match barcodes with products stored in the 
database. 

 



28 
 

Payment 
One of the key aspects of the project is to facilitate payments. Without this functionality the project 
would not be viable in its desired environment. In the below section I will be going over how I have 
facilitated this functionality.         
 The first step in facilitating payments is finding the right company to handle my transaction. 
There are various companies that allow this functionality however I went with Stripe as they gave me 
the opportunity to work with a new technology, Node.js, and had a test API key that allowed me to do 
mock transactions. With this decided on I started on creating the layout the employee would see when 
they started the checkout activity. Stripe have a card input widget that does a lot of the heavy lifting 
of handling the card details. This is done mostly for secure reasons that ensure that when the request 
is sent to Stripe that the card details are encrypted. 

 

Figure 226 Creating the card input widget inside activity_checkout.xml 

 Now that the customer can enter their card details when needed we have to handle the 
backend side of things. In order for a customer to pay, there has to be an amount that is sent to the 
Node.js server. This amount is passed in from the cart activity where the total cost of all the products 
the customer wants is calculated. 

 

Figure 227 Getting the amount from the cart activity inside checkout.java 

 

 

 

 

 



29 
 

 While we have the amount there is still a lot that needs to be done to it before it can be 
worked with. The first step we need to take is to convert it into a double for two reasons. The first 
being Stripe requires the amount to be passed over as a double and the second being we need to do 
some formatting on the value. Due to the use of coupons the amount passed over can be several 
decimal places long. However, Stripe does not like this, and it causes payments to fail. With this in 
mind we format the newly created double to round to two decimal places. However, in order to do 
the formatting, it must be converted back into a string. Note you cannot format a string and that is 
why it is converted to a double initially. Finally, we convert back to a double and we have our amount 
in the right format needed. 

 

Figure 228 Formatting the amount to ensure Stripes system accepts it 

 Now that we have the amount, we can make our request to the Node.js server. This is done 
by creating a http request consisting of a json object. Inside this json object there is the amount of the 
transaction and the currency to do the transaction in. 

 

Figure 229 creating a request and sending it to the Node.js server 

 

 

 

 

 

 

 

 



30 
 

 Looking at the Node.js aspect of a payment we get the amount and currency from the json 
object we sent in the above request. With this information now on the Node.js server we can send a 
request to Stripe to ask them to facilitate the payment with those two parameters. 

 

Figure 30 Node.js server receiving the system request and sending a request to Stripe 

  You can also see that the method sends a response back to the system. This response consists 
of a success or failure value as well as a json object. The json object contains a plethora of information 
in regard to the transaction. Depending on if the transaction was a success or not one of two things 
can happen.            
 If the transaction failed to go through an alert is created informing the customer or employee 
whoever has the device at this point of the problem that happened. The user can then close that alert 
and try again if they wish. 

 

Figure 31 Payment failure 

 

 

 

 

 

 



31 
 

 With the other option being if the payment succeeds. Three things happen in this instance. 
The first thing is capturing the transaction ID from the json object that is returned to us. This is done 
so that refunds can be done at a later date. 

 

Figure 32 Getting the transaction ID of the order 

  The second being a history of the order is created. This is done by making a query to the cart 
branch and moving all objects to a unique order branch. This unique value is the time the order was 
made. Once the order history has been created the cart is emptied for the next order. An order Info 
object is also created and pushed to the same branch of the database. This object contains nice to 
know information such a s the total cost of the order, if a coupon was used, the transaction id and if 
the order has been returned. 

 

Figure 33 Creating an order history 

 



32 
 

 The final step in this process is taking the employee to the home activity and letting them 
know that the order was successful with a toast message. 

 

Figure 34 Informing the employee the order was successful and starting the home activity 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

2.4 Graphical User Interface (GUI) 
Login Screen: 

 

Figure 35 Login activity with no information 



34 
 

 

Figure 36 login activity with information 

On the login screen there is a lot of functionality happening, but it is also simplistic in its nature.      
In order for a user to log in they are required to enter their email and the password associated with 
their account. There is some validation on these text fields such as requiring the password to be a 
certain length and checking if the fields have text in them before allowing a submission to happen. 
The information entered here is checked against the connected google firebase database. The other 
functionality on this page is the option to create an account if a person does not have one yet.  

 

 

 

 

 

 

 



35 
 

Register screen: 

 

Figure 37 Register activity with no information 



36 
 

 

Figure 38 Register activity with information 

On the register screen we allow a user to create an account to access the rest of the application. 
From the image you can see in order to create an account a user has to provide their full name, email, 
password, and phone number. The same validation rules are applied to these fields that are applied 
to the fields in the login page. Once the user has filled out the fields to the satisfaction of the system 
and they click register the account is created in the connected google firebase database and will then 
bring the user to the login activity. From there they are now able to log in to the application. The final 
functionality on this page is the already registered button. This is there in the instance a user clicks 
into this activity by mistake and would like to go back to the login activity which is where the user is 
brought if they click on the text. 

