National
College o
Ireland

National College of Ireland

BSHC
Software Development
2020/2021
Ben Carroll
x17501726
x17501726@student.ncirl.ie

Retro - Technical Report

Contents

BN o) (S i 2 ¥ eq T PSSP UPEERR 4
EXCCUTIVE SUM MM AT Y 1ititiiiiiieieiiiiiieeeeeeeesiteeeeeeeeesttaraeeeeeeesasttsaeeaaeeessssssssseeaeesasnssssasaeaeessasssssssseeesesannsnes 6
Lo INETOAUCTION toitiiiiiiiiiee ettt ettt ettt ettt sttt et esat e st e et e e naneesabeeenteeenanee e 6
L.l BACKEIOUNA coiiiiiiieeie ettt e e ettt e e ettt e e ettt e e e ettt e e santeeaeaneeeaeaans 6
1.2 ALIILS ettt ettt et b ettt e h et et e ht ettt et e nbb e st eaeeen 7
0 B Tl s B o) U ¥ USSP PURUPUUPNS 7
Lid . ST CTUT @ ittt ittt ettt ettt e sttt e e sttt e e sttt e e e eatbeeeseatbeeesaeteeeennreeeenane 8

. £ <3 v+ USSP UUSERR 8
0 O =T L BT <) 1 USSP UPSERPRt 8
2.1.1. Functional REQUITEM NS ..ueiiiieiiiiiiiiiiiieeeeeeiiiteeeeeee ettt e e e e e e et eeeeeseesnnenraeeaeesennnnes 8
2.1.2. Data REQUITEIM CNES wireerieiiiiiiiiieeeeeeiiiiiteeeeeeeeittteeeeeeessnnsareeeeeeesssnnssaaeaaesseasnssseeeaaaseans 17
2.1.3. USEr REQUITEIM @IITS 1iiiiiiiiiiiiiiiie e e ettt e e e e e ettt e e e e e s ettabeeeeeeeesnetsaaeeeeesesssnnsanaeaeesaanns 17
2.1.4. Usability REQUITEM NS ..uuviiiiiiiiiiiiiiiiiieeeeeeeiiieeee e e e e seiiaeeeeeeeeesentbreeeeeesessansaeeeaeeseanns 17

2.2, Design & ATCRIEECTUTE cooiiiiieiiiiii ettt ettt e et e e e ettt e e e eate e e e ente e e e enteeeeennaeeeeas 18
2.3, IMPIemM @NEATION tiiiiiiiiiiiiiee ettt et e e e e et e e e e e e s ettt b e e e e e e e e e et b e aeeeaeeesnntrraaaaaeeeaans 20
2310 The Backend e e 20
2.3.2.0 The Frontend: oottt et e 28

2.4. Graphical User Interface (GUI)cooooiiiiiiiiiiieeeie et 34
2.4.1. HoOm e Page e 34
24.2. R T OSSP ECTIVE PagE: iiiiiiiiiiiiiiiiiie ettt e et e e e e e st e e e e e e ennnnaeeeens 35
2,43, ATCRIVE Page: oo e et e e e e aaaaaeeanns 36
2.4.4. Sentiment Analysis Page:..c.ccoooiiiiiiiiiiee e e 37
245, SEATCR ciii et 38
T Y (¢ 0 B D A Lo X PSPPSR 39
24,7, VOUINE SYSEOIM I 1ottt ettt ettt e e ettt e e ettt e e ettt e e e eaebe e e e bbb e e e anbeeeeeanbeeeeeanneeeeeanneeas 41
2.4.8. Retrospective Tim @Stam P S . iiiiiiiiiiiiiieieeeiiiiiiiieeeeeeeseitareeeeeeeesiatrareeeeeeessaarsreeeeeseanns 42

s T 10 i 0 o I USSP UPEPRN 42
2.5 1. BaCKENA wiiiiiiiiiii e e 42
2520 FIONTEId oo e e e 45

2.6, EVALUATION ottt 46
3 G0N CIUSION S tiiiiiiii ettt e 47
4. Further Development or RESCATCHuiiiiiiiiiiiiiiiiii e 48
5 REIEIEICES woeiiiiiiiii ettt ettt st e 49
LN oY o131 W B (eSS P PP PPPPRRUN 50

(20 BT o o] [T A o USSP 50

6.2, Project PropOSal oot e e e e e e e e e e nnrraaeaaaeeaans 52

(O B © 1 [T TP PPPEPR 52
6.2.2. BaCKZIOUNA ..ooiiiiiiiiiiiee ettt e ettt e e e e et a e e e e e e et aeeaeeeeennnbaraaaaeeaanns 53
6.2.3. Technical APPTIOacCh ..oooiiiiiiiiiiiiie e e e e e e tra e e e e e e e 55
6.2.4. Special Resources ReqUITed ...oooocuvviiiiiiiiiiiiiiice e e e 56
6.2.5. Project Plam ..ottt e anaeeas 56
6.2.6. Technical Detailsc.cccooiiiiiiiiiiiiiiiiei e e 59
6.2.7. BEVAlUATION tooiiiiiiiiii e et 59
6.3, ReflectiVe JOUTIIALS couiiiiiiiiii ettt e 60
6.3.1. October Reflective Journal.....c.ccoooiiiiiiiiii e 60
6.3.2. November Reflective Journalcoociiiiiiiiiiiii e 60
6.3.3. December Reflective Journal.......cccoooiiiiiiiiiiiiic e 61
6.3.4. January Reflective JOUTNal.....ccooiiiiiiiiiiiei e 61
6.3.5. February Reflective JoOUurnal........oooiiiiiiiiiiiiiiiice et e e 62
6.3.6. March Reflective Journal......coooiiiiiiiiiiiiiiii e 62
6.3.7. April Reflective JOUuTnal...coooooiiiiiiiiiiccc e 62
6.4. Informed ConsSent FOIM ii ittt 63
6.4.1. PartiCipant O @ ... i ittt e ettt e e e e et e e e e e ettt e e e e e e e ntaeeeaaeeeaans 63
6.5, User Testing ReSUIES: ..uuiiiiiiiiiiii et e e e e e e e e et eeeaaeeeeans 64
6.5. 1. FIVE SECONA TeSTi .ttt ete e et e ettt e e e e 64
6.5.2. TrUDK TS i et 64
6.5.3. Think AloUd TeSti i e 64
6.5.4. Tree Test i e e 65
6.5.5. ClCK ToStitiiiiiiiieiiie ettt ettt e 65
6.6. NCIEthics Application FOTMiiiiiiiiiiiiiiiiiiee e e e e e e arreeeeeeeeeaes 66
6.7. System Usability Scale EXit SUTVEY ittt 72

6.8. User Testing: UsSer INTErTaceoiiiiiiiiiiiiee et 72

Table of Figures:

Figure 1: Retro USe Case diagramoooiiiiiiiiiiiiiii et a e e 9
Figure 2: Angular frontend file SETUCTUTE .uviiiiiiiiiiiiiiiiie et e e e et eeeeeeeenes 18
Figure 3:Java Spring backend file StruCtUTE . ..ccoiuuiiiiiiiiie it 19
Figure 4:Retro architecture di@@ramcccoiiiiiiiiiiiiiiiie et e e e e e et e e e e e e et eeeaeeeeenns 20
Figure 5: LoadDatabase.java: 'Local' profile java file used for testing purposes........ceccvvvveveeennne 21
Figure 6:Backend: Retrospectives CONtIOller ..ooooiiiiiiiiiiiiiiiiie et e e 22
Figure 7:1tem class Java 116oii ittt e 23
Figure 8:Item typeenumerator java flle.....cccooiiiiiiiiiiiiii e 23
Figure 9:Retrospectives JPA repository interface java file......ccccooveiiiiiiiiiiiniiiiee e 24
Figure 10: RetrosNotFoundException - custom error handlingmethodccocceiiniinn. 24
Figure 11:Retrospectives service class java fileoooooiiiiiiiiiiiiiiii e 25
FiUTE@ 12 S0P W 0TS uiiiiiiiiiiiiiiiiiiie ettt e ettt e e e e ettt e e e e e s s nenbaeeeeeeeesnnsseaeeaaeseansnsssseeaeaneanns 25
Figure 13: Afinn Dictionary - words and associated sentiment SCOTEScocevvrrrreeeeerrinrrreeeeeennnns 26
Figure 14: Sentiment Analysis - Reading in dictionaries and retrieving retrospective item
LT o3 T o1 (o o U PURPRN 26
Figure 15: Sentiment Analysis - words being assigned a score and sentiment analysis
o100 1 K o] T« TP PPPPUPPPPN 27
Figure 16: Exporting retrospective items and action items to a CSV file.cccooooiiiiiiiinniiin. 27
Figure 17:Retrospectives component HTML fileoooiiiiiiiiiiiiiiie e 28
Figure 18:Item form m ethOdS....ouiiiiiiiiiiiiiee e e e e e e ee e e e e e e e ninteraeaeeeeenns 29
Figure 19:Retrospectives TyPeSCript fIle ...t e e arree e e e e e 30
Figure 20: Retrospectives services Typescript flle.......coooiiiiiiiiiiiiii e 31
Figure 21:proxy.conf.json - allows backend and frontend to communicate...........ecccuuveereeennn. 31
Figure 22: Archived retrospectives pipe method ...ccccceeeieiiiiiiiiee e 32
Figure 23: Archived retrospectives pipe HTML filter.......cccooviiiiiieiiiiiiiiiiiee e 32
Figure 24: Angular pipe to filter item s DY tYPe couieiiiiiiiiiiiee e 32
Figure 25:Ttem votes ANgUIar fIlEeT ..oooouiiiiiiiiii e e e e 33
Figure 26: Use of Angular pipes for item types and item votesin HTML.........cccccccconiiinnnnn. 33
Figure 27: APPlICAtION TOULIM Q coeiiiiiieiiiiii ettt ettt ettt e e ettt e e ettt e e e st e e e saneeeeeennaeeeeennaeeeean 33
Figure 28 : GUI - Retro HOm € Page .ooeeeieiiiiiiiee ettt e e e e e eeee e e e 34
Figure 29:GUI - Individual retrospective page With itemsccceeevviiiiiiiiiieeiiiiiiiieee e 35
Figure 30: GUI - Individual retrospective page with action itemsccccceeevviciiiiereeeeeiiciiiieeeeeeenns 35
Figure 31:GUI - Retrospective page - revView €d IEIMccuiuuiiiiiiiiie it 36
Figure 32: GUI - Archived retroSPeCtiVeS PaZ .coicuueeiiieeeeeeiiiiiiieeee e e ettt e e e e e e einteeeeeeeeseananeeeeeeaaaeeanns 36
Figure 33:GUI - Sentiment Analysis Page —displaying a positive Sentiment Analysis. 37
Figure 34: GUI - Sentiment Analysis Page —displaying a negative Sentiment Analysis............. 38
Figure 35: GUI - Searching for @ retroSPECLIVE coouuiiiiiiiiieiiiiie ettt et 39
Figure 36: GUI - Searching for @ RetroSpeCtiVe . .oooueiiiiiieiiiiiiie e 39
Figure 37: GUI - Modal dialog to delete a retroSPECtiVe..coiiiiiieeeeeeieiiiiiiieeeeeeeiiieeeee e e e e eeereeeee e 40
Figure 38: GUI - Modal dialogue to delete a retrospective itemooccuvvveieeeeeeriiiiiiiieeeeeeeiirieeee e 40
Figure 39: GUI - Modal dialog to edit a retroSpective Item . ..ooocueeieiiiiieeiiiiie et 41
Figure 40: GUIL - VOTIN G SYSTOIM ..uuiiiiieeiiiiiiiiiieee e ettt e e e ettt e e e e e sttt e e e e e e snnteeeeeeaeseaannnbneeeaeaeeanns 41
Figure 41 : GUIL - VOtIN @ SYSTEIM .uvviiiieeiiiiiiiiiiiee e e oottt e e e e e ettt eeeeeeesentaeeaeeeessnntseaeeeaeseesnnssneeaaaeeans 42
Figure 42:Service tests - Unit tests for retrieving retroSPeCtiVes. covviirieeerriiiiiieeeeeeeiriirreeeeeeeenns 43
Figure 43:Code coverage present in each class and their respective methods. ... 44
Figure 44: All tests passing for the application, service,and controller tests.cccooeveeernineeenne 44

Figure 45: YAML configuration file for local' profilecccccomniiiiiiiiiiiiicc e 45

Figure 46: Gantt Chart timeline VIEWot 50

Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:

Gantt Chartitems for backendccooiiiiiiiiiiii e 50
Gantt Chart items for frontend 1/2 ... 52
Gantt Chart items for frontend 2/ 2 ... 52
Project Plan - Gantt Chart timeline VIEWccccvveiieieiiiiiiiiiiiee e e e e eieeee e e e 56
Project Plan - Gantt Chart items 1/3 ...t ee e e e 57
Project Plan - Gantt Chart item s 2/3 ..ottt 58
Project Plan - Gantt Chart ite€m s 3/3 ..ot 59
System Usability Scale EXit SUTVEY cooociiiiiiieiiiiiiiiiiiiee et e e e erreee e e e e 72
Usability testing Retro hOmM €Pageoeeeiiuiiiiiiiiiieeiiee ettt 73
Usability testing individual retroSpective Page. .cceeevviieiiriiiiieiiiee e 73

Executive Summary

Alarge number of modern Software Development teams have team members in different
locations, and this factor has of course increased with many people working remotely due to
the pandemic (Taplin, 2021). As most Software Development teams follow an Agile sprint
methodology, remote working affect s their ability to carry out retrospectives, which are
typically done in person. An Agile sprintis a short, time -bound period where teams complete a
defined amount of work and aretrospective is carried out after a sprint in order to discuss how
it wentwi th regards to individuals, interactions, processes, tools (Scrum, 2021). Similarly, it
has become increasingly difficult for Software Development team managers to effectively
manage and gauge team moral e when working remotely.

This report details the background, requirements gathering, design and implementation of

Retro, an implementation of a solution to this problem. Retro is a web application that allows
Software Development teams to be able to facili tate their agile sprint retrospectives remotely
and enables managers of Software Development teams to effectively manage remotely through
a Sentiment Analysis (mining of text that finds and extracts information that helps a person
understand the sentiment behind the data [Gupta, 2018]) that is performed on a retrospective ,
allowing managers to gauge team morale, with the data to back the analysis up.

Retro’s implemented solution offers a lightweight, speedy web application that can be used by
any Software Development team or enterprise to perform retrospectives. Its minimalist and

user -friendly user interface places focus on the retrospectives and allows te ams to address
issues that have arisen from their retrospectives in real -time without compromising on
functionality is also an advantage . Similarly, it allow s Software Development team managers
to effectively gauge team morale through its Sentiment Analysi s functionality.

1. Introduction

1.1.Background

ITundertook this project to provide a means for Software Development teams to be able to
facilitate their agile sprint retrospectives remotely. The idea for this project occurred tome
during my placement in third year. The team [was working in followed the Agile
methodology but when the team were doing retrospectives atthe end of a sprint,there was
no dedicated application to facilitate them that provided the level of communication
needed, especially when some team members were in different offices around the world.

