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ABSTRACT 

Long-Term Value at Risk: Modeling and testing VaR model on a defined-benefit pension scheme 

-Bansi Mavani 

Value at Risk is identified amongst the significant developments in the field of risk 

measurement and management. Value at Risk (VaR) can be regarded as a metric that 

enables us to calculate and quantify the degree of risk of financial nature associated with 

a given investment or a portfolio of investments over a specific period.  

The objective of this study is to compute long horizon Value at Risk on a defined-benefit 

pension scheme. Such pension schemes are regarded as defined in the context of the 

benefit formula which is well in advance defined as well as known. To accomplish the 

stated objective the author undertakes the building of a model for computing VaR with 

Monte Carlo simulation using a non-parametric bootstrapping method. The method 

employed for computation is not a very common one and therefore the author aims to 

explore its validity. An important aspect of any constructed model is check for its validity 

and accuracy because unless the accuracy of the model is proved the computation cannot 

be relied on. Backtesting of a model is performed as a test for its accuracy. To achieve 

the aim of building and backtesting the VaR model use of Microsoft excel along with 

virtual basic for application (VBA) and R programming is made. This study addresses 

more of an industrial problem and thereby incorporates the floors and options to various 

risk factors involved in the computation. The time horizon and the confidence level are 

the two important parameters in VaR computation. The time horizon considered for VaR 

computation is long-term and at 99% confidence level whereas the backtesting is 

performed with 95%, 97.5%, and 99% VaR. The results of the study conclude the 

constructed VaR model as valid and accurate for practical implementation based on the 

backtesting results.  
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1 INTRODUCTION  

1.1 INTRODUCTION TO VALUE AT RISK (VAR)  

What is the maximum loss that can be incurred on a specific investment? Any individual 

or an institution that has undertaken an investment or is considering an investment has 

had the above question in mind when the said investment is into a risky asset at any 

given point of time (Damodaran, 2007). Precision modeling of risk is crucial for correct 

prediction and control of risk (Alexander, 2008). 

VaR has become widely popular as the risk measure in finance over the last decade. 

Value at Risk is regarded as a method used for quantifying the risk of financial nature 

and it does this by attempting to forecast future risk (Micocci, Gregoriou and Masala, 

2010). Glyn (2002) said that VaR can be termed as market risk’s probabilistic measure. 

In today’s time, this method is gaining popularity and is also being adopted by non-

financial institutions and regulators and so its use is not limited only to financial 

institutions. Portfolio Value at Risk can be defined as the maximum portfolio loss which 

will be suffered at a certain confidence level over a specified time horizon (Dowd, Blake 

and Cairns, 2004). In simple words, it is the maximum loss that will be incurred on a 

portfolio with a certain confidence level, say 95% or 99%, over a given time horizon 

that could 1-day, 1-month, or 1-year. The time horizon and the confidence level have a 

direct impact on the VaR value. 

Major areas in finance deal with risk over a relatively shorter time horizon and its 

applicability over a long-term horizon to say, insurance and pension are quite limited 

(Dowd et al., 2004). Over the past few years application of VaR has grown in the 

context of actuarial background and various techniques using different VaR models have 

been applied to evaluate long-term VaR in the insurance sector. On the other hand, still, 

the attempts to VaR’s applicability to pension schemes are comparatively less and are 

still being explored. This study works around the concept of a defined-benefit pension 

scheme which refers to a pension scheme where the amount received on retirement is 

based on the number of years of service and the remuneration earned by an individual. 

There are 3 methods of calculating VaR which include: first, Parametric method of VaR 

called Variance Covariance (Jorion, 2007), second being non-parametric method 
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commonly regarded as historical simulation (Sharma, 2012), and the last is the semi-

parametric method of VaR, namely Monte Carlo simulation (Hull, 2006). The study 

states that the semi-parametric model of VaR, which is monte Carlo simulation, 

provides the best results in comparison to the variance-covariance which enables 

modeling the greater risk and on the other end historical simulation enables modeling 

the smaller risk (Danielsson & Vries, 2000).  

Despite its popularity, VaR has received criticism as a risk measure by various authors 

and has therefore been quite controversial. Past literature goes to an extent of naming 

Value at Risk as a flawed risk model where the author says VaR is similar to an airbag 

which is functional at all time except in a situation of a car accident (Einhorn and 

Brown, 2008). This reflects correctly that not only is constructing a VaR model for 

estimating future risk crucial but alongside checking for the VaR model’s validity is also 

or rather even more important. The process of backtesting enables checking for VaR 

models' accuracy and validity. 

1.2 RESEARCH OBJECTIVE 

The motivation behind this research is to model and backtest the long horizon VaR 

associated with a defined-benefit pension scheme. The defined benefit pension plan is a 

kind of pension scheme wherein a promise for designated retirement payout is made by 

the employer, the formulae for computation of the amount is predetermined, the 

payment may be a lump-sum or variation of that amount, and the same is based on the 

history of earnings, the period of service and age of the employee instead of simply 

being calculated on the individual investment return. The author builds a VaR model to 

estimate the change in the value of a pension scheme. 

A quite important aspect governing the study is that though this study has academic 

interest more specifically it is research from industry and aims at solving an industrial 

problem. The author justifies the relevance and worth of the research by addressing a 

practical problem. 

There is no single study that comes close to this research in every aspect considering the 

research question, the VaR model in the study, and lastly, the methodology and 

underlying assumptions for model building and backtesting.   
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This paper identifies the gap and extends the previous research in three aspects:  

1. First, application of Monte Carlo Simulation using non-parametric bootstrapping to 

long-horizon VaR model, unlike past research where other VaR models have been 

built to avoid the complexity involved in Monte Carlo Simulation with non-

parametric bootstrapping (Mancini and Trojani, 2011; Jorion, 2007).  

2. Secondly, the Application of Monte Carlo Simulation using non-parametric 

bootstrapping replacing the standard practice of using the GARCH model when 

computing long horizon VaR (Berrar, 2019; Wong and So, 2003; Mancini and 

Trojani, 2011).  

3. Thirdly, application of the above-stated methodology to defined-benefit pension 

scheme differing from the previous studying where similar methods have been 

applied in the context of a defined-contribution pension scheme or Insurance to 

compute long horizon VaR (Abbasi and Guillen, 2013; Basu and Drew, 2007).  