 

 

 

 

 

 

 

 

 



37 
 

Home activity: 

 

Figure 39 Home activity 

On the home activity there is several activities that an end user can interact with. The first being 
the search activity. Clicking this button will take the end user to an activity where they can see all 
products of the store and give them the ability to search for a given product. The next activity is scan 
which allows a user to scan a barcode which will bring them to a product view of the barcode they just 
scanned. The third activity is cart which is where an end user can see all the products they have in 
their cart and checkout. The fourth is the orders activity where an end user can see all past orders 
they have made. Finally, an end user can also log out from the home screen which will then bring them 
back to the login page. 

 

 

 

 

 

 

 

 

 



38 
 

 

Search activity: 

 

Figure 40 Search activity with no search made 



39 
 

 

Figure 41 Search activity with search made 

For the search view there is two main pieces of functionality available to the end user. The first 
being the search bar. With this search bar an end user can refine the products in the recycler view to 
whatever they specify. You can see in the image on the right how I have typed in shirts and all relevant 
results are shown. The second functionality is the ability to click into a product and be brought to a 
new activity where an end user can add that item to their cart. Also, you now see the introduction of 
the four buttons that are at the bottom of most pages on the application baring the register, login, 
home, and checkout activities. These buttons bring you to four of the main pages of the application. 
These being the home screen, the search activity, the barcode scanner, and the cart. 

 

 

 

 

 

 

 

 



40 
 

Product activity: 

 

Figure 42 Product activity with no size selected 



41 
 

  

Figure 43 Product activity with size selected 



42 
 

  

Figure 44 Product activity when an employee tries to add without selecting a size 

For the product view it’s kept mostly simple in functionality with the only two options being 
available to the user are size choice and adding to the cart. The end user can see the product name 
and the cost of the product. They can also see all sizes are available for the product and have their 
choice of which size they want to pick. If an end user tries to add to the cart without selecting a size 
they are prompted with a message asking them to select a size before trying to add to cart. 

 

 

 

 

 

 

 

 

 

 



43 
 

Scanner Activity: 

 

Figure 45 Template of what the barcode scanner view would look like 

For the barcode scanner activity, the functionality is very simple. It shows the current view the 
camera on the device has and allows the scanning of barcodes. The idea behind this functionality is 
that when the user scans the barcode, they will be presented with the individual activity view that a 
user would get if they clicked into a result from the search function. In order to use this activity, the 
user must allow the application to have access to the device’s camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

 

Cart: 

 

Figure 46 Cart activity with products 



45 
 

  

Figure 47 Cart activity with a coupon being applied 

For the cart activity there is three choices the end user has to them. The first being the ability to 
delete items from their cart. All the user has to do is click the small bin icon on the right side of an 
individual view which will then remove it from the cart. The second choice is the ability to apply a 
coupon to the cart. In the second image you can see how this functionality works. The end user inputs 
the coupon and hits apply and if the coupon exists the system lets the user know with a message. The 
same happens if the coupon does not exist and the message is changed to coupon does not exist. The 
final choice the user has is the option to proceed to checkout with the pay button. The end user also 
has a recycler view at the top of the activity that shows all products currently in their cart. 

 

 

 

 

 

 

 

 

 



46 
 

Checkout: 

 

Figure 48 Checkout activity with no card information 

  

Figure 49 Checkout activity with card information 

For the checkout activity there is only one option for the end user and that is to put in their credit 
card details and to press pay. If they don’t wish to go through with the order they can press back and 
it will bring them back to their cart activity. 

 



47 
 

Orders: 

 

Figure 50 Order history list activity 

For the orders page the end user can see all their past orders that they have made. They are able 
to click into each order individual if they want which will bring them to a detailed view of the order. 
Each order is defined by the date and time it was made on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

Order view: 

 

Figure 51 Order history with no refund 



49 
 

  

Figure 52 Order history with refund 

From this view the end user has a lot of information provided to them. They can see each 
individual product that was bought and the price per item as well as the size. From there they can 
then see the total price of the order if a coupon was used or if the order has been returned. The end 
user also has the option to refund the entire order if they wish to do so. If the button is clicked the 
end user is presented with a message letting them know the refund was successful and the button is 
disabled so the user cannot try click the button again prompting another refund request. 