Iconcluded that an application is needed to provide a more organised and effective way of
carrying out a retrospective that would allow it to be both meaningful and useful to all
members of the team and to management, especially at the moment with the majority of
development teams working from home due tothe pandemic.

Retrospectives are traditionally done in person where even if somethingisunclear duringa
retrospective, it can be clarified by popping down to someone’s desk and asking again.
However, this type of communication is no longer a possibility for a large number of
development teams.Iwant to provide an application that could keep team communication
clear in retrospectives, aid remote management of teams and give back some semblance of

normalcy toteams that are working remotely.

1.2. Aims

Retro aims to facilitate sprint retrospectives remotely for Software Development teams
within aresponsive web application. Retro will allow development teams that are using an
agile sprint methodology to run their retrospectives from anywhere.

Developmentteams willbe abletoadd itemstotheretrospectivethat willtacklethingsthat
went well in the sprint, things that did not go well and any questions they have as a result
ofthe sprint. They will also be able to add action items, issues that need to be solved in the
following sprint or added to their backlog.

Retro seeks to allow teams to carry out their retrospectives in a clear, open manner, with
excellent communication levels in development teams, as though they were in person,
through an intuitive and user-friendly application that is designed to fit the needs of any
team.

Retro aims to provide a sentiment analysis tool for team managers that analyses words
commonly used in the retrospectives of their team in order to assess the morale levels
within their team. This benefits managers if they are unable to gauge things like this by
face-to-face interactions and meetings. This would aid managers in addressing
productivity issues or maintaining morale with the benefit of data to back it up.

Retroalsoaimsprovide an application that can scaleto fittheneedsofanyteam or company
without compromising on efficiency. This will be achieved by designing Retro using
S.O.L.I.D. (Single responsibility, Open/closed, Liskov segregation, Interface Segregation,
Dependency inversion) design principles throughout the project. Similarly, Retro will
provide exceptional security standards within the application, giving users the peace of
mind that their retrospectives are being properly safeguarded in the application.

1.3.Technology

Angular was used to develop the frontend of the application, both on mobile and desktop
platforms. It was chosen asthereisampledocumentation and resources on it,and due to its
component design pattern, it lends itselfto scalability and efficiency needed for the project.
Similarly, the Bootstrap framework was also implemented within the Angular project in
order to improve the look and feel. This provides the user-friendly interface that achieves
the clear communication Retro aims for.

The backend was implemented using Java coupled with the Spring framework. The Spring
framework provides built-in libraries that was used to tackle the scalability and security of
the application as well as lending itselfto designing and building the APIthat is needed for
Retro’s core functionality. This provides both the performance and reliability needed for
Retro to succeed.

The AFINN Dictionary ((AFINN.2011),(Nielsen.2011))wasusedtocarryoutthe Sentiment
Analysis on retrospectives. It does so by assigning a score to each word used in a

retrospective depending on if the level of positivity or negativity typically associated with
the word. For example,the word ‘masterpiece’has a score of 4,and the word ‘accident’has
ascoreof-2. Thereisalsoalist of ‘stop words’that each word in aretrospectiveiscompared
to,and if the word is present amongst the list of stop words, it is not assigned a score. The
stop words typically include pronouns such as T’, ‘we’, or ‘you’.

The score of the words is then added together and an overall score is produced. The team’s
manager can see their team’s morale level in a visual format based off of the overall score
data, as well as seeing a recommendation message. The recommendation message is
feedback from Retro based off the Sentiment Analysis data and depends on if the overall
score is a positive or negative integer.

In order to design this project with efficiency and scalability in mind, the Java S.O.L.I.D.
(Single responsibility, Open/closed, Liskov segregation, Interface Segregation, Dependency
inversion) were employed. These principles are not a technology per se, but they were
followed closely when implementing the above technology in the project to ensure the
application can perform as intended and weather periods of high traffic effectively. This
aids the scalability and security aspects of the project.

1.4.Structure

This document delves into the functional, data, user and usability requirements of the
system needed for Retro, the design and architecture of the application as well as how the
frontend and backend wereimplemented, as visualised by screenshots oftheuser interface.
Details of how unit tests were incorporated throughout the backend and usability tests
throughout the frontend are also included. Similarly, the project’s conclusion and plans for
further development are documented.

The project plan, proposal, my reflective journals,and theresults of the usability testing are
also attached tothe document’s appendices.

. System

2.1.Requirements

2.1.1. Functional Requirements

2.1.1.1. Use Case Diagram
The various use cases of Retro are detailed in Figure 1.

User

Retro

Perform a
sentiment analysis
on a retrospective

Add an item to a

, retrospective
Create a /
retrospective /

, Delete an item
<<extend>> | from a
/ i retrospective

s
/ s

Delete a
retrospective

/

R 7
NERN AN <<extend>>
NN "\ <<éxtend>> aya
\ \ N o ’ s Update a
NN ~ AN ‘, Sl retrospective item
\\\ \\\ <<extend>> \\\ e /// _ §<extend>>
\ \ AN retrospective N
\ N\ ~ S~
N ° AN <<extend>>
NN N N Z Add an action
\ N N o~ item to a
\ <<extend>> NERN retrospective
\ \ Update a \\ N
N N retrospective's title <extend>>
N ~
<<ex\tbnd>>\\ De_lete an action
N J item from a
. retrospective
N
N
 Delete an account AN
Update a
retrospective action
item
Update an
account's details
Figure 1: Retro use case diagram
21.1.2. Requirement 1: The User is able to create a retrospective.

21.1.21. Description and Priority
This use case is a priority for Retro as once the User enters the Retro web application,
they must be able to create a retrospective and it saved to the database by the
system .

2.1.1.2.2. Use Case
Scope

The scope of this use case is to lett he User create a retrospective on Retro.
Description

This use case describes the creation of a retrospective in the database by a User once
they have entered the Retro web application.

Flow Description
Precondition
The system is in initialisation mode

Activation

This use case starts when a User logs on to the Retro web application.
Main flow

1. The User enters a retrospective title in the text input area.

2. The User submits the retrospective title form to the system.

3. The system creates the retrospective with the specified title and stores it
in the database.

Termination

The system becomes idle.

Post condition

The system goes into a wait state.

2.1.1.3. Requirement 2: User is able to retrieve and view a retrospective.

21.1.3.1. Description and Priority
This use case is a priority for Retro as once the User enters the Retro web application,
they must be able to retrieve a retrospective from the database and view it

2.1.1.3.2. Use Case
Scope

The scope of this use case is to let the User ent er Retro and to retrieve and view a
retrospective.

Description

This use case describes the retrieval of a retrospective from the database by a User
once they have entered the Retro web application.

Flow Description
Precondition

The system is in initialisat ion mode and the retrospective has already been
created .

Activation
This use case starts when a User prompts the system to enter a retrospective
Main flow

1. The User clicks on a retrospective and t he system identifies that the user
wants to enter a retrospective .
2. The User enters the desired retrospective.
Termination

The system becomes idle.
Post condition

The system goes into a wait state.

2.1.1.4. Requirement 3:Useris able to delete a retrospective.

2.1.1.4.1. Description and Priority
This use case is a priority for Retro as once the User creates a retrospective, they
must be able to delete it.

2.1.14.2. Use Case
Scope

The scope of this use case is to let the User delete a retrospective.
Description

This use case describes the deletion of a retrospective and have it removed from the
database.

Flow Description
Precondition

The system is in initialisation mode and the retrospective has already been
created .

Activation

This use case starts when a User enter s Retro.

Main flow

1. The User prompts the system to delete a retrospective.

2. The User is prompted to confirm that they want to delete the retrospective.

3. The User clicks ‘yes’ to confirm deletion. (See A1)

4. The system identifies that the user wants to delete a retrospective and

removes it from the database

Alternate flow

A1: The User cancels deleting the retrospective.
1. The retrospective is not deleted from the database by the system.

Termination
The system becomes idle.
Post condition

The system goes into a wait state.

2.1.1.5. Requirement 4: User is able to perform a Sentiment Analysis on a
retrospective.
21.1.51. Description and Priority
This use case is a top priority for Retro as once the User has carried out a

retrospective with their team by adding items to it , they must be able to perform a
Sentiment Analysis on it.

2.1.1.5.2. Use Case
Scope

The scope of this use case is to let the User perform a Sentiment Analysis a
retrospective.

Description
This use case describes performing a Sentiment Analysis on a retrospective.
Flow Description

Precondition

The system is in initialisation mode and the r etrospective has already been
created and carried out with the User’s team by adding items to it

Activation

This use case starts after a User carries out a retrospective with their team and
prompts the system for the sentiment analysis for that retrospect ive.

Main flow

1. The User ensures that the retrospective has been completed and that
their team members are no longer adding items to it.
2. The User prompts the system to produce a sentiment analysis on a
particular retrospective.
3. The system produces the sentiment analysis on the specified
retrospective and returns it to the user.
Termination

The system becomes idle.
Post condition
The system goes into a wait state.

2.1.1.6. Requirement 5: User is able to add an item to a retrospective.

2.1.1.6.1. Description and Priority
This use case is a priority for Retro as once the User enters a retrospective , they must
be able to add an item to the retrospective

2.1.1.6.2. Use Case
Scope

The scope of this use case is to let the User add an item to a retrospective.
Description

This us e case describes the addition of an item to a retrospective and have it saved
to the database .

Flow Description
Precondition

The system is in initialisation mode and the retrospective has already been
created .

Activation

This use case starts when a User enters a retrospective.
Main flow

1. The system identifies that the user wants to add an item to a retrospective.

2. The User adds an item under the ‘things that went well’ column to a
retrospective. (See A1, A2)

3. Theitem is saved to that retrospective by the system on the database.

Alternate flow

A1: The User adds an item under the ‘things that did not go so well’ column to a
retrospective.
1. The item is saved to that retrospective by the system on the database.

A2: The User adds an item under the * questions ’ column to a retrospective.
1. The item is saved to that retrospective by the system on the database.

Termination

The system becomes idle.

Post condition

The system goes into a wait state.

21.1.7. Requirement 6: User is able to delete an item from a retrospective.

211.71. Description and Priority
This use case is a priority for Retro as once the User enters a retrospective , they must
be able to delete an item from the retrospective .

2.1.1.7.2. Use Case
Scope

The scope of this use case is to let the User delete an item from a retrospective.
Description

This use case describes the deletion of anitem from a retrospective and have it
removed from the database .

Flow Description
Precondition

The system is in initialisation mode and the retrospective and item have already
been created .

Activation

This use case starts when a User enters a retrospective .

Main flow
1. The system identifies that the user wants to delete anitem from a
retrospective.

2. The Useris prompted to confirm that they want to delete the item.
3. The User clicks ‘yes’ to confirm deletion. (See A1)

4. Theitem is deleted from that retrospective by the system on the database.

Alternate flow

A1: The User cancels deleting the item from the retrospecti ve.
1. The item is not deleted from the retrospective by the system on the
database.

Termination

The system becomes idle.

Post condition

The system goes into a wait state.

2.1.1.8. Requirement 7: User is able to update an item on a retrospective.

2.1.1.8.1. Description and Priority
This use case is a priority for Retro as once the User enters a retrospective , they must
be able to update an item on the retrospective

2.1.1.8.2. Use Case
Scope

The scope of this use case is to let the User update an item on a retrospective.
Description

This use case describes updating an item on a retrospective and have it updated on
the database .

Flow Description
Precondition

The system is in initialisation mode and the retrospective and item have already
been created .

Activat ion

This use case starts when a User enters a retrospective .

Main flow
1. The system identifies that the user wants to update anitem on a
retrospective.

2. The Useris prompted with a modal dialog to update the text description of
the item that they wantto update.

3. The User enters the updated description and clicks ‘yes’ to confirm updating .
(See A1)

4. Theitemis updated by the system on the database.

Alternate flow

A1: The User cancels updating the item on the retrospective.
1. Theitemis not updated on the retrospective by the system.

Termination

The system becomes idle.

Post condition

The system goes into a wait state.

2.1.1.9. Requirement 8: User is able to add an action item to a retrospective.

2.1.1.9.1. Description and Priority
This use case is a priority for Retro as once the User enters a retrospective , they must
be able to add an action item to the retrospective

2.1.1.9.2. Use Case
Scope

The scope of this use case is to let the User add an action item to a retrospective.
Description

This use case describes the addition of an action item to a retrospective and have it
saved to the database .

Flow Description
Precondition

The systemis inini tialisation mode and the retrospective has already been
created .

Activation

This use case starts when a User enters a retrospective .

Main flow
1. The system identifies that the user wants to add an actionitem toa
retrospective.

2. The User adds an action item to a retrospective.
3. The action item is saved to that retrospective by the system on the database.

Termination

The system becomes idle.

Post condition

The system goes into a wait state.

2.1.1.10. Requirement 9: User is able to delete an action item from a retrospective.

2.1.1.10.1. Description and Priority
This use case is a priority for Retro as once the User enters a retrospective , they must
be able to delete an action item from the retrospective

2.1.1.10.2. Use Case
Scope

The scope of this use case is to let the User delete an action item from a retrospective.

Description

This use case describes the deletion of an action item from a retrospective and have
it removed from the database

Flow Description
Precondition

The system is in initialisation mode and the retrospective and action item have
already been created .

Activation

This use case starts when a User enters a retrospective .

Main flow

1. The system identifies that the user wants to delete an actionitem from a
retrospective.

2. The User is prompted to confirm that they want to delete the action item .

3. The User clicks ‘yes’ to confirm deletion. (See A1)

4, The actionitem is deleted from thatretr ospective by the system on the
database.

Alternate flow

A1: The User cancels deleting the action item from the retrospective.
1. The action item is not deleted from the retrospective by the system on
the database.

Termination

The system becomes idle.

Post condition

The system goes into a wait state.

2.1.1.11. Requirement 10: User is able to update an action item on a retrospective.

211111, Description and Priority
This use case is a priority for Retro as once the User enters a retrospective , they must
be able to update an action item on the retrospective

2.1.1.11.2. Use Case
Scope

The scope of this use case is to let the User update an action item on a retrospective.
Descript ion

This use case describes updating an action item on a retrospective and have it
updated on the database .

Flow Description

Precondition

The system is in initialisation mode and theretrospective and action item have
already been created.

Activation

This use case starts when a User enters a retrospective .

Main flow
1. The system identifies that the user wants to update an actionitem on a
retrospective.

2. The User is prompted with a modal dialog to update the text description of
the action item that they want to update.

3. The User enters the updated description and clicks ‘yes’ to confirm updating.
(See A1)

4. The action item is updated by the system on the data base.

Alternate flow

A1: The User cancels updating the action item on the retrospective.
1. The action item is not updated on the retrospective by the system.

Termination

The system becomes idle.

Post condition

The system goes into a wait state.

2.1.2. Data Requirements

Retro store sany information relating to a retrospective that a user creates, such as items
(things that went well, things that did not go so well, or questions) and action items,
into the H2 in -memory database. Users will be able to update, read, create, or delete this
information once created.