1.3 OUTLINE OF THE STUDY 

This structure of this thesis is in the following manner:  

Chapter 1 is the Introduction to the study.  

Chapter 2 is the Literature Review which briefly states the research carried out by 

previous authors and the findings from their work are compared and critically analyzed.  

Chapter 3 states the Research question which forms the basis of the study as well as 

guides the research.  

Chapter 4 concentrates on the Methodology which states the logical methods and 

procedures that the author has adopted to achieve the research objective. This section of 

the study will cover in-depth the process of building and testing the Value at Risk model. 

Chapter 5 focuses on the Findings/Results by stating and analyzing the outcomes 

obtained from the building and testing of the model in the preceding chapter.  

Chapter 6 is the Discussion where the author aims at contrasting the findings of the study 

in light of previous research and also talks about the practical implications and future 

scope. 

Chapter 7 is the Conclusion of the study where the researcher concludes the research 

while suggesting the avenues for further research. 
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2 LITERATURE REVIEW 

2.1 INTRODUCTION  

This section of the study focuses on the literature around the subject area of study and 

begins by providing a synopsis and background of VaR. Followed by it is the definition 

of VaR. The author then presents the relevance of the forecast horizon and the confidence 

level, followed by the pension fund. Next, the VaR model – Monte Carlo Simulation 

along with the model building and shortcoming of it is stated. Lastly, Backtesting for 

validating the model along with different techniques applied are discussed. 

Value of Risk has gained widespread popularity as a risk measure of financial risk and it 

has been adopted by sectors like baking and insurance for the purpose relating to 

regulatory capital requirement (Micocci et al., 2010). 

During the initial stages Value at Risk was believed to have been constructed based on 

corresponding two grounds. One being the Portfolio theory which was part of studies 

conducted by authors like Markowitz (1952) and Roy (1952). The second study was 

conducted by Holton (2002) which was about capital adequacy computation. Later JP 

Morgan was the institute due to which VaR became widely used and recognized amongst 

the financial institutes and corporates along with risk metrics service (Holton, 2002). VaR 

has gained popularity because of the fact that it easy to compute and understand (Hull, 

2006).  

VaR of a portfolio is the cumulative loss at a certain degree of confidence that the 

portfolio will suffer over a period (Alexander and Baptista, 2008). VaR offers forward-

looking risk indicators, using a blend of current status and uncertainty forecast (Jorion, 

2007). The literature emphasizes the use of VaR due to its ability to identify a tolerable 

amount of uncertainty and enables one to reduce the losses that might occur as the result 

(Micocci et al., 2010, Jorion, 2003; Jorion, 2001). Across the financial industry though 

VaR is very popular yet this method isn’t a standard tool in the case of pension funds 

(Micocci et al., 2010). 
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2.2 VAR - DEFINITION 

Over a specified time horizon, Value at Risk represents the quantile of the estimated 

distribution of profits and losses (Jorion, 2007). According to Linsmeier and Pearson 

(1996), Value at Risk is the manner in which the extent of possible losses on a given 

portfolio can be defined. Value at Risk is a statistical measure of the potential losses on 

the portfolio resulting from normal market fluctuations (Campbell, 2005). 

A simple mathematical representation of computing VaR over a long horizon is based on 

a basic assumption:  

 
The formula is suitable when the change in portfolio value on the subsequent days has the 

mean of zero and are independent identical normal distributed whereas in cases other 

than this it is an approximation (Hull, 2015).             

2.3 FORECAST HORIZON AND CONFIDENCE LEVEL 

The two most important parameter to be considered in VaR computation are: firstly, the 

significance level which is denoted by α or the confidence level which is simply ‘1 - α’ 

and second is the risk horizon and that is the period of time over which the Value at Risk 

is computed and it is generally denoted by ‘h’ (Alexander, 2008). The duration over 

which the potential loss is estimated is regarded as a risk horizon. Albrecht, Bährle and 

König (1996, p. 12) in their study state that there exists a degressive dependency of Value 

at Risk on time horizon length. VaR is popular as a risk measure over a shorter duration 

because of its easy computation but it is not so very simple when it is applied over a 

longer horizon like in the case of the pension fund, as there may be a need for 

modifications to the manner of computation. (Micoccci et al., 2010).  

The level of confidence or the significance level of Value at Risk relies on the users’ 

approach towards risk which means that if the user is more cautious then the α value will 

be lower and the level of confidence applied will be higher (Alexander, 2008). VaR 

shows great dependency on the confidence level meaning that if VaR has a low 

confidence level then VaR has chances of reaching the peak rapidly and also dropping is 

the same manner whereas if the level of confidence is high then though the VaR will 

reach the peak but comparatively at a slower pace and further it has a trend to remain at 
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the highest level of value for quite a long time (Dowd et al., 2004). The suitability of 

confidence level at 99% or more is said to be accurate when used in accordance to the 

relevant time horizon and the previous study provide for it to be apt in assessing risk for a 

long time horizon, and also literature emphasizes on significant changes in VaR values 

resulting from varied confidence levels applied (Beder, 1995).  

2.4 PENSION FUND AND RISK  

Over the years pension fund has gained value across the globe. The pension fund 

acknowledges like many financial institutions, the value of assessing, monitoring, and 

mitigating their financial risks (Jorion, 2007).  Pension offers consistent guaranteed 

income or a payout for workers following the retirement age (Biadoo Jnr, Andoh and 

Bokpin, 2019). Past studies confirm the outcome that the timeframe has a direct impact 

on pension fund asset allocation and in the long term, pension fund holding performs well 

(Biadoo Jnr et al., 2019; Chen, Sun and Li, 2017).  

A defined benefit pension scheme is where the retirement pay is a function of income, 

namely labor income, in the last years before retirement and in this case the sponsor of 

the scheme, generally, the government or the corporation, undertakes the risk pertaining 

to investment and longevity (Berstein and Chumacero, 2010). In economies like the UK, 

Australia, and North America popular sources of retirement income are through defined 

benefit pension scheme but recently a gradual switch has also been made towards defined 

contribution Scheme (Haberman, 1996, Turner and Beller, 1992). With changing time 

and growing popularity VaR is being applied in the context of pension schemes and the 

use of VaR has also been encouraged in other sectors like in banks by Basel II and 

similarly, it has also been adopted in relation to insurance (Solvency II – New European 

prudential system) (Micocci et al., 2010). 