 

 

 

 

 

 

 

 

 

 

 



50 
 

2.5 Testing 
For the purposes of testing my project I used a combination of Junit 5 and espresso. These 

testing languages allowed me to develop all the local unit tests that I needed for my system. 
However due to a large amount of my system functionality relying on interaction between firebase 
and it, Junit only made up a small portion of my overall testing coverage. It was mostly used for 
ensuring model classes were working as intended. 

For my system there was a total of four model classes. The first being a coupon model, which 
contained a string for the coupon code and an int for the percentage to discount by. The second 
being an information model, which contained all the information required for a product in the 
store such as name, price, size, image, and ID. The third being an order info model, which 
contained information relating to an order such as transaction ID, cost, if it has been returned or 
a coupon has been used. The final model class is an order model object which consisted of one 
variable that being the key. For each of these model classes a Junit 5 test was made and all 
methods in the classes were tested. 

 

Figure 53 Unit tests for model classes 

 



51 
 

In order to test my firebase functionality, I used the espresso testing language. Espresso is a 
step through testing language which allows creating complex tests simple.  The testing language 
listens in the background as you move through the system following a use case and creates tests 
to ensure the same functionality happens again. I also used espresso to ensure that the layout of 
each activity was as intended and that all elements were on the page. In total I wrote a total of 19 
tests with espresso. With nine of those tests being related to functionality and the other ten being 
layout related. While espresso is designed for layout testing with some not so conventional ideas 
it can be used to ensure that certain functions are performing as intended. For instance, in order 
to test my login functionality is working I tell the test to type in the correct information and click 
login. I then tell it to look for an element that is only on the home screen page of the system. If 
the system runs this test and cannot find that element, I know there is something wrong with my 
login activity. 

 

 Figure 54 Espresso tests passing 



52 
 

2.6 Evaluation 
How was the system evaluated and what are the results? This may consist of usage data. It 

may also include performance evaluations, scalability, correctness, etc. depending on the focus of 
the project.  Quantitative results may be reported in tables or figures. 

One of the main ways I am going to evaluate my application is by comparing the goals I set 
out to achieve and compare it against with the final product. The first of these goals is the 
functional requirements of the system. To recap them there was six in total these being searching 
the stockroom, creating a sale, and cancelling a sale, applying a discount, customer paying and 
refunding a customer. Five out of the six requirements were fully achieved with searching the 
stockroom being the one that did not get completed. It fell short in regard to being able to see the 
current amount of stock an item has and in what sizes. With this in mind I had a success rate of 
83% when it came to completing my requirements if we do not consider searching the stockroom 
complete at all. If we consider that requirement half-finished this number moves up to 92%. 
Overall, I am happy with the level of success I achieved with my first goal.  

My next goal was to have a UX/GUI design that was modern and usable. When looking at 
usability for a UI there is a lot of elements that need to be considered. The first step in this is 5Es 
of usability. This is a process where after establishing a problem you take these five steps to ensure 
the problem is solved with the users experience in mind. The five steps are: 

• Effective 

 This step is to watch a user perform a task and see how many mistakes they 
make before being able to complete the task 

• Efficient 

 This step is to give a user a task and to time them to see how long it takes to 
complete the task 

• Engaging 

 This step is about drawing a user into their task and ensuring no screens are 
confusing. 

• Error Tolerant 

 This step involves creating a test where an error is likely to happen and see 
how well a user can recover from it. 

• Easy to Learn 

 This step involves giving the user as little information as possible and seeing 
how well they perform using your application.  

 

 

 

 



53 
 

While I worked on my systems UI, I constantly kept these ideas in mind and would ask myself 
these questions again and again each time I developed a new activity or layout to use. The next 
step I took in evaluating my UI was via Nielsen’s heuristics. These are a set of ten rules of thumb 
you should follow when developing an application to ensure its usability regardless of a user’s 
capability. These are as follows: 

• Visibility of system status  

 I achieve this by informing the user with a loading icon when signing into their 
account from the login page. I also provide them with messages letting them 
know if functions have been completed or failed to complete. 

• Match between system and the real world 

 Language across the system is kept simple and in the realm of what an 
individual in a retail store would expect to encounter.  

• User control and freedom  

 Whenever a user wishes to stop a process all they have to do is click the back 
button and they are taken out of the process. 

• Consistency and standards 

 Throughout the system word repetition is kept to the same meaning and icons 
never differ in where they bring you. 

• Error prevention 

 Users are not allowed to add items to the cart without selecting a size first. 
They are unable to sign up until all the fields have been filled out correctly. 

• Recognition rather than recall 

 When a user adds an item to their cart, they can see it straight away with all 
the same information they saw on the previous page 

• Flexibility and efficiency of use 

 A user does not have to go to the home screen in order to go to the four main 
functionalities of the system, they can get access to them from any page via 
the four buttons on the bottom of every page. 