2.1.3. User Requirements

The User Requirements in Retro were largely taken care of by the browser they are
accessing the web application from. Retro does not need a lot of user specific
requirements as sufficient accessibility features are found within modern browsers and
enable users to use Retro as they need to.

2.1.4. Usability Requirements

Usability requirements play an important role in Retro as o ne of the main aims of the
project was to provide users with an application that is intuitive and user -friendly . As
such Retro provide sa simple -to-use application that once a user has been shown how to
use it once, they will not have trouble picking it ba ck up again.

Retro allow s users to complete retrospectives with their teams in a clear manner that
allows them to regain an in -person level of communication and come away from a
retrospective feeling like it was productive . This was achieved by a series o f usability
testing and added functionality that can be seen in the Angular frontend.

2.2. Design & Architecture

Retro is designed on both the front and back ends with S.O.L.I.D. design principles in mind.
Assuch,at every appropriate junction in the project, packages and directories are created to
house files that have similarly follow the S.O.L.I.D. design pattern.

As shown in
containing the projects HTML,
their own function

Figure 2, t he frontend is separated out into directories (components [each
CSS,and Typescript], models, and services) that each have

— app
— app-routing.module.ts
— app.component.css
— app.component.html
— app.component.ts
— app.module.ts
— components
— action-item-form
— action-item-form.component.css
— action-item-form.component.html
— action-item-form.component.ts
— archived-retros
— archived-retros.component.css
— archived-retros.component.html
—— archived-retros.component.ts
— item-form
— item-form.component.css
— item-form.component.html
—— item-form.component.ts
— retros
— retro-item-votes.pipe.ts
— retro-item.pipe.ts
— retros.component.css
— retros.component.html
— retros.component.ts
— retros-list
— retro-archived.pipe.ts
— retro.pipe.ts
— retros-list.component.css
— retros-list.component.html
— retros-list.component.ts
— sentiment-analysis
— sentiment-analysis.component.css
— sentiment-analysis.component.html
“— sentiment-analysis.component.ts
— sentiment-analysis-list
— sentiment-analysis-list.component.css
— sentiment-analysis-list.component.html
— sentiment-analysis-list.component.ts
“— sentiment-analysis-list.pipe.ts
— models
actionItem.ts
item.ts
retro.ts
sentimentAnalysis.ts
— services
L retro.service.ts
— assets
logo.png
retro—Favicon.pnd
— index.html
— main.ts

styles.css

As shown in
models, repositories, and services
responsibility.

)that similarly

Figure 3, t he backend is separated out into packages (
each have their own function and

Figure 2: Angular frontend file structure

configs, controllers,

— app-routing.module.ts
— app.component.css
— app.component.html
— app.component.ts
— app.module.ts
— components
— action-item-form
— action-item-form.component.css
— action-item-form.component.html
— action-item-form.component.ts
— archived-retros
— archived-retros.component.css
— archived-retros.component.html
— archived-retros.component.ts
— item-form
— item-form.component.css
— item-form.component.html
— item-form.component.ts
— retros
— retro-item-votes.pipe.ts
— retro-item.pipe.ts
— retros.component.css
— retros.component.html
— retros.component.ts
— retros-list
— retro-archived.pipe.ts
— retro.pipe.ts
— retros-list.component.css
— retros-list.component.html
— retros-list.component.ts
— sentiment-analysis
— sentiment-analysis.component.css
— sentiment-analysis.component.html
—— sentiment-analysis.component.ts
— sentiment-analysis-list
— sentiment-analysis-list.component.css
— sentiment-analysis-list.component.html
— sentiment-analysis-list.component.ts
— sentiment-analysis-list.pipe.ts
— models
actionItem.ts
item.ts
retro.ts
sentimenthAnalysis.ts
— services
L retro.service.ts
— assets
logo.png
retro—Favicon.pngl
— index.html
— main.ts
— styles.css

Figure 3: Java Spring backend file structure

As seenin Figure 4, Retro is designed to allowing the user making a request through a
particular endpoint to create, retrieve , update, or delete information pertaining to a
retrospective . This request is in the form of a HTTP POST , GET, PUT, or DELETE request,
respectively. HTTP methods make up a large amount of the backend for Retro . The request
is sent via the frontend and received by the backen d API. A method within the API’s

controller is then called, depending on the endpoint the request was made from and the
HTTP verbused, which then callsthe associated method in the ‘retros’service file, which in
turn queries theappropriate JPArepository which retrievesthedata from the database. This
information is then returned to the frontend and displayed in an appropriate fashion tothe
user.

The creation and use of a RESTful API for the backend of Retro supports its aim of being a
fast and scalable web application as instead of the costly (in terms of memory and time)
storage of data within Retro’s in-application memory, the API allows for abstraction and
then theretrievaland serving of particular data through HTTP protocols on the frontend.

As seen in Figure 4, on the frontend, Retro ’s Angular service class method s goes to specified
endpoints for the backend APl and creates, reads, updates, or deletes information in the
database, as the user dictates from the frontend views.

Similarly, S.O.L.I.D. design principles are present throughout the system architecture as
each component of the system only has a single responsibility , asdetailed in Figure 4.
HTTP request sent by HTTP request received
User the user via the frontend by the backend
1 1
> ‘ HTML ‘ t > ‘ Controller

1 n 1

A 1 Arequest is made from the HTML Controller calls method from

page to the component.ts file 1 Servi
1 A 4 within the directory 1 A 4 ervice
1 ‘ Component 1 ‘ Service ‘
1 1 .
The component calls a method Service sends aquery to the
1 v from the Service 1 Y Repository
1 1 .
1 ‘ Service 1 ‘ Repository ‘
! Service sends a HTTP | L 7 Repository queries Database
1 request to the API 1
1 1 ‘ Database ‘
1 1
1 1 Data is retrieved from
Database
1 1
1 o o< 1 :
: Frontend : Backend
Requested information
is displaved to user Data is sent to frontend

Figure 4: Retro architecture diagram
2.3. Implementation

2.3.1. The Backend:

The backend is separated out into packages each containing different classes that

pertain to different operations for the API. The ‘configs’ package contains the sample
database information of the project ,asshownin Figure 5, and is whatlused when
testing and designing project to ensure Retro was functioning as intended by using the
Spring ‘local’ profile created in the LoadDatabase. java file. Data relating to a
retrospective is loaded into the H2 in -memory database as well as items and action
items associated with the retrospective

@Configuration

@S1f43

@Profile(

CommandLineRunner initDatab s| tory Ty tary nIt itory actionItem

tionItem
tionItem

nl

orRetrol)
Figure 5: LoadDatabase.java : 'Local’ profile java file used for testing purposes

The ‘controllers’ package contains the HTTP request methods , examples of which can
be seen in Figure 6, that have been implemented for the APIl. These methods employ a
HTTP verb and fetch or create data by calling another method from the ‘retrosService’

class which in turn requests or creates data from/in the datab ase via the JPA (Java
Persistence API) repositories. The information is then served to the specified endpoint.
These methods make up the core functionality of Retro as they serve the requested
information to the user on the frontend once the correct APl en dpoint has been reached
by employ ing HTTP methods.

Figure 6: Backend. Refrospectives controller

The ‘models’ package contains the structure of each model present in the project as well

as how they relate to each other and should be stored in the H2 in -memory relational
database. There are models present for ‘retros’, ‘items’ (as seen in Figure 7), ‘sentiment
analysis’, and ‘action items’ as well as a ‘base entity’ super class that all models inherit

from and an enum erator class, as seen in Figure 8, for the item type, good, ques tion or
bad.

The type assigned to an item is defined by which column the user creates the item from

on the user interface — things that went well (good), questions about the sprint
(question) , or things that did not go so well (bad), respectively. This was important as
only items of the type that have been posted to one of the mentioned columns are shown
in that column on the frontend , i.e., items that have been created and HTTP posted from
the ‘things that went well’ column are be assigned the item type ‘g ood’ and are only
shown in the ‘things that went well’ column as decided by an Angular pipe filter.

Entity {

nullable =

nullable =

umn(name = nullable =

in(name nullable =

FetchType.

= OnDeleteAction.

Figure 7: ltem class java file

ItemType {

Figure 8: Item type enumerator java file

The ‘repositories’ package con tains JPA repositories for action items, items, sentiment
analyses and retros pectives . An example of this can be seen in Figure 9 , for the
retrospectives JPA repository . The JPA repositories allow the persistence of the action
items, items, and retros objects. They make it possible to map the objects to the H2
database and allow the data relating to them to be queried by the ‘retrosService’ and
returned to the user via the user interface.

JpaRepository<Retro, Long> {|

Figure 9: Retrospectives JPA repository interface java file

The ‘exceptions’ package contains the custom exception handling classes created for
each model present in the backend. Each exception handler is employ ed throughout the
service class methods as a security measure and exception handling event that is unique
to each model. In Figure 10, the ‘RetrosNotFoundException’ class is shown along with the

message printed to the console in the event that a retrospective cannot be found i n the
database. This allows for simplified tracking -down and fixing of errors that may arise |
the application as the model, repository , or met hod is causing the issue at hand is

known from the outputted message

RetrosNotFoundException Exception {

RetrosNotFoundException() {

.

Figure 10: RetrosNotFoundException - custom error handling method

The ‘services’ package contains the methods , as shown in Fjgure 77, that query each of
the re spective repositories. The methods contained within this class are called by the
‘retrosController class to create, read, update, and delete data in/from the database via
the repositories.

Retro getRetroById(Long i
t .find
Throw(Excepti

> getRetrol

ctionItem> getRetroActionIt yId(Long id) {
.findAll)

Figure 11. Retrospectives service class java file

In particular, in order to perform a Sentiment Analysis , the
‘getRetroltemsByldForSentimentAnalysis ° method in the service class is called. This
method works by creating an Array List of stop words, which are words th at do not have
an associat ion with positive or negative sentiment, by reading in a text file , as seen in
Figure 12, filled with stop words through a Buffered Reader.

yau

your

Figure 12: Stop Words.

Similarly, a HashMap s created for a series of words and their associated
positive/negative score from the Afinn Dictionary (AFINN, 2011), examples of which
can be seen in Figure 13. The words and scores are then read in by a Buffered Reader and
added to the HashMap .

abhorred
abhorrent

abhor

Figure 13 Afinn Dictionary - words and associated sentiment scores

Once the files are read in, and the words are added to the respective Array List and
HashMap , the method retrieves the words us ed by Software Development team
members in a retrospective by retrieving them from the Items JPA Repository by using
the retrospective ID , as seen in Figure 74.

The method then converts the retrieved list of words to a String, trims it to remove
excess whi tespace, and removes any non -alphabetic characters . Each word present is
then added to an Array by split ting the String by the whitespace between each word.

letroltemsByIdForSentimentAnalysis(Long id)

SentimentAr

FileReader(

rold(id).toString().replaceAll(

Figure 14 . Sentiment Analysis - Reading in dictionaries and retrieving retrospective ifem descriptions.

As seen in Figure 15, the method then uses a for loop to compare each word against the
stop words and if the word is present in the list of stop words , itis not assigned a score.
If a word is not present amongst the stop words, it is assigned a score based on the
associated positive/negative sentiment behind it . An integer then keeps track of the
overall score of the sentiment behind a retrospective’s items , and the final score is saved
to the Sentiment Analysis (through an instance of the Sentiment Analysis class)
associated with a retrospective’s items, along with the retrospective and its ID, and the
array of words analysed .

(AfinnDictio

String wo

1

tim : ' tld(retro
sentimentAna is.setRetroltems

ntimentAnal

Figure 15: Sentiment Analysis - words being assigned a score and sentiment analysis conducted.

In regard to the service methods that allows retrospective items and action items to be
exported to a CSV file, the use of the Super CSV Javalib rary (Graversen, 2015) was
employed , which was added as a Maven dependency in the POM file.

This method works by first setting the response type of the method to be a CSV file and
creating the file , then assigning the file n ame which includes information about the
retrospective such as the retrospective title, ID number and the date and time it was
downloaded at.

After this the retrospective items are retrieved and added to a list . The item IDs, dates
and times created at, de scriptions, item types and item votes received are then written
to the CSV file under each of the respective headings shown in Figure 16.

ption, RetrosNotFoundException {

setHeader(headerKey, hea

em> listItems .getRetrol

aMapping)

.findA11ByRetrold

Figure 16 Exporting retrospective items and action items fo a CSV file.

2.3.2. TheFrontend:

The frontend is similarly separated out into directories. The frontend contains
directories for components, models,and services. The components directory ismadeup
of the action item form, item form, retros, retros list, archived retros, sentiment
analysis and sentiment analysis list components.

The action item and item forms are both used in the retros component in the HTML file,
as seen in Figure 17, when a user enters text in the input field for an action item or item
to be added to a retrospective. Instead of the code for the forms being direc tly written
into the retros component, they have been separated out into their own form
components in accordance with S.O.L.1.D. design principles, to ensure they have a single
responsibility

sresuts T 4 O

container-fluid main-container”>

-center p-3">

orm " itemType="G00D fapp-it ert—for‘m>|

-center p-3 item-card">

Figure 17: Retrospectives component HTML file

As can be seen in Figure 78, validation is carried out on the text to ensure itis not an
empty String. Once the form is validated and submitted, the item or action item is added
to the retrospective’s items /action items.

ngOnInit():

FormG

FormControl(

Validators.required

.addItemToRetro(item :) .subscribe(

.unshift(item)
.log(item)

Figure 18 ltem form methods

The retros , retros list , archived retros, sentiment analysis and sentiment analysis list
components each respectively call methods from ° retrosService.ts to retrieve, create,
update, or delete data from/to the backend . This works by subscrib ing to methods
present inthe ‘ refrosService.ts file in order to become aware of any changes that are
made, in which case the methods are called, and the information is fetched again with

the changes made, as seen in Figure 19 for the retros component methods .

getRetroActionItems() {

.Log()

tionItemsById(.id).subscribe(

updateItemDescription(item: Item) {
.log(d)

.deleteRetroltemById(itemId).subscribe(

: = - i .filter((item
item. !== itemId

Figure 19: Retrospectives Typescript file

The ‘services’ directory contains all of the methods that make HTTP requests to the

backend API and gets the response , as seen in Figure 20. The endpoint addresses have
been added to this file as strings to allow for simple modification if the endpoints
change over time. For example, the ‘this.urlPrefix’ seen in the addRefro method in Figure
20 relates to the urlPrefix string which has a value of '/api/retros/ .

getRetros(): Obs

addRetro(retro: Re

getRetroById(id):

i

updateRetro :) .subscribe(

Figure 20. Retrospectives services Typescript file

The ‘proxy.conf.json ’file, as seen inFigure 21, configures the proxy that allows the front
and back end to communicate as it tells the methods within the service file the base URI
to direct HTTP requests to. It also disguises the base endpoint address of the API behind
‘lapi/**I’ for security purposes.

Figure 21: proxy.conf.json - allows backend and fronfend fo communicate.

The Angular pipes (Angular, 2021) present in the frontend allow for the transformation
of data that is received from the service methods. In Retro, pipes are used to filter the
data that is being returned from the backend API.