The author highlights that in the context of pension fund the associated liabilities are of 

long duration and accounting to the same cause, a mismatch between the liabilities and 

assets is the biggest systematic risk faced in a pension fund (Blake, 1999). Risk models 

should be reflective of the risk interaction and the same is crucial keeping in mind the 

various risk factors impact the valuation (Micocci et al., 2010). 
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Mexico is where the application of VaR to pension fund supervisory framework was first 

introduced and the same was used for the purpose volatility risk approximation. Such an 

application received criticism because it lacked the necessary modification for 

applicability to the pension scheme rather it was a technique simply picked from the 

banking sector and applied in the same manner (Antolin et al. 2009).  

The importance of risk management and a risk-adjusted basis for measuring performance 

has grown because of well know losses in pension funds. There is a variety of risk that 

financial institutions are faced with but one particular type of risk which is very crucial is 

the market risk. Market risk refers to the risk of fall in the value of investment accounting 

to economics changes or due to other changes or events that affect the market factors like 

interest rates, exchange rate, and stock prices (Micocci et al., 2010). Investment risk from 

the pension fund emerges from three main causes: the risk that the portfolio may decline 

in worth, the possibility that perhaps the pension fund’s earnings will not go ahead with 

inflation (negative returns), and the danger that show how the pension fund might not 

raise enough to cover the expense of providing retirement benefits  (The Pension Board, 

2018). The literature of researchers pertaining to long-term risk measurement is quite 

limited. The calculation of VaR is regarded as complex and this is mainly due to the long 

term volatility forecast element involved in long-horizon computations whereas the short-

term horizon calculation is comparatively easy (Dowd et al., 2004). Over the years, risk 

tolerance is bound to be altered or vary and pension funds should take this into account 

when making portfolio decisions (Berstein and Chumacero, 2010). 

2.5 MODEL BUILDING: MONTE CARLO SIMULATION USING NON-PARAMETRIC 

BOOTSTRAPPING 

Monte Carlo Simulation model of Value at Risk is a kind of simulation that generates 

results by depends on statistical analysis and repeated random sampling. This approach is 

deemed related to the random experiments which are kind of experiments where it is not 

possible to know the results in advance (Raychaudhuri, 2008). The method of Monte 

Carlo simulation depends on a predefined distribution like for example, from a normal 

distribution the realizations can be pulled, numerically:  (Jorion, 2007). 

Dowd (1998) said that Monte Carlo Simulation is an apt approach when there arises a 
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need for a powerful yet sophisticated VaR model, but when it comes to implementation 

so far, the most challenging one. 

Monte Carlo makes no underlying assumptions regarding the collective distribution of 

the given data and therefore it is suitable for a portfolio with irregularities (Estrella et al., 

1994). Studies have regarded Monte Carlo Simulation as a model that showcases superior 

performance in comparison to analytical models when taking into consideration a longer 

holding period with a high level of confidence (Gnamassou, 2010; Jorion, 2007; Reich, 

2001; Coronado,2000). Monte Carlo Simulation holds the capacity of including nonlinear 

instruments like options (Damodaran, 2007). 

Drawbacks recognized in using Monte Carlo simulation is that the speed of computation 

is slow because the portfolios involved are revalued several times (Hull, 2006). Though 

accuracy is one of the advantages of this method, but this method also has higher time 

requirements for computation (Jorion, 2007). Authors like Srinivas and shah (2001) and 

Antonelli and lovino (2002) have suggested improvisation in the VaR computation 

through Monte Carlo simulation to overcome its disadvantage of higher computational 

cost and to improve efficiency.  

In the Simulation model not always is it possible to get underlying distribution for a 

variable and one cause for this is lack of sufficient data. In scenarios where for the input 

parameters not much but only a few historical values are available then the use of 

bootstrapped Monte Carlo Simulation is made to generate random variates. In such cases, 

sampling by replacement is opted for where the use of no new random variates is actually 

generated but instead repeated sampling is done from the originally available set of data 

and this is, in turn, is termed as generated random variants. In cases when the parametric 

distribution of data set is unavailable or absent then bootstrapping simulation proves to a 

highly effective tool (Raychaudhuri, 2008).  

Non-Parametric bootstrapping was first proposed as a non-parametric randomization 

technique that pulls out data from observed distribution for modeling the distribution of a 

statistic of interest (Efron, 1979). “The bootstrap provides striking verification for the 

infinite capabilities of modern statistical computation” (Efron, 2012, pp.1293).  

A general and simple formula for a non – parametric model is as given below: 
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In the above formula, the unknown smooth functions are m (-) and σ (-) and ɛt are the 

independently and identically distribution random variable. 

The non-parametric method enables the estimation of the risk factor’s distribution and in 

order to do that, a simple technique is bootstrapping. Based on known historical data the 

method of bootstrap generates possible values of the various factors (Valášková, 

Spuchľáková, and Adamko, 2015).  

In the bootstrap method, F is the unknown distribution function which is replaced by  

 

Another simpler way to understand this is: In Monte Carlo Simulation there is an 

alternative available of sampling from the historical data with replacement instead of 

producing random numbers from a hypothetical distribution. Let us consider an instance 

if we assume to observe a series of  which is nothing but 

series of let’s say, M returns R where the ‘(R1…..RM)’ are assumed to be independently 

and identically distributed random variable drawn from an unknown distribution. An 

important element of bootstrapping considered in the study is sampling with replacement 

(Jorion, 2007). When using Monte Carlo Simulation for computing VaR it is feasible to 

scale up the short horizon VaR estimated in order to compute a long-term VaR while 

making a certain necessary assumption (Alexander, 2008). 

Past literature highlights the benefits and convenience that bootstrap offers: firstly the 

method is regarded as quite a user friendly, secondly it takes into account the 

considerations for correlation across series, thirdly it can overcome the drawback faced in 

the classical method which makes assumptions for data to be normally distributed 

whereas bootstrap facilitates fat tails or any deviations from a normal distribution and 

lastly, it enables faster integration of normal distribution and is suitable when applied to 

VaR models (Valášková, Spuchľáková and Adamko, 2015; Kollar and Kliestik, 2014; 

Jorion, 2007). On contrary there are also limitations to the method of bootstrap that have 

been noted which are, first, poor approximation in contrast to the real one of the 
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bootstrapped distribution when the given sample size is small and second is that the 

bootstrap method has a high dependence on the assumption stating that the returns are 

independent (Jorion, 2007). 