• Aesthetic and minimalist design 

 Provided information is kept to a minimum and colour scheme is consistent 
throughout using only a three-tone colour scheme. 

• Help users recognise, diagnose, and recover from errors 

 When a user does not select a size before they try to add to the cart, they are 
informed they need to. When a user does not properly enter card details, they 
are told. When a user tries to log in with the wrong information they are told. 

 



54 
 

• Help and documentation 

 Using hints in text fields where users will enter information such as when 
signing up, logging in, searching for information, or typing in card details. 

Another aspect to evaluating my project is my test coverage and ensuring functionality works 
as need features are added. As it stands right now, I only have unit test coverage on my model 
classes using Junit 5 where all tests are passing. Firebase offers a way to test functionality that 
your system interacts with, but I was unable to figure this out before the deadline. 

 When looking at my database and how I could evaluate it I decided upon using firebases CLI 
software. This software has a built-in feature that will monitor your database as it is used. While 
not a perfect evaluation of the overall database it is a start. Once you stop the monitoring it will 
provide several pieces of information that are nice to know such as time for requests, request 
sizes and upload speeds.         
 At various points in the system functionality, I have to write to my database. The image      
below shows a typical use case of my system where the user views a product, adds it to their cart 
and views the order after completion. You can see the speed of these executions is excellent at 
only 1 millisecond per write. 

 

 Figure 55 Write speeds to various locations on the firebase database 

I also have to download from the database in order to populate certain views on my system. 
It is important to keep these sizes as small as possible as data can be costly on performance. With 
this in mind I kept my download sizes to a minimum, with the largest download only being 1.33kB. 

 

 Figure 56 Download sizes from firebase database 

 

 

 

 



55 
 

The final element of my database evaluation is my upload speeds. In order for user changes 
to persist if the system is closed is to upload these changes to the database. These changes mostly 
revolve around the system state and items the user has in their cart. The largest upload being only 
221 bytes, this being a user adding an item to their cart.  

 

 Figure 57 Upload sizes from firebase database 

The final way I will be evaluating the project is by its performance on a device. Given that my 
application is developed for android devices I will not know exactly what sort of hardware the 
system is run on. With this in mind I kept its hardware requirements at a minimum. The two 
elements I will be looking at is CPU and memory usage through a simple use case of the system. 
Similar to the use case used for evaluating the database above for the sake of consistency. 
 With this in mind we can see from the below image that CPU performance never goes above 
45% and this is only the case when starting the application. However, CPU usage fluctuates a lot 
and often drops to a zero percent state during normal use of the application. 

 

 Figure 58 CPU usage when starting the application 

 

 Figure 59 CPU usage during normal use of the application 

In regard to memory usage the maximum amount of memory used is 144mbs when starting 
the application. For the entirety of the program the memory usage fluctuates between 100mbs 
and 144mbs. Compared to the CPU usage the memory is more consistent with its usage never. 

 

 Figure 60 Memory usage during normal use of the application 

Overall, the project has its flaws, but it also does excellent in other areas and gives the 
opportunity to improve it going forward. 



56 
 

3 Conclusions 
In conclusion there is a lot I achieved with this project and I am happy with the result of it. Countless 
hours of research and effort went into the current state of the system and I can be proud of the 
submission in its final state. One of the main advantages I had when developing this system was 
the countless amount of information readily available online that allowed me to create the 
functionality I required. With most of it coming at no cost to me which was very helpful and allowed 
me to elevate my project to a higher standard that would not have been achievable if it were not 
for this case. 
 For the final submission of my project is covers most of the goals I set out to achieve. The first 
being allowing a user to search for products that are in the store. Initially I had the idea that they 
could see how many of that product was in stock but overtime the scope of the goal changed and 
in its final state it only allows a user to see products in the store. This could be seen as a limitation 
of the project but there is the option on the admin side that if a product is out of stock, it can be 
removed from view easily enough. While it is not very user friendly the functionality is still 
technically there. The next goal of my project was to allow a user to add an item to the cart which 
I believe I achieved fully. When a barcode is scanned the ID is taken from it and the individual 
product view is show to the user which they can then add to the cart. The next goal I had in mind 
was a cart system where a user could add and remove products, apply coupons and checking out 
which I also achieved. There were some bugs with the cart that I would have liked to fix but due to 
time limitations was unable to do so and these will be discussed in the further development & 
research stage. Finally, the last goal of my project was to facilitate card payments on my application 
via NFC technology. I would say I achieved half of this goal with my system being able to facilitate 
card payments. However, it is not with NFC and a customer would have to manually enter their 
card details to facilitate the payment. This is not ideal for a real-world application and large security 
concerns come into play. Stripe, the system I am using for my payments, does have the option to 
implement services like apple pay or google pay which would allow me to accept card payments 
but again due to time limitations I was unable to do so.  
 As far as limitations of my project there is a view that come to mind with most being real world 
applications. The one technical limitation I found that was not caused by time was my search 
functionality. Firebase only allows you to query with exact values and not dynamically. This was 
disappointing as I had envisioned a dynamic search functionality but by the stage, I made it to this 
feature I had already invested a lot to the technical stack I had chosen. Other than that, most of 
the limitations I found came when I questioned how my application would actually tie into a real-
world scenario. I noticed as time went on, I made large assumptions about the implementation of 
the project in the real world . Such as a store switching over to my service completely rather than 
just integrating to the system they currently have. After having realised this, I noticed it would be 
a large obstacle to tackle from the outside rather than developing the system in house. Having no 
knowledge of how they format their system flow or what else I would have to interact with in order 
for my application to be considered viable for a store. Not to say that it would be impossible to do 
I quickly realised how challenging it would be and decided to try stick to my goals and create a 
system mock-up of sorts that I could show to potential interested parties and then from that point 
onward we could customise it to their needs and what they wanted. 
 