When returning a list of retrospectives that are in progress , a pipe was used to filter out
retrospectives that have been marked as archived. This was done by checking the

Boolean flag ‘archiveRetroFlag’to see if it had been raised using the pipe seenin Figure
22. If it had not been raised (i.e., not had a value of 1/true) , the retrospective would be
displayed amongst the list of in progress retrospectives , as can be seen inFigure 23 .

RetroArchivedPipe {

transform(retros: Retro[], retroArchiveFilter:
(!'retroArchiveFilter) {
retros.filter(retro

retro.

retros.filter(retro

retro.

Figure 22 Archived retrospectives pipe method

| retroArchiveFilter:

Figure 23 Archived retrospectives pipe HTML filter

Similarly, a pipe is used when searching for a retrospective on the homepage of Retro
the archived retrospectives, and the sentiment analysis page by filtering by
retrospective title

Pipes are also used when displaying the list of retrospective items. There is a pipe
present to filter and restrict items by type (good, bad, questions) to the ‘things that went
well’, ‘things that did not go so well’ or ‘questions’ column s present on the Ul , as seen in
Figure 24.1f an item is not of the specified type, it will not be shown in the column. This
allows for only the relevant items to be displayed in each column on the Ul. An example
of the pipe being used is shown in Figure 26.

RetroItemPipe

transform(items: []
('items || !'itemFilter)
items

items.filter(itemType => itemType. .index0f (itemFilter)

Figure 24 : Angular pipe to filter items by type

Similarly, there is a pipe for sorting items by votes in descending order , @s shown in
Figure 25 . This allows for the most upvoted items to be displayed at the top of the
column. An example of the pipe being used is shown in Figure 26.

RetroltemVotesPipe PipeTransform {

transform(items: Item[] iz): Item[]

ite

b.

Figure 25 [tem votes Angular filter

| itemFilter: | sortByVotes"

ard">
Figure 26 : Use of Angular pipes for item types and item votes in HTML.

In regard to the routing of the application, the routes were set up as shown in Figure 27
to be linked to a specific component, allowing the application to know which HTML,

CSSand Typescript files to load when the route endpoints are reached. A Hash was also
used in the configuration of the routing to safe guard the API endpoints.

omponent}

: SentimentA

routerConfig = {

Figure 27 : Application routing

2.4.Graphical User Interface (GUI)

2.4.1. Home Page:

@ Retrospective X +

& C O O localhost:

Petro 4 Home Page & Archived Retros I~ Sentiment Analysis

Create a Retrospective:

Enter a Retrospective Title

Q search

Software Develof Team pecti 14/05/2021 14:59:29 » W v

Figure 28: GUI - Retro Home page

Figure 28 represents the home page of Retro’s GUI. On this page, users can create a new
retrospective and have it saved to the backend database of retrospectives. Users can also
see a list of existing retrospectives, including details about when a retrospective was

created. Similarly, u sers can also search for a specific retrospective using the Angular

pipe search bar , to filter the list of retrospectives to a specific one

On this page users can also delete a retrospective by clicking the trash bin button in red,
archive a retrospective after they are finished with it by clicking the tick button in blue,

or enter a retrospective to see its items and action items by clicking the arrow button in
green.

Users can also visit any of the other pages presenton R etro from this page by clicking
the options present on the navbar, which is present throughout the application.

2.4.2. Retrospective Page:

@ Retrospective x +

< C 0 O localhost:

€ Software Development Team Retrospective

Things that went well Questions about the sprint Things that could be improved
] ? ()

(Enter Item Description (Enter Item Description (Enter Item Description

Action Items

Figure 29: GUI - Individual retrospective page with items

Action Items

(Enter Action Item Description

Talk to IT about getting Sarah a new development laptop Schedule meeting with Devops team to resolve cloud Begin tackling bugs backlog
as her one has been causing issues infrastructure issue

Figure 30 GUI - Individual refrospective page with action items

When a user clicks the arrow button in green or the retrospective title, as seen in Figure
28, they enter a retrospective’s details page. The GUI of the retrospective pages can be

seen in Figure 29 and Figure 30. On this page, users will see the retrospectives items and
action items. From this page users can also export the retrospectives items and action
items to CSV files for further review by clicking the buttons on the navbar to carry out

these actions. Similarly, users can also be brought to the Sentiment Analysis page for
retrospectives by clicking the respective button on the navbar to do so.

The retrospectives action items are displayed on the retrospective , and users can also
create action it ems, edit their descriptions, and delete them .

Details about things that went well, questions about the sprint, and things that did not

go so well are displayed. Users can also create items in any of the columns and have

them stored to the backend database . Users can also upvote or downvote the
retrospective items and they will be sorted according to their score, delete an item, edit
an items description, and mark an item as reviewed. Marking an item as reviewed will
change the CSS colour properties of a re trospective item’s Bootstrap card, clearly
showing the user it has been reviewed and discussed, as seenin Figure 31.

@ Retrospective x + [+]

< C 00 O localhost:

€ Software Development Team Retrospective

Things that went well Questions about the sprint Things that could be improved

(] ?)
(Enter Item Description v (Enter Item Description ‘ (Enter Item Description ‘

2.4.3. Archive Page:

@ Retrospective X +

€ 2> C 0 O localhost

Petro 4@ Home Page W Archived Retros |2 Sentiment Analysis

Q Search

Devops Team Retrospective 14/05/2021 14:59:29 » x

Figure 32: GUI - Archived retrospectives page

Figure 32 shows the Archived Retrospectives page. This page lists all of the
retrospectives that have been marked as archived by clicking the blue tick button as
seen on Figure 28. These are retrospectives that the team in questions are finished with

and have been reviewed by them. As can be seen in Figure 32, the buttons beside the
shown archived retrospective are to enter it to view its contents by clicking the gr een
button, and to unarchive (bring it back into the list of ongoing retrospectives) it by

clicking the blue ‘x’ button.

@ Retrospective

24.4. Sentiment Analysis Page:

x +

< C 0 O localhost:

Retro

A Home Page & Archived Retros 12 Sentiment Analysis

Sentiment Analysis on: Devops Team Retrospective

S

The sentiment from this retrospective is positive as indicated by the Sentiment Analysis Score of 10, as dictated by the
words used in the retrospective. From this it can be said the team morale is in good place, and that the team are content.

It is recommended that the manager try to carry this level of team morale and contentment over into subsequent sprints.

How does Retro perform a Sentiment Analysis on a retrospective?

Figure 33. GUI - Sentiment Analysis Page —displaying a positive Sentiment Analysi s.

As seen in Figure 33,the Sentiment Analysis that has been carried out for a retrospective

is displayed. On this page, the title of the retrospective is shown along with a circular
progress bar. This progress bar measures the level of positive sentiment presentin a
retrospective, ranging from one to one hundred. If a retrospective re ceives an overall
positive sentiment score from the analysis based on the words used, that score is
displayed using the progress bar. This al lows Software Development team managers to
see the data from a Sentiment Analysis on their ~ team’s retrospective in a visual format.

Similarly, a recommendation message that changes depending on if the overall
sentiment of the retrospective in question is p ositive or negative is shown. If the
sentiment is positive, the message seenin Figure 33 will be shown. However, if overall
sentiment f or a retrospective is negative, the circular progress bar will not be shown the
recommendation message shown in Figure 34 will be shown.

@ Retrospective x +

< C O O localhost

Retro A Home Page W Archived Retros 12 Sentiment Analysis

Sentiment Analysis on: Software Development Team Retrospective

The sentiment from this retrospective is negative as indicated by the Sentiment Analysis Score of -70, as dictated by the
words used in the retrospective. From this it can be said the team morale is in poor place, and that the team are not
content.

It is recommended that the manager address this issue immediately.

How does Retro perform a Sentiment Analysis on a retrospective?

In order to perform a Sentiment Analysis, Retro takes in all of the words used in a retrospective. Each word is then
compared to the AFINN Sentiment Analysis dictionary and assigned a positive or negative score, depending on
whether the word is associated with being positive or negative, e.g., ability has a score of 2. The resulting scores are
added together and the overall sentiment of the retrospective is then determined. A score above 0 is considered a
positive sentiment, and below 0 is considered negative.

Figure 34 : GUI - Sentiment Analysis Page —displaying a negative Sentiment Analysis.

An explanation for how Retro performs a Sentiment Analysis on retrospectives is
shown at the bottom of each Sentiment Analysis inside a Bootstrap Accordion card that
can be collapsed or expanded by the user when they wish to read it.

2.4.5. Search:

The GUI contains a search bar that allows users to enter a retrospective titte and they
can filter the list of retrospectives that are in progress in order to find the one they are
looking for, as seen in Figure 35 and Figure 36. This functionality is also present on the
Archived retrospectives page.

This functionality =~ was created using a pipe in Angular which works as a filter. When
the user enters a retrospective title into the search bar, the pipe immediately starts to
filter the list of retrospectives p resent and if any of the listed retrospectives do not
contain the characters present in what the user has searched for, the retrospective is
removed from the displayed list, and only the corresponding retrospective are returned.

Create a Retrospective:

Enter a Retrospective Title

Q Search
SRE Team Retrospective 06/05/2021 11:21:58 N W v
Data science team retrospective 06/05/2021 11:21:42 » B v
Devops Team Retrospective 06/05/2021 11:21:31 » W v
Software Development Team Retrospective 06/05/2021 11:21:20 H W v
First Retrospective 06/05/2021 11:20:40 $ W v

Figure 35: GUI - Searching for a retrospective

Create a Retrospective:

Enter a Retrospective Title

Q | software]

Software Development Team Retrospective 06/05/2021 11:21:20 $ B v

Figure 36 GUI - Searching for a Retrospective

2.4.6. Modal Dialogs:

The GUI also contains a modal dialogs for when it is necessary to restrict users to an
action before they can continue with regular use of the applications functionality. This
was implemented with the use of Angular powered Bootstrap ,and it is present in the
application when a user attempts to delete a retrospective, as seen in Figure 37, delete a
retrospective item or action item, as seen in Figure 38, and when attempting to edit a
retrospective item or action item , as seen in Figure 39.

When the user clicks the respective button to delete or edit, a modal dialog opens, and
the user is shown the content of the modal . The user then confirms their choice to delete
oreditand th e respective method to delete or edit is called from within the modal

method.

@ Retrospective X

<« C O O localhost

+

@ Delete

Are you sure you want to delete that Retro?

@ Delete

Figure 37. GUI - Modal dialog to delete a retrospective.

Are you sure you want to delete this?

_ No, get me out of here! -

Figure 38: GUI - Modal dialogue to delete a retrospective item.

@ Retrospective x +

< C O O localhost

[# Item Editor

Thorough discussion on design of our new product. Excited as

Figure 39.: GUI - Modal dialog to edit a refrospective ifem.

2.4.7. Voting System:

Similarly, the GUI also contains a voting system for retrospective items. This allows
users to up vote and agree with an item a colleague has added, or downvote and disagree
with a point they have made. The items with the most upvotes in a row (‘Things that
went well’, ‘Questions about the sprint’, and ‘Thing s that could be improved’) will be
sorted to the top of thatrow . The voting system works by using an A ngular pipe that
takes the list of items in a row and sorts each time by vote in descending order . For
example, i n Figure 40, an item with the descriptio n ‘Too much pressure’ is at the bottom
of the ‘Things that could be improved’ column. After receiving the most upvotes in that
column , itis then moved to the top of the column’s items by the pipe, as seen in Figure
41.

@ Retrospective x +

& C @ @ localhost

€ Software Development Team Retrospective

Things that went well Questions about the sprint Things that could be improved
(] ? ()
(Enter Item Description (Enter Item Description (Enter Item Description

Figure 40. GUI - Voting system

@ Retrospective X + [+] - [m]

& C O @ localhost

€ Software Development Team Retrospective

Things that went well Questions about the sprint Things that could be improved
() ? ()

(Enter Item Description v ‘ (Enter Item Description v ‘ (Enter Item Description v ‘

Figure 41.: GUI - Voting System

2.4.8. Retrospective Timestamps:

The GUI contains a timestamp present on the homepage of Retro for each retrospective.
This timestamp indicates when each retr ospective was created . This allows users to
easily find a retrospective based on when it was created but it is also how the
retrospectives are sorted by default.

When the user is not searching for a retrospective, they are sorted by time of creation in
ascending order, as seen in Figure 35. This works by using a sort method on the array of
retrospectives present on the home page to sort and display them by date.

2.5.Testing

2.5.1. Backend

A series of unit tests were written for the backend system of Retro using JUnit5 (JUnit

2021). When carrying out testing for the backend, a h igh percentage of code coverage
was needed in order to ensure that each part of functionality within Retro 's backend
was working as intended. To do this, unit tests were written for the application

configuration, the service methods, and the controller methods.

Similarly, when each unit test was being written , the opposite of each test was also
created . For exa mple, as seenin Fjgure 42, atest was written for one of the service
(RetrosService.java) methods to retrieve all retrospectives when the retrospectives

exist, by creating dummy retrospectives within the test, and a test was also written that
tries to ret rieve all retrospectives when no retrospectives exist . In doing this, both test
cases are being covered in the method and ensuring any exceptions thrown are handled
within the service method (by adding handling for that exception to the method), and
thatt he end user is seeing an appropriate error message and not information that
compromises the system. Covering both cases also ensure sthat the test coverage for the
service and controller methods is an accurate representation of the coverage present
within the system.

Li

As a result of writing unit tests

controller methods

Retro(

thenReturn

.getAllRet

dRetroslList

Figure 42: Service tests- Unit tests for retrieving retrospectives.

for the application context, service methods and the

, code coverage of 75% was achieved in all classes and 66% coverage
for each method within each class
what each test does can be seen in Figure 44 from the test names.

, as evidenced by Figure 43 and Figure 44. Details of

Bun:

T

Figure 44 : All tests passing for the application, service, and controller tests.

To aid th e testing of the backend, a ‘local’Spring framework profile was implemented,
as seen in Figure 45, that allows for testing the backend and the application in general to
make sure the features implemented to date are working correctly. This is useful for the
frontend too, as it shows that the back and front ends are communica ting correctly.

© application.yml

Retrospective App

update

Figure 45 YAML configuration file for local’ profile

2.5.2. Frontend

2.5.21. Usability Testing:

A series of usability tests were carried out with Retro’s target end users in order to
find out how simple it is to use Retro to perform Agile sprint retrospectives in an
effective and efficient manner that provides satisfaction . To do this , five usability
tests were carried out : a five second test, trunk test, think aloud test, tree test, and a
click test. A System Usability Scale survey was also filled out by participant one and
included as a debrief.

An informed consent (see Informed Consent Form) was signed the partic ipant
following research integrity guidelines and best practices. A complete version of

results is available in the User Testing Results a ppendix . The five tests carried out
were a five second test, trunk test, think aloud test, tree test, and a click test. An
Ethics Application Form signed by my project supervisor can also be seen in the NCI
Ethics Application Form appendix

252.1.1. Five Second Test:

The five second test was fairly successful, the participant recalled that it was the
home page shown , and that they could create and search for retrospectives on

the page. As a result, it would be useful to put more material about Retro on the
homepage so the user will remembe r what the application is and what it does.