2.6 BACKTESTING 

VaR models are indeed effective only when they can forecast the potential future risk 

explicitly. It is vital to deploy a suitable statistical method for backtesting to ensure that 

the conclusions derived based on VaR computation are both valid as well as consistent 

(Nieppola, 2009). The process of backtesting involves a comparison between the actual 

profits and losses versus the projected VaR simulations. The author rightly terms the 

process of backtesting as a reality check process (Jorion, 2001).  

Brown (2008, pp. 20) said “When someone shows me a VaR number, I don’t ask how it 

is computed, I ask to see the back test.”  

Backtesting refers to a method of identifying the accuracy of the results obtained through 

various approaches and backtesting also recognizes any biases involved in computations 

(Jorion, 2007). There is no one standard approach of Value at Risk that is suitable in all 

situations. No matter which method has been adopted in the calculation of VaR, the most 

important check for the same is backtesting. The real profit and loss can be compared to 

forecasted VaR estimates through backtesting (Halilbegovic and Vehabovic, 2016). The 

process of backtesting involves taking past performance into consideration in order to 

identify how accurate was the VaR estimate (Hull, 2006). When backtesting is for the 

longer horizon with high confidence level the power or the efficiency of the test might 

reduce because the number of independent observations as well as the exceedances are 

fewer (Jorion 2007).  

Aspects of the model like inapt assumptions, the parameter being incorrect or flawed 

simulations or models, all of these should be re-examined in cases where the VaR 

computation is inaccurate (Nieppola, 2009). In scenarios where market risk is involved, 

backtesting of the model becomes comparatively more complex because the data or the 

history of data available might be short and when the data available is less the longer 

horizons computations become difficult (Jorion,  2007). 
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2.6.1 Z-Test 

One of the easiest and straight forward methods of backtesting the VaR model is 

recording the instances of failure or the failure rate. In order to determine the validity and 

accuracy of the model, the use of binomial distribution can be made. In the case of such 

test, the user needs to state the null and alternative hypothesis, and based on the stated 

hypothesis the failing or passing of a given model can be ascertained. These said models 

are tested at a certain desired confidence level and time horizon. The number of expected 

exceedances is based on the level of confidence (Alexander 2008; Jorion, 2007; Hull, 

2006). The author emphasizes on the probability of 2 types of error in such computation. 

The first error is where an accurate model is rejected and this type of error is generally 

known as type I error whereas in the type II error there is a probability of failing to reject 

an inaccurate model. There is a need to correctly balance the two aforesaid errors against 

each other (Jorion, 2007).   

2.6.2 Kupiec Test 

Kupiec test is not only one of the popular test but also the widely used technique of 

backtesting. This test is also known as the proportion of failure or more commonly as 

POF-test. Kupiec test was first proposed by in the year 1995 by Kupiec (Kupiec, 1995). 

Campbell (2005) states that acceptance or rejection of the backtest model is based on the 

computation of the ‘x’ which is the number of exceedance and similar Dowd (2005) also 

states that the model is accepted only if the number of exceedance is within the stated 

range or else it is rejected. Accepting a given model is easier when the confidence level is 

not very high as then the number of exceedances will be more (Alexander, 2008; Jorion 

2007).  

Though this model is largely used and is popular yet two main drawbacks have been 

identified. Firstly, when the size of the sample is small the efficiency of the test reduces 

as it becomes statistically weak and secondly, this test fails to take into consideration the 

number of times positive results or succession have been observed rather its focal point 

remains on analyzing the failure rate (Katsenga, 2013; Jorion, 2007). 
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3 RESEARCH QUESTION  

What is the feasibility and validity of the Value at Risk model that is built and 

backtested with high confidence interval and a long holding period? 

Over the years various modifications to the existing methods have been developed to 

overcome the shortcoming but even then, the gap remains where research needs to be 

directed regarding the method of building and backtesting long horizon VaR. 

Particularly pension fund has opted because the same reflects long term liabilities and 

past literature (Dowd et al., 2003) prove its suitability and along with this, the past 

researches also state that traditionally, VaR was a tool used for short-horizon risk but 

again there are situations where risk needs to be measured in a longer horizon through 

the adaptability of VaR (Giannopoulos, 2002). 

The study aims at building and backtesting the VaR model for portfolios with a long 

holding period (1-year)as well as a high confidence level. The author intends to build a 

VaR model that will simulate potential changes in the value of a defined-benefit pension 

scheme of a financial institution for the purposes of capital attribution in the financial 

institution. The model built will be a Monte Carlo Simulation VaR model which will 

make use of non-parametric bootstrapping for computation. Bootstrapping forms an 

important part because the data available for computational purposes is quite limited and 

to overcome this, sampling with replacement will prove effective. The author considers 

four market risk factors which are Discount yield, Equity prices, Bund yields, and 

inflation rate. For the purpose of modeling, the author assigns hypothetical sensitivities 

to the various market risk factors. The Author computes 1-year VaR at a 99% 

confidence level. To test the accuracy of the built model, backtesting of the VaR will be 

done and the results of the same will determine the validity of the model. The 

backtesting techniques adopted will be a Z-test and Kupiec test. A truncated VaR at 

95%, 97.5%, and 99% will be computed for the purpose of backtesting. 

As the author is dealing with an industrial problem and to showcase the practical 

implications, effective floors on discount yields and put options impacting the equity 

prices are incorporated. Model and backtesting will compare the results with and without 

such inclusions. The models are built and backtested in Microsoft Excel and RStudio. 
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4 METHODOLOGY 

4.1 INTRODUCTION  

The outlook and methodology that is adopted for the research is of a quantitative nature. 

The objective behind choosing a quantitative research method is due to the nature of data, 

the data that is used to fulfil the aim of the research is secondary data. Literature states 

that quantitative research is the type that focuses on procurement and analysis of data and 

it uses deductive logic (Rehman,2016; Bryman, 2012; Payne and Payne, 2004). The use 

of a quantitative research method will facilitate the computation of long-term horizon 

VaR. Collecting statistical and numerical data is the focal point of any quantitative 

analysis and in order to analyze and interpret data, the researchers make use of qualitative 

tools as well as statistical techniques (watkings and Gioia, 2015). 