 



57 
 

4 Further Development or Research 
Working on this project over the past year has been such an amazing experience both in terms of 
technical growth and how I approach my work. I have learnt so much throughout the course of my 
workings and if given the opportunity to continue working on this project is a lot, I would do to 
improve the overall quality and potential prospect of the project. 
 The first step I would take is reaching out to retailers and asking them about their current 
system. Finding out how they set it up and how their system flows so I could get a better 
understanding of how I could integrate my system into theirs. I think this is a key takeaway because 
my application can offer as much convenience to their customer and added versatility to their staff 
in their duties but if they cannot integrate it easily it is unlikely it would get far in the process of 
being adapted. Hopefully from this research I could find some common elements between 
different retailers and their system flows so that adapting it to multiple stores with unique set ups 
would not be overly complex. Such as having to use different technologies depending on the store. 
 The next step would be creating features I want to but did not have time to, there is a lot of 
these I considered and have kept the ones I think would stay inside the scope of what this project 
is aiming to achieve while also increasing its usability to its users. The first function I would include 
is an employee profile section. In this section employees would be able to do several things. 
Including requesting time off, seeing their current work schedule, advertising a shift for swapping, 
and seeing companywide announcements for franchised stores. The idea behind this function is it 
provides value to the employees of the store and makes it more versatile to their needs as well. 
Not requiring a separate area for employees to find that information. 
 The next function I would add is a store section. In this section employees could see 
information relating to their own store such as opening hours for the holidays, store wide 
announcements versus companywide announcements or a checklist of actions that have to be 
completed on a daily basis. The idea behind this section is things are always changing with people 
calling out or leaving to pursue other things. A store could put up posts about job opportunities or 
advertise extra shifts. As well with the checklist with opening and closing if you are unsure of what 
needs doing you would be able to check there. 
 The next function I would include is a stock checking feature. With it being an original goal of 
the project, I think it would be important to include both as a function and as a completeness 
aspect of the project. Also, it heavily impacts the reduction of employee count aspect of my project. 
If the store still needs someone to check stock before creating the sale, I have no reduced 
employees where possible. 
 The final large function I would add on is a dual log in system. This would be a large task as 
the functionality for admins would include several things such as creating coupons that employees 
can use, advertising shifts, setting schedules, removing, or adding products, updating stocks etc. I 
do think it would be a great feature that has a lot of value for potential buyers. Making interacting 
with the system overall much easier and pleasant to deal with. 
 The next few things I would add are smaller in nature and I will provide them in a bullet point 
list below. 

• Categories on the search menu 
• Dynamic search bars 
• On the orders list refine by date or cost 
• Google pay/Apple pay via Stripe 
• Barcode scanner would pass in the ID and size of the product 
• Refund individual items of an order rather than requiring the entire order to be refunded 
• Remove all items from a cart at once if a customer changes their mind  



58 
 

• Restructure order history to be independent of the employee who made it 
• Update the coupon error messages to be less generic and provide more accurate 

information 
 

There are also the known bugs that are currently in the system. These are listed below but currently 
only affect two use cases of the system. 

• When deleting an item from the cart the total price is not updated 
• On certain activities when the devices back, button is pressed it brings you to a random 

activity 
• Layouts do not fit on every device as they use hard coded values rather than weighting 

 
Overall, there is a lot left I want to do with this project and plenty of opportunity to live up to the 
goals I set out to achieve. Going forward I see companies starting to adopt this outlook and refitting 
how they use their employees and make their stores more dynamic. Rather than just having set 
roles in a store and a set place to pay. In theory the idea is sound but implementing it successfully 
from an outside perspective would certainly come with its challenges. 