25.2.1.2. Trunk Test:

The trunk test showed that the retrospective page has a strong message
hierarchy and defined structure as they were able to recall the page name, key
parts of functionality and give reasoning as to wh y that functionality was

essential . As the retrospective page is the core functionality of Retro, this result
was admirable .

25.2.13. Think Aloud Test:

Thethink aloud test proved very useful. The participant was able to clearly carry
out the tasks given and provide solid reasoning as to why they took each step.
This proves the flow and hierarchical structure of Retro has good usability
design.

2.52.14. Tree Test:

The tree test has reinforced the belief that the architecture of Retro is clear and
simple to use. The user was presented with three tasks to complete, was easily
abletonavigate through Retro’s structure to find the correct location.

2.52.1.5. Click Test:

The click test questions were a mix of behavioural and comprehension style
questions in an attempt to get the participant to explain the reasoning of what
they were clicking on and why. This insight into the users thinking is valuable
when considering making changed to the website usability before a final design
in committed to.

2.52.1.6. Debrief:

After carrying out user testing, an exit survey (see System Usability Scale Exit

Survey) was applied. The result was high from the participant, with the SUS
(System Usability Scale) score being 80. As the SUS average score is 68
(Fernandez,2021),Retro has scored well in terms of its usability.

There is stillsome work that could be done to add to the usability of Retro from
looking at the SUSsurvey results, but it is largely positive and shows that Retro
has astronglevel of usability present in its design.

2.6.Evaluation

When re-examining the objectives out lines in the proposal of Retro and the aim s stated in
the introduction of this technical report, I believe it is clear that Thave met both the aims
and objectives of the project.

When I was setting out to develop Retro at the beginning of this project, I stated that the
aims and objectives of Retro must be able to allow Software Development teams to perform
their retrospectives remotely, by being able to add items and action items, the core part ofa
retrospective to the application for their team to view and interact with simultaneously.
Retro easily allows for this once deployed to a space or system that suits each team or
company.lalsostated that Retromustallow for clear communication with an intuitive user
interface,which Ibelievehaveachieved,asevidenced by theuserinterface of Retro.Retro’s
Ulis clean and clear,allowingteams to easily pick up and start aretrospective while having
the focus be on the retrospective itself through its minimalist design.

Similarly, Retro allows for Software Development team managers to effectively manage
their teams remotely, while being able to monitor team morale levels. Retro achieves this
by displaying a Sentiment Analysis for retrospectives. This includes a visual sentiment
score based on the results of the analysis, as well as arecommendation message on how to
keep this trend going for a team if the sentiment is positive, or how to improve the team
morale levels ifthe sentiment is negative.

As |l also outlined in the aims and objectives of Retro, it was important to have Retro be
designed with S.O.L.I.D. design principles in order to allow for optimal performance and
simplified debugging should the need arise. Retro was designed from the beginning with
these principles in mind and I believe Thave demonstrated that throughout this report.

It was also stated that security must be a top priority when designing Retro. I believe this
was achieved by the built-in security features of the Spring framework, which was used
when implementing Retro’s backend APl,as wellasthetestingcarried out for Retro. Aresult
of 75% coverage of all classes and 66% coverage for all methods present in the backend by
the creation of unit tests for Retro’s backend was achieved. Similarly,carrying out usability
testing also helped to ensure users did not access or discover any components of the
application they should not have access to.

Finally, the ability to scale the application was an important factor of the application.
Through using the S.O.L.I.D. design principles throughout the application as wellasthe H2
in-memory database, I believe this was achieved. Any Software Development team or
company using Retro can deploy this system on a cloud-based system or their intranet and
Retro can perform as needed there. The H2 in-memory database will connect to relational
databases ifthe team or company wish to expand or remotely storethe data present within
Retro.

3. Conclusions

In conclusion, I believe Retro is a strong project,that possesses many strengths and advantages
from the way in which it was implemented. Retro’s strengths include full CRUD functionality
in the backend API that was designed and built from the ground up, use of robust and well-
documented languages and frameworks to develop Retro, which makes it easier to continue
development of new features as well as supporting existing ones. Retro also contains a
responsive user interface that is designed for use on various displays which is an advantage for
remoteretrospectives. Retro can alsobe deployed and setup tosuitanyenvironment with ease,
allowingteams or companies to get started using Retro quickly.

Retro also has the advantages of being a lightweight, fast application that can be used by any
Software Development team or enterprise to perform retrospectives. Its minimalist and user-
friendly user interface places focus on the retrospectives and allows teams to address issues
that have arisen from their retrospectives in real-time without compromising on functionality
is also an advantage, as well as allowing Software Development team managers to effectively
gauge team morale through its Sentiment Analysis functionality.

I believe Retro’s item voting system, marking items as reviewed, and search functionality
present throughout the application are alladvantages tousingthe application.

However, Retro in its current form, is not without its disadvantages and limitations. The
functionality and performance of the application could always be improved, allowing Retro to
become more efficient without sacrificing performance. Similarly, there are also many
additions that could be made to the functionality and user interface of Retro. These might not
be considered disadvantages or limitations as such, but rather things that could be added to
Retrowith added time and further research intohow besttoimplementthem toenhance Retro.

Designing and developing Retro has been a challenging but very rewarding experience for me,
and [believeit hasmademeastronger software developer.lhave learned a great dealaboutthe

process of designing a projects architecture and system from the ground up, creating and
adapting to a development timeline for a project without compromising on the initially
outlined functionality,how to diveinto and research new technology including new languages
and frameworks and producing some tangible from that research and how to be persistent and
keep trying different ways of solving an issue until the desired result is achieved. I will carry
thelessons IThave learned from this project forward and use them throughout my career.

4. Further Development or Research

With additional time and resources, there are a number of things [would like to do next with
Retro to expand its capabilities. Firstly, I would like to add more ways to analyse the data
present in retrospectives for Software Development team managers. The forms that this may
take is something Iwould have to look into, but I believe thereis a huge amount of potential to
spot trends and draw various conclusions from the data that is created in Retro.

On the same note, Il would like to improve the algorithm used to perform a Sentiment Analysis
in Retro as I believe fine tuning or exploring other means to carry this out could be a valuable
addition to Retro. Similarly, a recommendation message that is more specific to each
retrospective would be beneficial to team managers.

Iwould liketo also add in functionality to allow teams to export their action items to their team

sprint board, such as the Rally (Broadcom.2021)or Jira (Atlassian,2021)sprint boards,so they
donot havetomanually add them to it after a retrospective. This would undoubtably improve
the User Experience (UX) (Norman and Nielsen.2021) on Retro.

I would also like to include an authentication system within Retro. This would allow users to
sign up and log in to Retro using their credentials. Specifically, I would like to implement this
using a Lightweight Directory Access Protocol (LDAP) repository (Oracle. 2021) to store and

access profile data for users. Using an LDAP repository, Retro would be able to easily integrate
and handleretrospectives in large companies. The reason Iwould choose an LDAP repository is
many large modern companies make use of LDAP repositories to handle authentication across
their intranet and internal systems already. Integrating this with Retro would be a onetime set
up and would allow companies and teams to quickly include all relevant team members in a
retrospective by simply typing their names, or email addresses into the implementation LDAP
repository search bar. This would be a huge benefit to Retro and an important selling point to
large companies.

On the same note, [would like to include functionality to restrict the view of retrospectives to
only the members of that team. This would be relatively easy to implement with the use of an
LDAP repository.

Iwould also like to make use of a cloud based relational database for Retro and abstract Retros
database system away from being an internal component of the application. This would
improve overall performance, allow for improved use of the S.O.L.I.D. design principles and
come with the dedicated security features that cloud database providers offer.

Finally, I would also like to further enhance the user interface of Retro in order to improve the
overall UX of application as an excellent user experience is at the heart of what Retro aims to
provide to users.

. References

Taplin, S., 2021. Council Post: Managing Remote Software Development Teams In

2021. [online] Forbes. Available at:
<https://www.forbes.com/sites/forbestechcouncil/2021/03/23/managing -remote -
software -development -teams -in -2021/?sh=a018576e3f1e> [Accessed 11 May 2021].
(Back to Executive Summary)

Scrum, 2021. What is a Sprint Retrospective? [online] Scrum.org. Available at: <
https://www.scrum.org/resources/what -is-a-sprint -retrospective > [Accessed 26 April
2021]. (Back to Executive Summary)

Gupta, S., 2018. Sentiment Analysis: Concept, Analysis and Applications. [online]

Medium. Available at: <https://towardsdatascience.com/sentiment -analysis -concept -
analysis -and -applications -6c94d6f58 c17> [Accessed 11 May 2021]. (Back to Executive
Summary)

Nielsen, F., 2011. A new ANEW: Evaluation of a word list for sentiment analysis in
microblogs. CEUR Workshop Proceedings: 93 -98, [online] Volume 718. Available a t:
<http://www2.imm.dtu.dk/pubdb/edoc/imm6006.pdf> [Accessed 11 May 2021].

(Back to Technology)

AFINN, F., 2011. AFINN. [online] Www2.imm.dtu.dk. Available at:
<http://www2.imm.dtu.dk/pubdb/pubs/6010 -full.html> [Accessed 11 M ay 2021].
(Back to Technology) (Back to Backend Implementation)

Graversen, K., 2015. Super CSV —Welcome. [online] Super -csv.github.io. Available at:
<http://super -csv.github.io/super -csv>[Accessed 13 May 2021]. (Back to Backend
Implementation)

Angular, 2021. Angular. [online] Angular.io. Available at:

<https://angular.io/guide/pipes> [Accessed 13 May 2021]. (Back to frontend)

JUnit, 2021. JUnit 5. [online] Junit.org. Available at: <https://junit.org/junit5/>

[Accessed 5 May 2021]. (Back to Backend Testing)

Fernandez, C., 2021. Heuristic Evaluation Lecture Pre sentation , National College of
Ireland . (Back to Usability Testing)

Broadcom, 2021. Rally Software. [online] Broadcom.com. Available at:
<https://www.broadcom.com/products/software/agile -development/rally -software>
[Accessed 14 May 2021]. (Back to Further Development)

Atlassian, 2021. Learn how to use sprints in Jira Software | Atlassian. [online]

Atlassian. Available at: <https://www.atlassian.com/agile/tutorials/sprints>

[Accessed 14 May 2021]. (Back to Further Development)

Norman, D. and Nielsen, J., 2021. The Definition of User Experience (UX). [online]

Nielsen Norman Group. Av ailable at: <https://www.nngroup.com/articles/definition
user-experience/> [Accessed 14 May 2021]. (Back to Further Development)

Oracle, 2021. LDAP Repositories. [online] Docs.oracle.com. Available at:

<https://do cs.oracle.com/cd/E26180_01/Platform.94/RepositoryGuide/html/s1801I
daprepositories01.html> [Accessed 14 May 2021]. (Back to Further Development)
Retrium, 2020. Retrospectives Made Easy For Scrum & Agile Teams | Ret rium. [online]
Retrium.com. Available at: <https://www.retrium.com/> [Accessed 20 December

2020]. (Back to similar projects projects)

TeamRetro, 2020. Team Retro - Online Retrospective And Team Health Check Tool.
[online] TeamRetro. Available at: <https://www.teamretro.com/> [Accessed 20

December 2020]. (Back to similar projects projects)

6. Appendices
6.1. Project Plan

Today

[08Nov20 [15Nov'20 [22Nov'20

29 Nov'20

[06Dec20 (13Dec’0 [20Dec’20 [27Dec20 [03Jan21 [10Jan’2l _ [17Jan’21

[24Jan21 [31an21 (07Feb21 [14Feb21 |21Feb21 |28Feb21

(07 Mar21 (18 Mar 21

121 Mar 2}

Start

Retro
Fri06/11/20 | Fri 06/11/20 - Mon 22/03/21
Backend

Fri06/11/20 - Wed 06/01/21

Frontend
Thu 07/01/21 - Wed 03/03/21

Sentiment analysis functionaiity
Thu 04/03/21 - Mon 22/03/21

hu 25/03/:

Figure 46 : Gantt Chart timeline view
4 Retro 98 days Fri 06/11/20 Mon 22/03/:
2 Backend 45 days Fri 06/11/20 Wed 06/01/:
4 Configuration 3 days Fri 06/11/20 Tue 10/11/2(
4 Sample data 3 days Fri 06/11/20 Tue 10/11/2(
Sample data of 3 days Fri06/11/20 Tue
retrospectives, 10/11/20
their items and
action items
Local profile for 1 day Tue Tue
sample data use 10/11/20 10/11/20
and display
4 Controller 4 days Wed 11/11/. Sat 14/11/20

Retrospective Control 4 days
4 Exceptions 5 days

Action ltem Exception 2 days

Wed 11/11/: sat 14/11/20
Sun 15/11/2(Fri 20/11/20
Sun 15/11/2(Mon 16/11/2

Item Exceptions 2 days Tue 17/11/2(Wed 18/11/:
Retrospective 2 days Thu Fri 20/11/20
Exceptions 19/11/20
4 Models 7 days Sat 21/11/20 Tue 01/12/2
Action item 3 days Sat 21/11/20 Tue 24/11/2(
ltem 3 days Wed 25/11/% Fri 27/11/20
Retrospective 3 days Sat 28/11/20 Tue 01/12/2(
4 Repositories 3 days Wed 02/12/; sat 05/12/20
IltemRepository 2 days Wed 02/12/: Thu 03/12/2(
Action ltem 1day Fri 04/12/20 Frio4/12/20
Repaository
Retrospective 1 day 5at05/12/20 sat05/12/20
Repaository
4 Services 12 days Sun 06/12/2(Tue 22/12/2
4 Retrospective Service 12 days Sun 06/12/2(Tue 22/12/X(

HTTP GET Method 3 days

Sun 06/12/2(Tue 08/12/2(

Figure 47 : Gantt Chart items for backend

HTTP POST Method 4 days

Wed 09/12/% Mon 14/12/3

HTTP DELETE 4 days Tue Fri 18/12/20
Method 15/12/20
HTTP UPDATE 3 days Sat 19/12/20 Tue
Method 221220
4 Test 11 days wed 2312/ wed 06/01/:
Service Tests 4 days Wed 23/12/: Mon 28/12/3
Controller Tests 4 days Tue 29/12/2(Fri 01/01/21
Rest Service 4 days Sat 02/01/21 wed
Application Tests 06/01,21
4 Frontend 40 days Thu 07/01/2: Wed 03/03/:
4 Components 9 days Thu 07/01/2: Tue 19/01/2:
4 Item Form 2 days Thu Fri 08/01/21
Component 07f/01/21
Form template for 2 days Thu Fri 08/01/21
entering items 07/01/21
4 Action ltem Form 1day Sat 09/01/21 Mon
Component 11/01/711
Form template for 2 days 5at 09/01/21 Mon
entering action 11/01/21
4 Retrospectives 4days Tue Fri 15/01/21
Component 12/01/21
Component for 4 days Tue Fri 15/01/21
displaying 12/01/21
retrospective data
4 Retrospectives List 2 days Sat 16/01/21 Tue
Component 19f01f21
Component for 3 days Sat 16/01/21 Tue
displaying a list of 19/01/21
all available
retrospectives
4 Home Page 16 days Wed 20/01/: Wed 10/02/;