This section of the study focuses on providing a thorough description of the steps 

involved in the process of building a VaR model along with computation of the VaR and 

lastly, testing the build VaR model for accuracy. 

4.2 PENSION SCHEME  

A defined benefit pension scheme is different from a regular or a defined contribution 

pension scheme in terms that the regular pension scheme has no pre-defined liability and 

the liability matches the asset. For instance, if an individual saves in a regular pension 

scheme and manages to save a million euro by the time he retires then after his retirement 

he receives the million euros, in simple words, the amount that has been saved is exactly 

what is received at the time of retirement. On the other hand, in the case of defined 

benefit pension scheme the pensioner knows that, let’s say, he will get 50% of his salary 

for the rest of his life which states that irrespective of the assets of the scheme the 

liabilities of the scheme are defined based on the final salary of the pensioner and how 

long he lives.       

The pension scheme referred to in the study is a defined benefit pension scheme and 

these pension schemes are final salary pension schemes, for instance, an individual works 

for the company and at their retirement, they get 50% of their final salary for their life or 

they get 2/3rd of their final salary for rest of their life so the company has liability and the 



 

22 

 

value of those liabilities and the duration of those liabilities may vary depending on the 

nature of the scheme. 

These schemes have notional liabilities that means they cannot physically be traded in the 

market but they are cashflows owed by the company of certain value and predefined 

duration behaving to all purposes like a zero-coupon bond with ascertained maturity in 

order to meet those liabilities, the company or the pension fund manager will have 

purchased several assets and in this study, those assets can are a mixture of bonds and 

equities and so to put it in an equation form it can be said that the net value of the scheme 

is the surplus or the deficit of the assets minus the liabilities.  

A company’s defined pension scheme is a function of market rates meaning that as the 

market rates change the value of the pension scheme changes. The pension scheme 

comprises of assets and liabilities. Both the assets and liabilities vary with the market 

rates. In the case of this study, the Pension scheme is equal to the assets minus liabilities. 

The study is based on the belief that the assets are owned by the scheme and it comprises 

of equities and bonds (Bunds in this case) whereas Liabilities are the benefits owed by 

the scheme and they are modeled as a set of cashflows which is simply the money that 

the scheme is required to payout. Therefore, the value of the liabilities is equal to:  

 

As seen above, CF1 is the first cashflow divided by 1 + interest rate ^ 1, then CF2 is the 

second cashflow divided by 1 + interest rate ^ 2, and so on until the last cashflow on the 

year n. The liabilities are modeled as a Zero-Coupon cashflow in the ‘n’ years’ time and 

n in this study is 12.5 years. The ‘r’ which is the discount rate to be used should be the 

yield on a suitable corporate bond. The present value of the liabilities is equal to the 

amount of the liabilities discounted at a reasonable interest rate and the reasonable 

interest rate that is used in industry is the Yield on a corporate Bond. In this study, the 

researcher approximates such a discount rate using a swap rate and a credit default swap 

index (CDSI). The study makes use of the history of the ‘ITRX EUR CDSI GEN 5Y 

Corp’ for the credit default swap index and ‘20y swap rate’ as the swap rates. The ITRX 

Europe CDS Index represents the 125 European investment-grade corporate issuers 

therefore it is approximately equal to the average credit spread in this index. The author’s 
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approach will be to model the discount yield for the pension liabilities as equal to the 

swap rate plus the ITRX. The pension liability discount yield will be the main risk factor 

meaning that changes in this particular risk factor will have a greater effect than any of 

the other risk factors.  

The value of the Pension Scheme is equal to the Net Present Value of the Assets less the 

Net Present Value of the Liabilities. For the purpose of the study, the initial value of the 

Pension Scheme is assumed to be just in surplus which means that the value of its assets 

exactly matches the value of its liabilities. The author makes the assumption that the 

pension scheme is fully funded from an IAS 19 valuation perspective in so far as the 

value of the assets is exactly matched by the value of the liabilities.             

4.3 DATA 

The data used for the purpose of this research is procured from the pension scheme of a 

large Irish Corporation. The data acquired is for the period of 12.5 years from January 

2007 to June 2020. The risk factors considered along with the sensitivities chosen of the 

hypothetical pension portfolio in this study are: 

1. The major risk factor that is Discount Yield reflected as the ITRX EUR CDSI GEN 

5Y Corp and 20y swap rate and the hypothetical sensitivity assigned to Discount 

yield is € 2,000,000. 

2. The Equity Prices reflected in the Morgan Stanley World Index (MSCI) as being a 

proxy and the hypothetical sensitivity assigned to Equity Prices are € 250,000,000. 

3. The Government Bond Yield reflected as Bund Yield that is the German Government 

Bond Yields and the hypothetical sensitivity assigned to Bund Yield is (- € 

1,500,000). 

4. The Inflation Rate reflected as ‘FWISEU55 Index’ and the hypothetical sensitivity 

assigned to the Inflation Rate is (- € 600,000). 

The sensitivities reflect the amount of change in the value of the pension scheme as a 

result of changes in market risk factors. The sensitivities selected by the researcher for 

the hypothetical pension portfolio are deemed to be reasonable and proportionate as these 

have been decided upon after an informal discussion with a risk manager from a large 

Irish corporation who is responsible for managing pension risk. The discussion involved 
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a series of open-ended questions designed to understand the practices in the industry with 

regard to modeling risk for capital attribution purposes.  

 
Figure 1: The data procured viewed as seen in the figure. 

 
Figure 2: The procured data refined for the purpose of the study for the period 2007 to 2020. 

4.4 AUTOCORRELATION  

This research for the purpose of VaR computation uses non-parametric bootstrapping 

wherein the monthly changes are required to be independent which if not true then serial 

correlation exists. If a serial correlation is identified, then there is a need to correct for it. 