5 References 
GitHub. 2021. yuriy-budiyev/code-scanner. [online] Available at: <https://github.com/yuriy-

budiyev/code-scanner> [Accessed 15 May 2021]. 

Stripe.com. 2021. Custom payment flow. [online] Available at: 
<https://stripe.com/docs/payments/integration-builder> [Accessed 15 May 2021]. 

Youtube.com. 2021. Before you continue to YouTube. [online] Available at: 
<https://www.youtube.com/playlist?list=PLVW1e1FvhW67aJ2alJePjwYtlivd8klv9> [Accessed 
15 May 2021]. 

Youtube.com. 2021. Before you continue to YouTube. [online] Available at: 
<https://www.youtube.com/watch?v=sZ8D1-hNeWo> [Accessed 15 May 2021]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



59 
 

6 Appendices 
6.1 Project Plan 

  

 

 

 

 

 

National College of Ireland 
Project Proposal 

SwiftSwipe 

08/10/20 

 
BSc (Honours) in Computing 

Software Development 

2020/2021 

George King 

18106188 

X18106188@student.ncirl.ie 

 

mailto:X18106188@student.ncirl.ie


60 
 

Contents 
1.0 Objectives .................................................................................................................................. 61 

2.0 Background ............................................................................................................................... 61 

3.0 Technical Approach ................................................................................................................... 62 

4.0 Special Resources Required ...................................................................................................... 62 

5.0 Project Plan ............................................................................................................................... 63 

6.0 Technical Details ....................................................................................................................... 63 

7.0 Evaluation ................................................................................................................................. 64 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

1.0 Objectives 
When thinking about the objectives of my project there are several that come to mind. Each of these 
objectives is paramount to the success of my application. They have been carefully considered and 
critically analysed to ensure the necessity of them. It was important to me that the objectives I have 
for my project added value to the customers experience and were not just needless features. This was 
also done to avoid scope creep. 

The objective first being making the customer experience as seamless as possible and having to only 
deal with one employee. I plan on doing this by facilitating all current functionality provided by a store 
of employees to being provided by just one employee and my application. In turn this lead into my 
next objective of reducing the number of employees needed in the store. In order to make my 
application business viable I need it to reduce costs of the businesses using it. I hope to achieve this 
by reducing the number of employees needed as well as data gathering for marketing purposes. I will 
reduce the number of employees needed by giving every employee in the store the capabilities 
required for the store to work. Thus, removing specific roles such as a checkout employee and allowing 
employees to always be working. The next objective I hope to achieve is facilitating payments 
anywhere in the store to deal with queues. This objective came to mind when thinking about 
Christmas shopping and how you can spend longer queueing than shopping. I aim to achieve this 
objective by retrofitting the devices currently used in stores with the capabilities of NFC payments. 
The final objective that I have is data gathering for the businesses. I hope to achieve this by various 
methods but currently the only one that I have thought of is email gathering for providing receipts. 
Gathering data like this has a cost associated with it and with my application providing a new way to 
gather it I have made my application more feasible for businesses to consider. 

2.0 Background 
My idea come from a hackathon I did during my internship last summer. For the hackathon we were 
tasked with coming up with new utilisations of NFC and how it can be used to allow small businesses 
to take card payments. We were broken up into teams of four and given two weeks for preparation 
work to flesh out our idea and then a day to create a presentation and a video talking about your idea. 
The presentation consisted of a mock-up UI and talking about the various features of our idea. At the 
end of the presentation, we got asked questions by the three judges. Thankfully, the questions we got 
asked we had already considered and come up with answers for. Overall, it was a great experience 
and our idea ended up winning the hackathon.  

One concern we had for the application at the time was the current spending limit on tap payments. 
Currently set at 50€ we had to consider how we would deal with larger expenses and security concerns 
if we were to hypothetically raise the spending limit. I raised this concern with the committee hosting 
the hackathon and made the argument that we are slowly heading towards a world where most 
transactions are being done via card and so the raising of the tap amount was inevitable. They agreed 
and decided to not take that issue into concern when considering ideas. However, in terms of my 
project and real-world viability it is not as easy to deal with. I do think that concern is slightly out of 
my control though and I intend to focus on what I can control with my project. While this issue will 
make my application less viable for stores where purchase amounts on average are greater than 50€, 
going forward the limit will be raised and as a result my application will then become viable.  

The reason I want to continue to explore this idea and pick it for my final year project is because I 
believe it has a strong chance of being a useful product with business viability. With the hackathon I 



62 
 

did not get the opportunity to fully develop the idea and create a software side to it. With the idea 
being my final year project, I will get to have that opportunity and see it all the way through. 