Page displayed upon
application launch
Authentication of
user

4 Front end routing
Routing between
pages [how
components interact

4 Unit testing
Creation of unit tests
within each
component to make
sure they function as

4 Bootstrap

Implementation

Adding bootstrap
framewark to project
to improve both the
Ul and UX

4 Ul Colour Scheme
Selection of
appropriate colours
for the design of the

4 Image Assets
Favicon
Application Logo
Functionality image
assets e.g. back
button, tick icon, etc

4 Sentiment analysis
functionality

4 Sentiment analysis
functionality

Investigate framework
to do this

Graphing package
Dictionary of 'good’ and
'bad' words 2
Functionality to gather
words from
retrospectives and plot
them based on
dictionary against
productivity

6.2. Project Proposal

6.2.1. Objectives

This projec t aims to facilitate sprint retrospectives remotely

6 days
10 days
3 days

3 days

8 days
8 days

1day

1day

1day
1day

3 days
1day
2 days
1day

13 days

13 days
1day

1day
2 days

10 days

Wed Wed
20/01/21 27/01/21
Thu Wed

28/01/21 10/02/21
Thu 11/02/2: Mon 15/02/:
Thu Mon
11/02/21 15/02/21

Tue 16/02/2: Thu 25/02/2:
Tue Thu
16/02/21 250221

Fri 26/02/21 Fri 26/02/21

Fri 26/02/21 Fri 26/02/21

Sat 27/02/21 Sat 27/02/21
Sat 27/02/21 Sat 27/02/21

Sun 28/02/2' Wed 03/03/.
Sun 28/02/2: Sun 28/02/2:
Maon 01/03/2 Tue 02/03/2:
Wed Wed
03/03/21 03/03/21

Thu Mon
04/03/21 22/03/21

Figure 48 : Gantt Chart items for frontend 1/2

Thu Mon
0af03/21 22f03/21
Thu Thu

04/03/21 04/03/21
Fri05/03/21 Fri05/03/21
Sat 06/03/21 Mon
08/03/21
Tue Mon
09/03/21 22/03/21

Figure 49: Gantt Chart items for frontend

teams within a responsive web application that can be used on desktop and mobile
devices . Retro will allow development teams that are using an agile sprint methodology
to run thei r retrospectives from any location. Development teams will be able to add
items to the retrospective that will tackle things that went well in the sprint, things that
did not go well and any questions they have as a result of the sprint. They will also be

2/2

for Software Development

able to add action items, issues that need to be solved in the following sprint or added to
a backlog of bugs to fix.

These are the key aspects of retrospectives and will allow teams to analyse and address
how their sprint went, any issues the team might have and how to solve them in a
subsequent sprint.

Retrospectives are traditionally done in person where teams can talk through their
sprints and resolve any issues face to face. However, as the ever-changing IT industry
grows, teams are not always able to meet face to face due to geographical constraints,
personal issues, or in the interest of social distancing. This has a significant impact on
communication levels and standards within development teams. Retro seeks to solve
that problem and allow teams to carry out their retrospectives in a clear,open manner,
with excellent communication levels in development teams, as though they were in
person, through an intuitive and user-friendly application that is designed to fit the
needs of any team.

The unique feature of Retro is an analysis tool for team managers that performs a
sentiment analysis on the words commonly used in the retrospectives of teams they
manage in order to assess the general mood or morale levels within their teams versus
productivity levels. This could be of huge benefit to managers as they are missing face-
to-face interactions and meetings to gauge such things. This would aid managers in
addressing productivity issues or maintaining morale with the benefit of tangible data.

For Retro to succeed and be used in the real world, it needs to be able to scale to fit the
demands of any company, large or small, while retaining the efficiency of the
application at any size. Takingthisinto consideration,designing Retrotobeableto meet
those demands is essential and will be a top priority during the development of this
project and will be the innovative aspect of it. This element is essential for this
application to succeed. It must be able to scale to large corporations or small start-ups,
this willbegin with a strongemphasis on designing a strong architecture for the project
and using S.O.L.I.D. (Single responsibility, Open/closed, Liskov segregation, Interface
Segregation, Dependency inversion)design principles throughout development.

Similarly, when designing RETRO, the security of the application will be paramount.
Development teams must be able to rest assured that their remote retrospectives,
including issues they raise during them, will only be privy to those within their team
and theirmanager.Retrowillbe designed with aheavy emphasison authentication and
authorisation to support this aspect as security is of huge importance to both the
companies and development teams potentially using this product.

6.2.2. Background

6.2.2.1. Origin ofthe Idea

The origin of this idea began when I was doing my placement in third year. The
company | was working in during my internship followed an agile methodology.
However,Inoticed that when it came time to do our sprint retrospectives there was no
dedicated application to facilitate them in an organised way that allowed for clear
communication. The effects of this were especially felt where team members were in
other offices around the world and when everyone moved to working from home at the
start ofthe pandemic.

Even existing retrospective applications provide an inadequate level of support for
extensive communication during retrospectives as they rely on the option of teams
bringing up issues the next time they were in the office. However, this is no longer an
option in most development teams as the majority are working from home.

Of course, breakdown of communication is bound to happen during these unforeseen
times, but I began to think that there had to be a better way to organise and facilitate
these important meetings where communication levels would be the same as when we
were in the office.

An application is needed that could keep communication clear in retrospectives, aid
remote management of teams and give teams some semblance of normalcy during
times of extended working from home, and when team members are based in other
locations.

I believe that especially at the moment, a project like this is very topical due to the
current pandemic and it could hugely benefit development teams as they are now
working from home full time, performing their retrospectives remotely and noticing
the drawbacks of their current retrospective application or lack thereof, as it likely was
not developed with full time remote working in mind. Retro will be able to overcome
this problem and meet the need for an application to facilitate retrospectives remotely.

6.2.2.2. Similar Projects
Retrium (2020)
Retrium is are trospective program. It offers to enable agile teams to have effective
conversations, discover new insights and generate action plans. Retrium promises
engaging retrospectives that fuel continuous improvement. It boasts features with
functionality such as:

e Stop, Start, Continue: this functionality asks ‘what activities should be started
on? What activities should be stopped and what activities need to be
continued?’.

e Whatwentwell:this functionality asks what went welland what did notduring
asprint.

e Mad, Sad, Glad: functionality to check the emotions of a team.

e Action Plan: functionality that allows the integration of a plan for executing a
retrospectives action items.

e Integration with Jira: integration action items directly into Jira workflow in
conjunction with Retrium.

e Retrospective history: functionality to see a timeline past conversations, notes
and action items that were created as aresult ofaretrospective.

Team Retro (2020)
Team Retro is a retrospective application that offers functionality for both face-to-face

and remote meetings. It offers a fully customisable, cross device experience, for
development teams. Its offered functionality includes:

e FEasy invitation: functionality to invite team members via email, through Slack
or SSO.
e Brainstorming: functionality to add what things went well in a sprint or not so

well. Addition of items can be anonymous, or with the users’name.

e Grouprelatedideas:functionality tocombinerelated added itemstogether,such
asitems to start or stop.

e Voting on items: functionality to anonymously vote on items to ensure team
members can decide where the teams focus should be.

e Integration with existing workflow: functionality to add action items to
existing workflow such as Jira or Trello.

6.2.3. Technical Approach

For the front-end, I believe Angular could be an appropriate option as there are many
resources to research for development using Angular, and it would be able to fulfil the
scope of requirements of the project. End-to-end and unit testing in Angular is also a
strong aspect of Angularand oncelcarry out further investigation,thiswillhelp testing
theperformanceoftheapplication. Toaid the look and feelofthe project,implementing
the Bootstrap framework alongside Angular will be a great asset to the project.

Similarly,Iwillneed to select a suitable back-end language for the project. I believe Java
will be the best option for this as [have experience developing using this language.
There is also a vast amount of resources such as various frameworks for unit testing
which is essential to this project’s objectives and for debugging.

To aid the development of the backend of the project, [believe the Spring framework
would be a great asset to the project as it removes a lot of boilerplate code and there are
libraries within it that deal with the security and scalability ofa project. This project will
also likely require developing an API in order to function as intended. The Spring
frameworks libraries could also aid this aspect. I have briefly looked into this
framework, and although it will require more research, I believe it will fulfil the needs
ofthe project.

Forthesentiment analysis,Ibelievethe Tidytext library willbeappropriate. This library
contains three general purpose dictionaries that assign a score for positive or negative
sentiment on words as well as possible emotions such as joy, anger, fear, etc that are
associated with a word. This will be implemented in Retro using the words posted by
team members in a retrospective in order to provide managers will a tangible sense of
theteam moraleleveland the emotions team members are experiencing duringa sprint
retrospective.

When considering the objectives of this application such as efficiency, security and
scalability are three of the most important aspects. As a result, the architecture of the
project willrequire detailed design and careful planning. To achieve this,I willresearch
S.O.L.I.D. design principles and implement them to the project. These principles will
encourage more maintainable, flexible, and understandable code than can achieve the
objectives [have set out.

A large part of this project will centre around enabling better communication levels
within development teams during retrospectives. Many existing retrospective
applications werenot built to facilitate the level of remote retrospectives that are taking
place at the moment due to the majority of development teams working from home,
and perhaps relied on issues being cleared up during the next in-person office meeting,
and as aresult there is an inadequate level of communication functionality present in
these applications. Similarly, other applications were not built to handle the number of
retrospectives taking place remotely currently taking place in companies and certainly

not with the scale of larger companies’ teams in mind. Retro will be designed with a high
level of communication and scaling in mind to solve this issue.

Functionality will include individuals in development teams being able to add what
went wellin a sprint, what did not gosowelland any questions they might have. Users
will also be able to add action items to retrospectives, these are the tasks that arise
because of the retrospectives that need to be completed in a subsequent sprint. Users
willalso be able to export action items to their agile development task platform, such as
Jira or Rally,as a task to be completed.

Items will also have a voting function, for other users that agree with a point raised by
a team member to support or not. Similarly, when teams are going through their
retrospective discussion, items will be able to be marked as reviewed and greyed out.

6.2.4. Special Resources Required

For this project, [will require resources for designing the project with S.O.L.I.D. design
principles. As this will be a consistent objective throughout the project, having
something to refer back to easily when designing the project will be a great asset. |
believe a book will be sufficient for this.

Materials dealing with scalingand security for theapplication theapplication could also
beuseful. However,there are many detailed online resources that will be sufficient for
this such asthe Baeldung website.

6.2.5. Project Plan

Gantt chart project timeline and tasks.

Start
Fri06/11/20

[08Nov20 [15Nev20 |22Nov20 [29Nov20 [06Dec’0 [13Dec20 [20Dec20 (27Dec (03)an21 [10Jan21 |17)an21 [24lan21 [31Jan21 (O7Feb2] [14Feb’3N |21Feb21 [2BFeb21 [07Mar2l [14Mar21

hu 25/03/2

Refro
Fri 06/11/20 - Mon 22/03/21

Frontend Sentiment analysis functionality

Fri 06/11/20 - Wed 06/01/21 Thu 07/01/21 - Wed 03/03/21 Thu 04/03/21 - Mon 22/03/21

Configu Contr Exception Models Repo Services Test mponent

Fii ed Sun Sat 21/11/20 - Tue Wed Sun 06/12/20 - Tue 22/12/20 Wed 23/12/20-Wed 08/01/21 Thu07/01/21 -Tue Wed 20/01/21 - Wed 10/02/21 Tue 16/0221 -Thu

Sample Reto A | R Adtio lte Reto | Retrospective Service Service Contr Rest | At Reto Reto Pagedisplayed Authentication of user Routing ~ Creation of unit A
i Wed S T T sa we sa o w Sun 06/12/20 - Tue 22/12/20 Wed Tue sat T sat Tue Sat Wed2001/21- Thu28/0121-Wed 100221 Thu Tue 16/0221 -Thu [

Sample HT HTTR HTTP HTTR F For Com Com

Fri Su Wed Tue sat T osat Tue o osat

Home Page Front Unit testing imag Dic Functionality to gather
Thu Sun Sat Tue09/03/21 - Mon 22/03/21

21 Mar 3}
Finig

Mon|

Figure 50 Project Plan - Gantt Chart timeline view

4 Retro 98 days Fri 06/11/20 Mon 22/03/:

2 Backend 45 days Fri 06/11/20 Wed 06/01/:
4 Configuration 3 days Fri 06/11/20 Tue 10/11/2(
4 Sample data 3 days Fri 06/11/20 Tue 10/11/2(
Sample data of 3 days Fri06/11/20 Tue
retrospectives, 10/11/20

their items and
action items

Local profile for 1 day Tue Tue
sample data use 10/11/20 10/11/20
and display
4 Controller 4 days Wed 11/11/. Sat 14/11/20
Retrospective Control 4 days Wed 11/11/: sat 14/11/20
4 Exceptions 5 days Sun 15/11/2(Fri 20/11/20
Action Item Exception 2 days Sun 15/11/2(Mon 16/11/2
Item Exceptions 2 days Tue 17/11/2(Wed 18/11/:
Retrospective 2 days Thu Fri 20/11/20
Exceptions 19/11/20
4 Models 7 days Sat 21/11/20 Tue 01/12/2
Action item 3 days Sat 21/11/20 Tue 24/11/2(
ltem 3 days Wed 25/11/% Fri 27/11/20
Retrospective 3 days Sat 28/11/20 Tue 01/12/2(
4 Repositories 3 days Wed 02/12/; sat 05/12/20
IltemRepository 2 days Wed 02/12/: Thu 03/12/2(
Action ltem 1day Fri 04/12/20 Frio4/12/20
Repaository
Retrospective 1 day 5at05/12/20 sat05/12/20
Repaository
4 Services 12 days Sun 06/12/2(Tue 22/12/2
4 Retrospective Service 12 days Sun 06/12/2(Tue 22/12/X(
HTTP GET Method 3 days Sun 06/12/2(Tue 08/12/2(

Figure 51 Project Plan - Gantt Chart items 1/ 3

HTTP POST Method 4 days

Wed 09/12/% Mon 14/12/3

retrospectives

4 Home Page 16 days

HTTP DELETE 4 days Tue Fri 18/12/20
Method 15/12/20
HTTP UFPDATE 3 days Sat 19/12/20 Tue
Method 221220
4 Test 11 days wed 2312/ wed 06/01/:
Service Tests 4 days Wed 23/12/: Mon 28/12/3
Controller Tests 4 days Tue 29/12/2(Fri 01/01/21
Rest Service 4 days Sat 02/01/21 wed
Application Tests 06/01,21
4 Frontend 40 days Thu 07/01/2: Wed 03/03/:
4 Components 9 days Thu 07/01/2: Tue 19/01/2:
4 Item Form 2 days Thu Fri 08/01/21
Component 07f/01/21
Form template for 2 days Thu Fri 08/01/21
entering items 07/01/21
4 Action ltem Form 1day Sat 09/01/21 Mon
Component 11/01/711
Form template for 2 days Sat 09/01/21 Mon
entering action 11/01/21
4 Retrospectives 4days Tue Fri 15/01/21
Component 12/01/21
Component for 4 days Tue Fri 15/01/21
displaying 12/01/21
retrospective data
4 Retrospectives List 2 days Sat 16/01/21 Tue
Component 19/01/21
Component for 3 days Sat 16/01/21 Tue
displaying a list of 19/01/21
all available

Wed 20/01/: Wed 10/02/;

Figure 52 : Project Plan - Ganlt Chart items 2/3

Page displayed upon 6 days Wed Wed

application launch 20/01/21 27/01/21
Authentication of 10 days Thu Wed
user 28/01/21 10/02/21

4 Front end routing 3 days Thu 11/02/2: Mon 15/02/:
Routing between 3 days Thu Mon
pages [how 11/02/21 15/02/21
components interact

4 Unit testing 8 days Tue 16/02/2: Thu 25/02/2:
Creation of unit tests 8 days Tue Thu
within each 16/02/21 25/02/21

component to make
sure they function as

4 Bootstrap 1day Fri 26/02/21 Fri26/02/21
Implementation
Adding bootstrap 1day Fri 26/02/21 |Fri 26/02/21

framewark to project
to improve both the

Ul and UX
4 Ul Colour Scheme 1day Sat 27/02/21 sat 27f02/21
Selection of 1day Sat 27/02/21 Sat 27/02/21

appropriate colours
for the design of the

4 Image Assets 3 days Sun 28/02/2: Wed 03/03/.
Favicon 1day Sun 28/02/2: Sun 28/02/2:
Application Logo 2 days Mon 01/03/2 Tue 02/03/2:
Functionality image 1day Wed Wed
assets e.g. back 03/o3/21 03fozf21
button, tick icon, etc

4 Sentiment analysis 13 days Thu Mon
functionality 04f03/21 22/03/21

Figure 53 Project Plan - Gantt Chart items 3/3

6.2.6. Technical Details

The project’s backend will be written in Java. To aid this, the Spring Framework will be
added too. Utilising this framework will allow the use of its security libraries, removal
of boilerplate code, and aid development of the API and scaling the application.