The author aims to check for serial correlation. In the study, serial correlation is 

autocorrelation where the change in one month is correlated with changes in different 

months and the researcher tests for the same using R programming language. The test for 
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autocorrelation can be performed using the autocorrelation function ‘acf()’ in R and in 

this case giving reference of the data input from excel of the monthly change in the four 

risk factors – Discount yield, Equity prices, Bund yields, and Inflation rate. The R 

function for autocorrelation in the R console will look like – ‘acf(M)’ and ‘M’ is the 

matrix containing the market price returns. This function will generate the 

autocorrelograms and the charts that will be focused on are the ones representing the 

correlation of a given variable with itself at a certain lag. Lastly, the author does not 

intend to explicitly model or parameterize the autocorrelation but rather only intend to 

recognize if autocorrelation exists. 

4.5 BUILDING LONG-TERM HORIZON VAR MODEL 

4.5.1 Monte Carlo Simulation using non-parametric bootstrapping 

Sampling with replacement from historical data is an alternative bootstrapping method 

used in Monte Carlo simulation for the generation of random numbers from a 

hypothetical distribution (Jorion, 2007). The non – parametric method is regarded as yet 

another method of modeling the path of the financial time series.  

Formula for non – parametric model: 

    

In the above formula, the unknown smooth functions are m (-) and σ (-) and ɛt are the 

independently and identically distributed random variable (Valášková, Spuchľáková and 

Adamko, 2015). 

4.5.1.1. VAR COMPUTATION WITHOUT ANY FLOOR AND OPTIONS 

Method 1: Computing VaR in Excel using VBA 

1. The four factors that are considered for VaR computation are Equity prices, Discount 

yields, Bund yields, and Inflation rate.  

2. Equity prices available as values of the FTSE All-World Index are in USD and for the 

purpose of the study, the same are converted to Euro. The values of the FTSE All-

World Index are divided by the Euro-USD rate as on the given date to generate the 

equity prices in euro. Bund yields and inflation rate (iTraxx 5y - FWISEU55 Index) 

are considered as given.  
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3. Discount yields are calculated taking into consideration the value of ‘ITRX EUR 

CDSI GEN 5Y Corp’ and ‘20y swap rate’. The excel function used is ‘=D1+(B1/100)’ 

where D1 is the 20y swap rate and B1 is the ITRX EUR CDSI GEN 5Y Corp. 

4. Once the data is refined for the purpose of computation, the history of monthly 

changes in the equity price is generated by dividing the price in the current month by 

the price in the previous month minus one. For instance, the use excel function 

(=(D2/D1-1)) is made where D2 is say the value in the month of February 2007, and 

D1 is the value in the month of January 2007. This computes series of monthly 

percentage changes. 

5. Along with changes in equity prices, the computation of the history of changes in the 

discount yield, Bund yield, and the inflation rate is undertaken by deducting the value 

of the previous month from the current month and multiplying it by 100. For instance, 

the excel function (=(D2-D1*100)) is used where D2 is say the value in the month of 

February 2007, and D1 is the value in the month of January 2007. This computes 

series of monthly changes in the discount yield, Bund yield, and inflation rate. 

6. Now 161 instances of the monthly change in equity prices, bund yields, discount 

yields, and inflation rates are generated. 

7. The next step involves identifying the hypothetical values, or in other words, the 

hypothetical sensitivities are assigned to Equity prices, Bund yields, Discount yields, 

and Inflation rate. The hypothetical sensitivities are as follows: 

a. The hypothetical sensitivity assigned to the Discount yield is € 2,000,000. 

b. The hypothetical sensitivity assigned to Equity Prices is € 250,000,000.  

c. The hypothetical sensitivity assigned to Bund Yield is - € 1,500,000. 

d. The hypothetical sensitivity assigned to the Inflation Rate is - € 600,000. 

8. Next step involves building a hypothetical history of changes using bootstrapping 

method. 

9. The values are simulated for 12 months. The total instances of monthly changes that 

have been obtained are 161. So next is the simulation of random months from the 

given 161 months and to do this use of the excel function ‘=RANDBETWEEN 

(1,161)’ is made. This function randomly chooses month from 1 to 161 which is the 

index number assigned to months beginning from January 2007 to June 2020. 
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10. Once the 12 random month values are generated then using the ‘=VLOOKUP()’ 

function in excel where reference of the randomly generated month number is 

provided and using that month as reference excel looks up the corresponding monthly 

change values of the Discount yield changes, Equity market returns, Bund yield 

changes, and change in the inflation rate. 

 
Figure 3: The Values in the Row 2 are the randomly generated months and the Discount yield changes, Equity 
market returns, Bund yield changes, inflation rate are the values that are looked up based on the random 
month. 

11. Next, calculation of the overall change in value is performed and in order to do that 

the values of the Discount yield change, Equity market returns, Bund yield changes, 

change in inflation rate are multiplied with their respective sensitivities, and then add 

all together. In other words, say from the above picture we take the 1st month which is 

month number 132 and we calculate its change in value by ‘= Discount yield 

sensitivity * Discount yield change + Equity market sensitivity * Equity market 

return + Bund yield sensitivity * Bund yield change + Inflation rate sensitivity * 

Inflation rate’. In numeric term it is ‘=2000000*(-0.48)+250000000*(-0.0766)+(-

1500000)*(-17.3)+(-600000)*(-13.9)’ and that generates the final figure of 

14,173,434. The same process is repeated for all the 12 months. 

12. Once the computation of the values for all the 12 months is done, then the final and 

the total values are generated by summing all the 12 months computed values using 

excel function ‘Sum ()’. This will generate the annual equity return changes and the 

annual changes in the Discount yield, Bund yield, Inflation rate.  

13. Next, this process is repeated to have 100,000 simulations but doing this manually is 

slow and time-consuming so in order to overcome this shortcoming we make use of 

VBA. VBA enables automation of tasks that are repetitive in nature.  



 

28 

 

14. The following is this code that is used to run the program which is automated 

bootstrapping process for generating desired number of simulations:  

The first half of the program is providing the input which the researcher wishes to 

replicate for said number of times and the second half of the program instructs as to 

where the output is desired in terms of the cell destination.  

Once the VBA program is drafted, we then run the macro that brings up the input 

window that allows us to input the number of simulations that we wish to obtain. For the 

purpose of this study, we generate 100,000 simulations. A Snapshot of the input window 

that pops-up is provided in the appendix as appendix 1 and appendix 2. 