When looking at other applications that replicate the same functionality as my own there is not an 
officially released one. However, there is a case study currently going on in south America which has 
similar aims and objectives to that of my own project. As the case study is currently on going there 
has yet to be any officially released results. However, researchers involved in the study have 
commented that the results look promising. It is possible to look at what is currently in use for store 
payments/checking stock. Traditionally or currently when wanting to pay in a store the customer has 
to make their way to a physical location in the store to do so. Similarly, when wanting to check stock 
in certain stores they have stock employees in the stock room of the store who can be reached by 
earpiece. Whereas in other stores an employee would have to go back there themselves to check. 

 

3.0 Technical Approach 
When considering the approach to take when developing out my application I only had two methods 
in mind, that being the waterfall method and the agile method. While waterfall is generally considered 
outdated and not practical in the modern world it does have it is advantageous for small projects. 
With my project being just me and no other participants involved the requirements and other 
deliverables are not going to change, so waterfall is a valid consideration for the approach to take. 
However agile can also take advantage of this fact and I will more than likely be using it in my career 
going forward. For this reason, I think the right choice is to use Agile to get more experience using it. 
It will benefit me moving forward and has the same advantages that waterfall does. While not having 
the drawbacks of waterfall if my supervisor advises me to try push the scope of my project, which is 
likely given our initial meeting. 

With this decision in mind the first step is to research applications currently on the market to get an 
idea of what is there. From there I will be able to see which features are on offer and what is not on 
offer. From there I can move on to requirements gathering both functional and non-functional to know 
what I will need my application to have.  With those captured I can start to mark out the timeline for 
the features and when I should have them done. Included in this will be reflective views at midpoints 
throughout the project as well as testing at the end of the project to ensure correct functionality 
throughout the system. 

4.0 Special Resources Required 
The main special resource I will require is an ability to mock NFC payments. I am currently unsure how 
to go about this but will do more research surrounding this topic when it comes closer to the time of 
testing. The other special resource I will require is an android device as my personal device is using 
iOS software. While I can run my unit tests and see how the design will look via the emulator built in 
android studio it is still important to be able to see how the application will look in person on a device 
or at a production level.  



63 
 

Project Plan 

 

 

5.0 Technical Details 
When deciding on which language I wanted to use I thought of it from the perspective of how I wanted 
to interface with the customer and due to my application requiring mobility I went with a mobile 
application. This led to the choice of iOS or android for which platform I wanted to develop on. Given 
my previous experience in Java and the wider usage of android devices I decided that android would 
be the best platform to use. With this in mind the final decision I had to make was Java or Kotlin since 
you can develop with either language for android applications. Like I said above having had a lot of 
previous experience in Java I felt Java was the best bet as I want to develop the best application that 
I can. 

Another language I will need to use is one for testing. Anytime I have tested before it has been done 
manually but part of the project deliverables is using test units to verify the functionality of my project. 
Having considered this, I have done some small amounts of research on various testing languages and 
have decided on Junit. 

When thinking of libraries that I will require for my project there are many within the scope. The first 
being the libraries required for NFC payments. As well as the libraries required for my firebase 
database. 

 

 



64 
 

6.0 Evaluation 
When considering how I wanted to evaluate my system I decided that the best way would be to 
incorporate a testing language to mock any type of input my system would expect. In order to do this, 
I will be implementing the Junit language into my project. With this language I will be able to ensure 
that every aspect of my project is working as it should and I can ensure that when I submit my project 
for final review that it will be in working condition. This would include the log in system, the cart 
system, the payment system, and the database integration.  

One issue I can see myself running into when evaluating my application is mocking the NFC payment 
aspect. I have yet to be able to find any information regarding this topic and it is an area of concern 
moving forward. I hope to be able to find a way to mock the payment by the time I reach that stage 
of my project.  

The final evaluation that needs to be considered is the experience from the end users’ perspective 
which would be an employee in a given store. To achieve this, I will require an ethics form which will 
allow me to get feedback about the system flow and design so that I can improve it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

6.1 Reflective Journals 
6.1.2 October 

 My feelings for the first month of my software project have been mixed. The first part of this 
process was the video proposal. Overall, I found this assignment easy enough. Answering the 
questions proposed to us in the assignment specification allowed me to flesh out my idea and to 
consider parts of the idea that I had not before. From there the wait to hear back about my idea 
getting approved or not was a stressful one due to the timeframe with the next assignment on the 
8th of November. Thankfully, it all worked out in the end and my idea did get approved and I feel like 
I still have enough time to complete that assignment before the due date.  