The frontend of the project will be written in Typescript using Ang ular. This will
involve using the Angular CLI to create components as needed. For the user interface of
the front end, implementation of the Bootstrap framework for CSS as well as using

HTML will be necessary.

The sentiment analysis will be implemented usi ng the Tidytext library. This will
involve gathering words from retrospectives and analysing them in order to provide
management with a sense of team morale levels versus productivity.

6.2.7. Evaluation

For the evaluation of this project, | plan to incorporate J Unit tests throughout the back
end to ensure there is a high level of coverage for the code in each class. This coverage
will likely be in excess of 80%, with complete coverage of all methods.

| also plan on setting a ‘local’ Spring profile for the backen d. This will involve creating a
Java class and filling it with sample data in order to test that the API is outputting the

right data where needed. This will be useful when demonstrating progress of the project
on both the front -end and back -end, allowing for continuous testing and checking that
each part of the development is performing as it should, and how it should.

Similarly, | plan to do component testing for the front -end Angular code to ensure
everything is functioning as intended. I will also incorporate error pages if users
navigatetothe wrong endpoints. The front end willalso have an emphasis on usability
testing.

6.3. Reflective Journals

6.3.1. October Reflective Journal

This was an exciting and busy month as we had to come up with our idea for the final
year project and make a video pitch of the idea. Initially, [was overwhelmed by the
prospect of coming up with an idea for a project that carries so much weight for my
degree grade and one that will be impressive enough to talk about when going on
interviews.

As this year is worth 80% of my degree, Imust admit that the pressure is mounting to
do well and have a strong final year project as well as performing well in other
assessments.

However,oncelsat down tothink ofan idea, the pieces started comingtogether.Icame
up with an idea of making an application to facilitate sprint retrospectives remotely,
and I am excited to get started on developing it. Although Idonot know how Iam going
todo every part ofthe project,Thave a high-level view of what Iwant it to do,the scope
ofthe project and some technologies I am interested in looking into incorporating into
my project.

Iam eager to get started on my project proposaland get the ballrolling.[am trying not
to think too far ahead and keep focused on deadlines closer to me so as not become
overwhelmed with the workload.

Thereis alot to plan and a lot of work to be done while also keeping on top of my other
modules,but hopefully Ican managetocommitenough timetoeverythingand achieve
the grades I want.

6.3.2. November Reflective Journal

This month was particularly full of assignments from other modules, with a huge
workload attached. Theresult of thisisthat Ihave not gotten an awfullot of work done
for my final year project. I had intended on having made a good start to it, but [am
finding it hard to make time for the project when there are so many other deadlines
closer that are from other modules.

However, although I have not been able to get much tangible work done for the final
year project. [have been able to make considerable progress on the planning of how to
get my project started and the steps [will take to get it toa decent amount of the project
done beforethe mid-point submission. Even though thisisnot where I would like to be
progress-wise, it has given me time to flesh out the idea for my project a bit better.

Iam hoping that Iwill be able to get a lot more done in December and particularly over
the Christmas break. This will give me the much-needed time to dedicate to the final
year project. However, [realise this semesters workload isintense and with only having
four modules next semester, I am hopeful that I will be able to dedicate the time it
deserves next semester.

6.3.3. December Reflective Journal

This month [was again very busy with the workload from other modules, but I
managed totakeabitoftimeout each weektoworkon my finalyear project.l1feellhave
made a decent amount of progress with the code considering the point I am at before
the final deadline.

IThavemade effortstoensurethe backend ofthe project is designed as Iwould like it and
employed the S.O.L.I.D. Java design principles to achieve this. It is nowhere near
finished but lam happy with the state of it for the midpoint presentation as some ofthe
end-product functionality is present. The front end is also functioning and features the
information from the backend and some of the functionality I plan to have for it to
communicate properly with the backend, however, it is not aesthetically looking how I
want it for the final product.

I was getting stressed before this month that I was not getting enough done as [was
spending the time, I had just researching how to go about my final year project and
thinking ofhow to design it rather than coding yet. However, I feelthat going about the
project in this way has actually benefitted it as when I did finally get to work on coding
this month, I knew exactly how I wanted to implement the architecture of the project
and why. It was aided by the fact that I implemented it with the structure of the Java
S.0.L.I.D. design principles.

Iam learningnottotryand tacklethe whole project immediately buttoreally try to take
it bit by bit and build upon the stable foundation I have created up tonow. That is not
tosaylam takingiteasy butthereistimebeforethe finaldeadlinein May and Iwillhave
ample opportunity to work on it until then. [am getting there,and although thereis a
lottodo,Iam happy with the progress [have made so far.

Iam eager to take the project as it stands and build upon it until I get it to where [want
it to be,as well as it delivering all of the functionality it needs.

6.3.4. January Reflective Journal

This month was far more productive than I thought it would be. I thought I would be
workinglesson myproject duetowantingtotakeabreakafteran intense first semester,
butIwas feeling very motivated towards Retro and getting some work done.

Iadded in a lot of new features. This was a great period of time to work on my project as
I was off from college meaning I had no other assignments or work to get done. [was
able to focus on my final year project.

I added in unit testing throughout the backend with a high level of code-coverage. I
thought it best toadd in testingnow when [havethe chance asIknow once it gets close
tothe finaldeadline,testing willbe at the bottom of my priorities list.lalso added in full
CRUD functionality tomy back end and front-end, Ul changes tothe colour schemeand
look and feel, archiving functionality for retrospectives, pipes for filtering retros, and
pipes for item functionality like being finished with an item (it is greyed out once
marked asreviewed), and filtering by votes.

Iam happy with the progress I made over January as I did not think I would get much
done at all, but [surprised myself with the passion and dedication I have towards this
project.Ireally want it to be a well-made project that Iwill be proud of.

| still have a lot of work to do and challenges to overcome. However, [am looking
forward to getting stuck into it over the next couple of months and adding more
functionality and polishing the overall application into something worthwhile.

6.3.5. February Reflective Journal

This month was a lot slower in terms of productivity than [would have liked. I have
made some progress on my final year project, which is great, but I would have liked to
get more done. [have instead been getting to grips and focusing on my other modules
that T have this semester.

Iam doingsoin the hopesthatifIlay decent groundwork on these other modules early
on in the semester, I can then focus on my final year project towards the end of the
semester as I willhave a decent chunk ofthe work done already for the other modules.

Iam excited and feeling very motivated to continue workingaway on my project for the
final few weeks ofthe semester.Its surrealtobecomingtotheend of myundergraduate
degree. I plan to continue working hard on my project to ensure I can produce
something worth being proud of at the end of it.

6.3.6. March Reflective Journal

Thismonth wasmy slowest month in terms of progressduetothe workload from other
modules. However, it is now coming to the end of assignments due for other modules
solwillhave more time to focus solely on my final year project. this has been difficult
asbecausethe finalyear project deadline approaches,its stressfulthat Icannot dedicate
the time I would like to it.

Ihavebeen workingon a few smallthings formy final year project and researchinghow
I will implement certain functionality. This will allow me to go full steam ahead in
carrying out the implementation ofthis functionality when I get the chance. There are
anumber of features and bits of functionality that I stillneed to look into how exactly I
willimplement but [am confident that I will be able to achieve a strong project by the
deadline.

Iam comingtothe final weeks before my project is due,and [am feeling motivated and
eager to get the majority of features finished. This is an exciting time and I have been
really enjoying working on my project over the last few months.

6.3.7. April Reflective Journal

When [was starting out on my final year project, I was overwhelmed. [had no solid
ideaofwhatIwanted todomy project on,how Icould complete astrongenough project
when it was worth somuch of my degree,or where to start. Now that itiscomingtothe
end of the project, I feel like [have learned a huge amount. From a technical point of
view, I feel like a stronger developer than [was at the start of fourth year. Even from a
planning and design point of view for projects I feel like my skills have grown,as well as

from a programming point of view.

Similarly, have gained a better understanding of organisation and the development
timeline for a project and the work that goes into keeping to deadlines to achieve a
project’s goals. I also feel like my soft skills have improved greatly over the last few
months, from contacting my supervisor and lecturers to ask questions and pick their
brains about how to go about tackling parts of my project.

Along the way | have had moments of panic where | was thinking “How am | ever going

to do this?” or “I don’t know where to even begin” but eventually I started to remind
myself of all the previous parts of the project where [was not sure where to start and
how I had successfully gotten past them. I started to think “I don’t know how to do
this... yet” and got to work on tackling the task in front of me, which is an important
lesson [will try toremember.

The entire experience of doing a final year project, while seemingly insurmountable at
first, has been invaluable in teaching me many lessons, like those stated above, that I
will take into my career with me.

Although the process has been tough, [have really enjoyed creating this project from
beginningtoend and it has been really rewarding in terms of learning. I am very proud
oftheworkThave putintomy project and incredibly excited to get to work on finishing
itup over the next few weeks and submitting the final implementation.

6.4. Informed Consent Form:

6.4.1. Participant One:

User Testing Informed Consent Form

Study administrator is: Ben Carroll
Participant is: Grace McKeown
Participant number: 1

This is a study about Retro, a web application that allows Software Development teams
to be able to facilitate their agile sprint (short, time -bound period where teams complete

a defined amount of work) retrospectives remotely intended for people are software
developers. Our goal is to make the web app user interface appealing, intuitive and user
friendly. Your participation will help us achieve this goal.

In this session you will be working with working prototype. We will ask you to perform
tasks a typical user might do. A member of the design team will sit in the same room,
quietly observing and taking notes. A facilitator will sit near you and help you if you are
stuck or have questions.

All informatio n collected in the session belongs to [the college / the company] and will
be used for internal purposes. We will videotape and audiotape the session. We may
publish our results from this and other sessions in our reports, but all such reports will
be confidential and will not include your name.

This is a test of the software. We are not testing you. We want to find out what aspects
are confusing, so we can make it better. You may take breaks as needed and stop your
participation in the study at any time.

Statement of Informed Consent

| have read the description of the study and of my rights as a participant. | voluntarily
agree to participate in the study.

Print Name: Grace McKeown

C’],fa@e, Mc Kecn

Signature:

Date: 23/04/2021

Back to Usability Testing.

6.5. User Testing Results:

6.5.1. Five Second Test:

The user was presented with the home page of Retro for the five second test as seen in
Figure 55 . A recording for the user testing with participant one _ can be found here:
Usability testing recording . The participant was asked the following:

Question: What do you remember from the home page?

The search bar and that this was the home page of the whole website.

Question: What seemed important?

The search bar seemed important and green button to create a retrospective too.

6.5.2. Trunk Test:

A recording for the user testing with participant one can be found here: Usability testing
recording . The participant was asked the following:

Question 1: What website is this?

Answer: ltis the retrospective page.

Question 2: What is the page name?

Answer: The page name is the first retrospective’

Question 3: What are the major section and important parts of the page?

Answer: The sections for good things, bad things, questions, and action items.

Question 4: How did you determine the important parts of the page?

Answer: The headings and icons say what each important part is.

Question 5: What functionality is present on the page? How can you interact with the page?

Answer: You can type into each section given, icons for deleting and editing, and you
vote using the arrows.

Question 6: Where are you on the website? What page?
Answer: The first retrospective page because it says it up the top of the page.

6.5.3. Think Aloud Test:

A recording for the user testing with participant one can be found here: Usability testing
recording . For the think aloud test, the user was asked to:

1. Create a retrospective.
2. Enterit.

https://studentncirl-my.sharepoint.com/:v:/g/personal/x17501726_student_ncirl_ie/EWwznTqaijhJpdUK24eugeIBVoP1dQojp5COslVq2m0UnQ?e=s3bQpV
https://studentncirl-my.sharepoint.com/:v:/g/personal/x17501726_student_ncirl_ie/EWwznTqaijhJpdUK24eugeIBVoP1dQojp5COslVq2m0UnQ?e=s3bQpV
https://studentncirl-my.sharepoint.com/:v:/g/personal/x17501726_student_ncirl_ie/EWwznTqaijhJpdUK24eugeIBVoP1dQojp5COslVq2m0UnQ?e=s3bQpV
https://studentncirl-my.sharepoint.com/:v:/g/personal/x17501726_student_ncirl_ie/EQ2HtQqfvkdMuGyVmXG_4sYB4ikCcQatIUV4JcdlhTrBQA?e=lvD4AE
https://studentncirl-my.sharepoint.com/:v:/g/personal/x17501726_student_ncirl_ie/EQ2HtQqfvkdMuGyVmXG_4sYB4ikCcQatIUV4JcdlhTrBQA?e=lvD4AE

3. Createan item ofeach type.
4. Return home.
5. Archivetheretrospective.

The user completed each part of the test with ease. The participant quickly went
through each part of the test. The only minor issue is they marked each item type as
reviewed,i.e., greyed it out when they created it.

6.5.4. TreeTest:

When conducting the tree testing, participant one was presented with the main groups

and subgroups of topics and details on Retro in a list view and asked to find various
locations on the website. The test was carried out as moderated tree testing.

Task 1: Find the page for archived retrospectives.

The participant was able to find the archived page with. Ease they immediately clicked
the archive button on the navbar.