15. Now, 100,000 simulations of the future values of the portfolio or the changes in the 

values have been obtained. Next, using the 100,000 simulated value VaR can be 

Sub simulate () 

n = InputBox ("How many simulations do you want? ") 

For i = 1 To n 

    ActiveSheet.Calculate 

    dValue = ActiveSheet.Range ("delta_value").Value 

    dDiscYield = ActiveSheet.Range ("delta_discount_rate").Value 

    dEqValue = ActiveSheet.Range ("delta_equity_value ").Value 

    dBundYield = ActiveSheet.Range ("delta_bund_yield").Value 

    dInflation = ActiveSheet.Range("delta_inflation").Value 

     

    ActiveSheet.Range("ag1").Offset(i, 0).Value = dValue 

    ActiveSheet.Range("ah1").Offset(i, 0).Value = dDiscYield 

    ActiveSheet.Range("ai1").Offset(i, 0).Value = dEqValue 

    ActiveSheet.Range("aj1").Offset(i, 0).Value = dBundYield 

    ActiveSheet.Range("ak1").Offset(i, 0).Value = dInflation       

Next i 

End Sub 
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worked out. To obtain the VaR value, the ‘ =PERCENTILE(AG:AG,0.01)’ function 

in excel is used and the AG is reference provided of the column where the simulated 

final change in values have been obtained and 0.01 is the 1% significance level or the 

alpha at 99% confidence level. 

Method 2: Computing VaR in R  

1. The VaR computation is based on four factor approach that is the Discount yield, 

Equity prices, Bund yields, Inflation rates.   

2. Equity prices available as values of FTSE All World Index are in USD and for the 

purpose of study the same are converted to Euro. The values of FTSE All World 

Index are divided by the Euro-USD rate as on the given date to generate the equity 

prices in euro. Bund yields and inflation rate (iTraxx 5y - FWISEU55 Index) are 

considered as given. Discount yield are calculated taking into consideration the value 

of ‘ITRX EUR CDSI GEN 5Y Corp’ and ‘20y swap rate’. The excel function used is 

‘=D1+(B1/100)’ where D1 is the 20y swap rate and B1 is the ITRX EUR CDSI GEN 

5Y Corp. 

3. 161 instances of monthly data pertaining to equity prices, bund yields, discount yields 

and inflation rate have now been refined for the purpose of study and saved as an 

Excel file namely ‘MKT data’. 

4. Next, the work in RStudio begins where use of the function of ‘input data set from 

Excel’ to import the monthly change data file namely – MKT data that contains 162 

rows and 5 column when row are the heading and column 1 consist of the date. 

5. Next step involves writing the R-command in the R-Script window and the R-

command for computation of VaR for this research is done using the following steps:  

 
 
 
 
 
                                                                                                 

 
 

1. First step is laying out the sensitivities:  

   D1 is the discount yield sensitivity – 2,000,000.  

#Sensitivities 

D1 = 2e6  

D2 = 250e6  

D3 = -1.5e6  

D4 = -6e5  
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   D2 is the Equity delta position – 250,000,000.  

   D3 is the Bond sensitivity – (-1,500,000).  

   D4 is Inflation sensitivity – (-600,000). 

 
 
 
 
 
 
 

 
 
 
 
 

2. The total number of Simulation intended to be undertaken are 100,000 which are 

projected over 12 months. ‘Res = Vectors’ stores the results of the simulation. 

‘DY = vector()’, ‘EQ=vector()’,’BY=vector()’, ‘INF=vector()’ records the simulated 

changes in the Discount yield, Equity market, Bund yield and inflation expectation 

respectively. 

                    
 
 
 
 
 
 
 
 
 
 
 

3. Next is constructing the matrix ‘M’ containing market price returns which is a 

manner of reading in the data. In total 161 observations, so the matrix ‘M’ consists of 

161 rows and 4 column and into that the history of market price changes are put. The 

first column consists of the discount yield minus the previous discount yield * 100. 

The second column will contain the relative return in the equity markets and so it is 

new price over old price minus 1. The third column is going to be the new Bund yield 

numSims = 100000  

numMonths = 12  

res  = vector()  

DY = vector()  

EQ=vector()  

BY=vector()  

INF=vector()  

M =matrix(0,161,4)  

for(i in 1:161){ 

  M[i,1]=(mkt_data$Disc_Yield[i+1]-mkt_data$Disc_Yield[i])*100 

  M[i,2]=mkt_data$Eq_Mkt[i+1]/mkt_data$Eq_Mkt[i]-1 

  M[i,3]=(mkt_data$Bund_Yield[i+1]-mkt_data$Bund_Yield[i])*100 

  M[i,4]=(mkt_data$Infl_rate[i+1]-mkt_data$Infl_rate[i])*100 

} 
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minus the old Bund yield * 100. The last column is going to contain the new inflation 

rate minus the old inflation rate * 100. This process is repeated 100,000 times. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

4. Next step is simulating annual changes by bootstrapping the monthly returns for use 

in the VaR model. A factor matrix is constructed which is a matrix of the 4 factors 

consisting of 12 rows and 4 columns. R-command is written such that it randomly 

chooses one month out of the 161 months recorded and performs the same 12 times 

therefore written as ‘size=12’. ‘Replace=True’ is command instructing to undertake 

the sampling with replacements. Further, based on the months it selects the various 

corresponding values of the factors which is a version of R like the Excel’s 

VLOOKUP function.  