One concern I do have is that when I was working on a mobile project for another class, I found that 
my mobile application skills were lacking in certain areas that I would require for my project. To 
combat this, I have started doing some example projects to get better at my mobile development. I 
am hoping this will put me in a better spot once I get to the development stage of my project.  

6.1.3 November 
 For the month of November, I was happy with the progress I made on my project. I had 
talked with my supervisor about various concerns that I had, and she was very helpful in tackling 
them. The main concern I had was time management with a heavy workload besides the final year 
project. Other than my concerns I have been able to make progress in the way of setting up my login 
and connecting my database for my app. I have also started work on the barcode and going forward 
I need to link that with my database too. Overall moving forward with the project, I am concerned 
about the midpoint submission and how much work I have let to do until I am ready for it. I am 
hoping to find time with finishing other assignments sooner than their deadline but that is currently 
not working out too well. 

6.1.4 December 
 For the month of December there was a lot that happened with my final year progress. The 
midpoint submission was due on the 22nd and there was a lot I wanted to get done for that 
submission. Thankfully, I had about a five-day period where I could exclusively work on the codebase 
and report which allowed me to make a lot of progress. Overall, I was not super happy with the state 
the application was in for the submission, but I felt it satisfied the requirements of the submission. I 
was also apprehensive about doing the video recording as having done some for other modules 
earlier in the term they had proved to be difficult and requiring many takes. Thankfully for this 
submission though I found my previous experience doing the videos to be beneficial and was able to 
complete the recording after three takes. 

We were also informed that the next semester workload with be lighter due to only having three 
modules on top of the final year project. Feeling good about that prospect with the amount of work I 
have left to do. I am also keen to take advantage of the holiday break to make as much progress as 
possible once all my other assignments are in from the 6th of January onwards. 

6.1.5 January 
 

 

 



66 
 

6.1.6 February 
 For the month of February in regard to my final year project I made some good progress. I 
got my database working for many sections of the project as well as started to look at my card 
reader. Found an interesting library that may facilitate the functionality that I want. Need to discuss 
further with my supervisor how to move ahead in regard to this. 

Overall, very happy with the current state of my project and the current speed at which its going, 
due to less classes overall the project has become far less stressful and can see the final product. 

6.1.7 March 
6.1.8 April 

6.2 Other materials used 


	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2 Requirement 1: Employee searching the stockroom
	2.1.1.2.1 Description & Priority
	2.1.1.2.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.3 Requirement 2: Employee creating a sale
	2.1.1.3.1 Description & Priority
	2.1.1.3.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.4 Requirement 3: Employee cancelling a sale
	2.1.1.4.1 Description & Priority
	2.1.1.4.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.5 Requirement 4: Employee applying a discount
	2.1.1.5.1 Description & Priority
	2.1.1.5.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.6 Requirement 5: Customer paying
	2.1.1.6.1 Description & Priority
	2.1.1.6.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.7 Requirement 6: Refunding a customer
	2.1.1.7.1 Description & Priority
	2.1.1.7.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.8 Requirement 7: Registering
	2.1.1.8.1 Description & Priority
	2.1.1.8.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.9 Requirement 8: Logging in
	2.1.1.9.1 Description & Priority
	2.1.1.9.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.1.10 Requirement 9: Logging out
	2.1.1.10.1 Description & Priority
	2.1.1.10.2 Use Case
	Scope
	Description
	Use Case Diagram
	Flow Description
	Precondition
	Activation
	Main flow
	Alternate flow
	Termination
	Post condition

	2.1.2 Data Requirements
	2.1.2.1 Requirement 1: Access to the database
	2.1.3 User Requirements
	2.1.3.1 Requirement 1: Access to the internet
	2.1.3.2 Requirement 2: Access to the camera
	2
	2.1.2
	2.1.2.1
	2.1.2.2
	2.1.2.3 Requirement 2: Access to the Node.js server
	2.1.3 Environmental Requirements
	2.1.4 Usability Requirements
	2.1.4
	2.1.4.1 Requirement 1: Ability to use the system without error
	2.2 Design & Architecture
	2.3 Implementation

	Payment
	2.4 Graphical User Interface (GUI)
	2.5 Testing
	2.6 Evaluation

	3 Conclusions
	4 Further Development or Research
	5 References
	6 Appendices
	6.1 Project Plan

	1.0 Objectives
	2.0 Background
	3.0 Technical Approach
	4.0 Special Resources Required
	Project Plan
	5.0 Technical Details
	6.0 Evaluation
	1.0
	2.0
	3.0
	4.0
	6.1 Reflective Journals
	6.1.2 October
	6.1.3 November
	6.1.4 December
	6.1.5 January
	6.1.6 February
	6.1.7 March
	6.1.8 April
	6.2 Other materials used