Task 2: Find a specific the managers area page.

The p articipant was able to find the requested locations with ease, using the navbar to
redirect them to the managers area.

Task 3: Find the action items of a retrospective that had been archived.

The participant was able to complete the task but first search ed for the archived
retrospectives where the in -progress retrospectives are. It took them time to
understand why the archived retrospectives were not grouped in with the ongoing

ones.

6.5.5. Click Test:

When carrying out the click test with participant one _, four questions were asked.

Question 1: Where would you expect fo click to find the information about archived
retrospectives?

The participant was able to click the ‘archived’ button quickly upon being shown the
user interf ace of the home page shown in Figure 55.

Question 2: Where would you click to navigate to back fo the home page from a retrospective
page?

The participant was able to find the back button shown on the retrospective user
interface shown in Figure 56, but it took them some time to do so. This points to the

button perhaps being too small and not obvious enough, especially when displayed next

to the retrospective title.

Question 3: Where would you click to progress fo submit a retrospective item?

This question was quickly answered by the participant. The participant made it clear
that the green coloured button shown beside the text field for each item type shown in
Figure 55 made it simple to understand that that was how they should post an item.

Question 4: What button would you click fo archive a refrospective?

The fourth question proved to be the most difficult. The participant was shown the

home page of Retro shown in Figure 55 but clicked into the retrospective page shown on
Figure 5 6 to try and find the archive button within. After that, the user clicked the

archive button on the navbar and tried to find the button there. Eventually, the

participant returned to the home page and reasoned that the blue button with a check

was the arch ive button as it would mark the retrospective as reviewed . This led to some
discussion with the participant on what the button icon should be changed to and an

icon similar to the one beside the archive heading on the navbar would be suitable.

Back to Usability Testing.

6.6. NCI Ethics Application Form
National College of Ireland
Human Participants Ethical Review Application Form

All parts of the below form must be completed. However in certain cases where sections are not
relevant to the proposed study, clearly mark NA in the box provided.

Part A: Title of Project and Contact Information

Name

‘ Ben Carroll

Student Number (if applicable)

\ X17501726

Email

| X17501726@student.ncirl.ie

Status:
Undergraduate O
Postgraduate]
Staff]

Supervisor (if applicable)

‘ Lisa Murphy

Title of Research Project

‘ Retro

Category into which the proposed research falls (see guidelines)

Research Category A ©
Research Category Bo
Research Category Co

Have you read the NCI Ethical Guidelines for Research with Human Participants?
Yes O
No O

Please indicate any other ethical guidelines or codes of conduct you have consulted

Has this research been submitted to any other research ethics committee?

Yes O
No O

Ifyes please provide details,and the outcomes of this process, if applicable:

Is this research supported by any form of research funding?

If yes please provide details, and indicate whether any restrictions exist on the freedom of the
researcher to publish the results:

Part B: Research Proposal

Briefly outline the following information (not more than 200 words in any section).

Proposed starting date and duration of project

September 2020 —May 2021

The rationale for the project

Retrois a web application that allows Software Development teams to be able to facilitate their
agile sprint retrospectives remotely and enables managers of Software Development teams to
effectively manage remotely through a Sentiment Analysis (mining of text that finds and
extracts information that helps a person understand the sentiment behind the data) that is
performed on a retrospective, allowing managers to gauge team morale, with the data to back
the analysis up. It is therefore important to discover the level of usability of the project’s user
interface.

The resea rch aims and objectives

Toresearch and gauge the level of usability present within the frontend of Retro.

The research design

To conduct a series of usability tests including a five second test, trunk test, think aloud test,
tree test,and a click test. A System Usability Scale survey will also filled out by the participant
and included as a debrief.

The research sample and sample size

Please indicate the sample size and your justification of this sample size. Describe the age
range of participants , and whether they belong to medical groups (those currently receiving
medical treatment, those not in remission from previous medical treatment, those

recruited because of a previous medical condition, healthy controls recruited for a medical
study) or cl inical groups (those undergoing non -medical treatment such as counselling,
psychoanalysis, in treatment centres, rehabilitation centres, or similar, or those with a DSM
disorder diagnosis).

One participant should be sufficient as this will indicate proble m areas and strengths present
on the user interface. Age range of the participant will be 18-50 and will not belong to medical
groups.

If the study involves a MEDICAL or CLINICAL group, the following details are required:

a) Do you have approval from a hospital/medical/specialist ethics committee?
If YES, please append the letter of approval. Also required is a letter from a clinically
resp onsible authority at the host institution, supporting the study, detailing the
support mechanisms in place for individuals who may become distressed as a result
of participating in the study, and the potential risk to participants.
If NO, please detail wh y this approval cannot or has not been saught.
b) Does the study impact on participant’s medical condition, wellbeing, or health?
If YES, please append a letter of approval from a specialist ethics committee.
If NO, please give a detailed explanation about why you do not expect there to be an
impact on medical condition, wellbeing, or health.

The nature of any proposed pilot study . Pilot studies are usually required if a) a new
intervention is being used, b) a new questionnaire, scale or item is being use d, orc)
established interventions or questionnaires, scales or items are being used on a new

population. If no such study is planned, explain why it is not necessary.

No pilot studies are being used.

The methods of data analysis . Give details here of the analytic process (e.g. the statistical
procedures planned if quantitative, and the approach taken if qualitative. It is not sufficient
to name the software to be used).

A five second test, trunk test, think aloud test, tree test,and a click test willbe used. These tests
all include a question and answer based approach that can be analysed to improve the user
interface of Retro.

Study Procedure

Please give as detailed an account as possible of a participant’s likely experience in engaging
with the study, from point of first learning about the study, to study completion. State how

long project participation is likely to take, and whether participants will be offered breaks.

Please attach all questionnaires, interview schedules, s cales, surveys, and demographic
questions, etc. in the Appendix.

During the testing, the user will just be asked a series of questions about what they see on the
user interfaceand what they think about it. Other tests will ask the participant to describe their
actions on the user interface while performing them.

Part C: Ethical Risk

Please identify any ethical issues or risks of harm or distress which may arise during the
proposed research, and how you will address this risk. Here youneedt o consider the
potential for physical risk, social risk (i.e. loss of social status, privacy, or reputation),

outside of that expected in everyday life, and whether the participant is likely to feel distress

as a result of taking part in the study. Debrief ing sheets must be included in the appendix if
required. These should detail the participant’s right to withdraw from the study, the statutory

limits upon confidentiality, and the obligations of the researcher in relation to Freedom of

Information legislat ion. Debriefing sheets should also include details of helplines and avenues

for receiving support in the event that participants become distressed as a result of their

involvement in this study.

N/a

Do the participants belong to any of the following vulnerable groups?
(Please tick all those involved).

Children;

The older old (85+)

People with an intellectual or learning disability

Individuals or groupsreceiving help through the voluntary sector

Those in a subordinate position to the researchers such as employees
Other groups who might not understand the research and consent process

DDDDDDD

Other vulnerable groups

How will the re search participants in this study be selected, approached and recruited?

From where will participants be recruited? If recruiting via an institution or organisation

other than NCI please attach a letter of agreement from the host institution agreeing to ho st
the study and circulate recruitment advertisements/email etc.

A computer science student or software developer will be chosen as the participant as they are

the target end user and will provide the most beneficial feedback from testing.

What inclusion or exclusion criteria will be used?

‘ Participant must have knowledge of Agile methodology.

How will participants be informed of the nature of the study and participation?

‘ By the Informed Consent form that will be signed by the participant.

Does the study involve deception or the withholding of information ? If so, provide
justification for this decision.
‘ No.

What procedures will be used to document the participants’ consent to participate?

‘ An Informed Consent form.

Can study participants withdraw at any time without penalty? If so, how will this be
communicated to participants?

Yes, this will be communicated through the Informed Consent form.

If vulnerable groups are participating, what special arrangements will be made to deal with
issues of informed consent/assent?

Please include copies of any information letters , debriefing sheets, and consent forms with the
application.

Part D: Confidentiality and Data Protection

Please indicate the form in which the data will be collected.

[identified o Potentially Identifiable o De-Identified

What arrangements are in place to ensure that the identity of participants is protected?

Identifiable information about the participant will be destroyed after 3 months as per GDPR
guidelines.

Will any information about illegal behaviours be collected as part of the research process?
If so, detail your consideration of how this information will be treated.

No

Please indicate any recording device s being used to collect data (e.g. audio/video).

Audio and video will be captured.

Please describe the procedures for securing specific permission for the use of these
recording devices in advance.

The Informed Consent form.

Please indicate the formin which the data will be stored.

olIdentified o Potentially Identifiable o De-ldentified

Who will have responsibility for the data generated by the research?

Ben Carroll (project researcher)

Is there a possibility that the data will be archived for secondary data analysis? If so, has this
been included in the informed consent process? Also include information on how and where
the data will be stored for secondary analytic purposes.

No

If not to be stored for secondary data analysis, will the data be stored for 5 years and then
destroyed, in accordance with NCI policy?

O Yes oNo

Dissemination and Reporting

Please describe how the participants will be informed of dissemination and reporting (e.g.
submission for examination, repo rting, publications, presentations)?

The participant will be asked to provide contact information for such a case.

If any dissemination entails the use of audio, video and/or photographic records
(including direct quotes), please describe how participants will be informed of this in
advance.

The participant will be asked to provide contact information for such a case.

Part E: Signed Declaration

| confirm that | have read the NCI Ethical Guidelines for Research with Human Participants
and agree to abide by them in conducting this research. | also confirm that the information
provided on this form is correct (Electronic signature is acceptable).

Signature of Applicant

' ///—55/” ! &sz;’;@ //

Date 13/05/21

Signature of Supervisor (where appropriate):

Date

Any other information the committee should be aware of?

Back to Usability Testing.

6.7.System Usability Scale Exit Survey:

Grace McKeown £ 251
System Usability Scale
For each of the following statements, please mark one box that best describes your reactions to
Retro today.
Songly

1. Ithink that | would like to use Retro frequenty.
2. Ifound Retro unnecessarily complex.,
3. Ithought Retrowas easy to use.

4. Ithink that | would need the support of a technical person 1o be able to use
Retro.

5. |ound the various functions in Retro were well integrated,

6. lthought there was too mudh inconsistency in Retro.

7. Iwould imagine that most people would learn 1o use Retro very quickly,
8 Ifound Retro very cumbersome (awhward) (o use.

9. |feltvery confident using Retro.

ED@DDD DDSD%E
bbb Ot
T2y B Y
=y W o
obrod oo

10, Ineeded tolearn alot of things before | could get going with Retro,

Figure 54 . System Usability Scale Exit Survey

Back to Usability Testing.

6.8. User Testing: User Interface

As the usability testing was carried out before the final Ul of Retro was completed, screenshots
of the Ul as it appeared during the usability testing are found below.

Retrospective. x +

< C 00 ®© locahost

Retro A Home Page & Archived Retros

Create a Retrospective:

Enter a Retrospective Title ~

Q Search

First Retrospective 05/05/2021 20:35:55 » E v

Figure 55 Usability testing Retro homepage

Retrospective: x +

= C (@ O locathost

€ First Retrospective

Things that went well Questions about the sprint Things that could be improved

(] ? (]
(Enter Item Description R (Enter Item Description % (mer Item Description %

Action Items

(Enter Action Item Description v

Retro 1:: Action Item Number 1 Retro 1:: Action Item Number 2 Retro 1:: Action Item Number 3

Figure 56 : Usability testing individual refrospective page.

Back to User Testing Results.

	Table of Figures:
	Executive Summary
	1. Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2. System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1: The User is able to create a retrospective.
	2.1.1.2.1. Description and Priority
	2.1.1.2.2. Use Case

	2.1.1.3. Requirement 2: User is able to retrieve and view a retrospective.
	2.1.1.3.1. Description and Priority
	2.1.1.3.2. Use Case

	2.1.1.4. Requirement 3: User is able to delete a retrospective.
	2.1.1.4.1. Description and Priority
	2.1.1.4.2. Use Case

	2.1.1.5. Requirement 4: User is able to perform a Sentiment Analysis on a retrospective.
	2.1.1.5.1. Description and Priority
	2.1.1.5.2. Use Case

	2.1.1.6. Requirement 5: User is able to add an item to a retrospective.
	2.1.1.6.1. Description and Priority
	2.1.1.6.2. Use Case

	2.1.1.7. Requirement 6: User is able to delete an item from a retrospective.
	2.1.1.7.1. Description and Priority
	2.1.1.7.2. Use Case

	2.1.1.8. Requirement 7: User is able to update an item on a retrospective.
	2.1.1.8.1. Description and Priority
	2.1.1.8.2. Use Case

	2.1.1.9. Requirement 8: User is able to add an action item to a retrospective.
	2.1.1.9.1. Description and Priority
	2.1.1.9.2. Use Case

	2.1.1.10. Requirement 9: User is able to delete an action item from a retrospective.
	2.1.1.10.1. Description and Priority
	2.1.1.10.2. Use Case

	2.1.1.11. Requirement 10: User is able to update an action item on a retrospective.
	2.1.1.11.1. Description and Priority
	2.1.1.11.2. Use Case

	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Usability Requirements

	2.2. Design & Architecture
	2.3. Implementation
	2.3.1. The Backend:
	2.3.2. The Frontend:

	2.4. Graphical User Interface (GUI)
	2.4.1. Home Page:
	2.4.2. Retrospective Page:
	2.4.3. Archive Page:
	2.4.4. Sentiment Analysis Page:
	2.4.5. Search:
	2.4.6. Modal Dialogs:
	2.4.7. Voting System:
	2.4.8. Retrospective Timestamps:

	2.5. Testing
	2.5.1. Backend
	2.5.2. Frontend
	2.5.2.1. Usability Testing:
	2.5.2.1.1. Five Second Test:
	2.5.2.1.2. Trunk Test:
	2.5.2.1.3. Think Aloud Test:
	2.5.2.1.4. Tree Test:
	2.5.2.1.5. Click Test:

	2.6. Evaluation

	3. Conclusions
	4. Further Development or Research
	5. References
	6. Appendices
	6.1. Project Plan
	6.2. Project Proposal
	6.2.1. Objectives
	6.2.2. Background
	6.2.2.1. Origin of the Idea
	6.2.2.2. Similar Projects

	6.2.3. Technical Approach
	6.2.4. Special Resources Required
	6.2.5. Project Plan
	6.2.6. Technical Details
	6.2.7. Evaluation

	6.3. Reflective Journals
	6.3.1. October Reflective Journal
	6.3.2. November Reflective Journal
	6.3.3. December Reflective Journal
	6.3.4. January Reflective Journal
	6.3.5. February Reflective Journal
	6.3.6. March Reflective Journal
	6.3.7. April Reflective Journal

	6.4. Informed Consent Form:
	6.4.1. Participant One:

	6.5. User Testing Results:
	6.5.1. Five Second Test:
	6.5.2. Trunk Test:
	6.5.3. Think Aloud Test:
	6.5.4. Tree Test:
	6.5.5. Click Test:

	6.6. NCI Ethics Application Form
	6.7. System Usability Scale Exit Survey:
	6.8. User Testing: User Interface