DY[i] = sum(factorMatrix[,1]) It is the vector containing the 

simulated Discount Yield 

change 

EQ[i]= sum(factorMatrix[,2]) It is the vector containing the 

simulated Equity Returns 

for (i in 1:numSims){ 

  factorMatrix =matrix(0,numMonths,4) 

  chosenMonths = -sample(x=1:161,size =12,replace = TRUE) 

  for (j in 1:numMonths){ 

    factorMatrix[j,1]=M[chosenMonths[j],1] 

    factorMatrix[j,2]=M[chosenMonths[j],2] 

    factorMatrix[j,3]=M[chosenMonths[j],3] 

    factorMatrix[j,4]=M[chosenMonths[j],4] 

  } 

DY[i] = sum(factorMatrix[,1]) 

EQ[i]= sum(factorMatrix[,2]) 

BY[i]= sum(factorMatrix[,3]) 

INF[i]=sum(factorMatrix[,4]) 

res[i]=D1*DY[i]+D2*EQ[i]+D3*BY[i]+D4*INF[i] 

} 
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BY[i]= sum(factorMatrix[,3]) It is the vector containing the 

simulated Bund Yield change 

INF[i]=sum(factorMatrix[,4]) It is the vector containing the 

simulated Inflation rate 

change 

 

 

res[i]=D1*DY[i]+D2*EQ[i]+D3*BY[i]+D4*INF[i] 

It gives out the result that is 

simulated change in the value 

of the pension scheme 

Discount yield sensitivity * 

Simulated Discount yield 

change + Equity market 

sensitivity * Simulated Equity 

market return + Bund yield 

sensitivity * Simulated Bund 

yield change + Inflation rate 

sensitivity * Simulated 

Inflation rate change 

 
 
 
                    
 

 

 

5. To compute the VaR at 99% confidence level the given R-command is ’print(cat('The 

VaR is €',quantile(res,0.01)/1e6, "million.\n")) and additionally, R-command  to 

generate the histogram of the simulate change in values is written as 

‘hist(res/1e6,100, main = 'Distribution of simulated changes in value', xlab = 'Change 

in value of pension scheme (in million)')’. 

6. Lastly the block run of the R-command is undertaken by selecting the entire text in 

the R-Script window and run the program by click on “Run” option. The results are 

obtained in the Console window and the histogram is generated into the window that 

is to the right of the console window.  

hist(res/1e6,100, main = 'Distribution of simulated changes in 

value', xlab = 'Change in value of pension scheme (in 

million)')print(cat('The VaR is €',quantile(res,0.01)/1e6, 

"million.\n")) 
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4.5.1.2. VAR COMPUTATION WHEN INCORPORATING THE FLOOR AND OPTIONS 

The author expands the VaR model to take into account features like options that are 

commonly used in equity portfolio management and along with this author also includes 

#Sensitivities 
D1 = 2e6  
D2 = 250e6  
D3 = -1.5e6  
D4 = -6e5  

numSims = 100000  
numMonths = 12  
res  = vector()  
DY = vector()  
EQ=vector()  
BY=vector()  
INF=vector()  

M =matrix(0,161,4)  
for(i in 1:161){ 
  M[i,1]=(mkt_data$Disc_Yield[i+1]-mkt_data$Disc_Yield[i])*100 
  M[i,2]=mkt_data$Eq_Mkt[i+1]/mkt_data$Eq_Mkt[i]-1 
  M[i,3]=(mkt_data$Bund_Yield[i+1]-mkt_data$Bund_Yield[i])*100 
  M[i,4]=(mkt_data$Infl_rate[i+1]-mkt_data$Infl_rate[i])*100 
} 
for (i in 1:numSims){ 
  factorMatrix =matrix(0,numMonths,4) 
  chosenMonths = sample(x=1:161,size =12,replace = TRUE) 
  for (j in 1:numMonths){ 
    factorMatrix[j,1]=M[chosenMonths[j],1] 
    factorMatrix[j,2]=M[chosenMonths[j],2] 
    factorMatrix[j,3]=M[chosenMonths[j],3] 
    factorMatrix[j,4]=M[chosenMonths[j],4] 
  } 
  DY[i] = sum(factorMatrix[,1]) 
  EQ[i]= sum(factorMatrix[,2]) 
  BY[i]= sum(factorMatrix[,3]) 
  INF[i]=sum(factorMatrix[,4]) 
  res[i]=D1*DY[i]+D2*EQ[i]+D3*BY[i]+D4*INF[i]  
} 
hist(res/1e6,100, main = 'Distribution of simulated changes in value', xlab = 'Change in 

value of pension scheme (in million)')print(cat('The VaR is €',quantile(res,0.01)/1e6, 

"million.\n")) 
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effective floors on the discount rate and intends to restrict the dynamics of the discount 

rate so that it does not fall below the specified floor.  

The floor of -200 basis points has been incorporated in order to protect the discount yield 

that is applied to discount the liabilities in the Pension scheme from fall below the 

specified floor. It is an effective method of ensuring that the simulated discount rate 

remains at -200 basis points or above. A floor of -200 basis points means that if the 

simulated discount yields are less than -200 basis points then the simulated discount yield 

is equal to -200 basis points or else the simulated discount yield is unaltered.  

The author incorporates options in the study because this particular research addresses 

not only an academic problem but also an industrial problem. In reality, big financial 

corporations do include options and thereby researcher integrates this aspect in the study. 

The research incorporates Put options for equities which are Put options with a strike 

price equal to 75% of the prevailing market. This means that the minimum value for the 

stock market in the research’s simulations is 75% which reflects that it can never be 

below 75% and it is similar to incorporating a floor. If the simulated change in equity 

market return is less than -25% then the simulated equity market return equals to -25% or 

else the simulated equity market return remains unaltered.   

Ultimately, the author aims at analyzing the influence on the VaR value with the 

inclusion of floor and options. 

Method 1: Computing VaR in Excel using VBA 

1. The computation process remains the same till step 11 as seen in VaR computation 

without floor and options. The only change that is made, as seen in the table below, is 

to the ‘Simulated Annual Change’ column which is initially the sum total of the 

respective rows of Discount Yield and Equity Market return. To incorporate the floor 

of -200 basis points to the discount yield, the formulae entered in Excel is 

‘=MAX(R3,SUM(O14:Z14))’ where R3 is the cell with the value of -200 basis points 

and the sum of ‘O14:Z14’ is the sum total of the simulated 12-month value of the 

Discount Yield change. This function gives Excel command to select the greater 

value between the total of 12 simulated Discount Yield value or -200 basis points.      

2. Along with the floor in the Discount yield, the author also incorporates a put option 

with a strike price of 75% of the current market price. So, equity value is simulated 
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using the excel function ‘=MAX(SUM(O15:Z15),R4-1)’.The future equity price is 

the greater of the simulated stock price or the -0.25.  

 
Figure 4: Simulated Annual change Value  

3. Next, this process is repeated to generate 100,000 simulation using VBA. The 

following is this code that is used to run the program which is automated 

bootstrapping process for generating desired number of simulations:  

Sub simulate () 

n = InputBox ("How many simulations do you want? ") 

For i = 1 To n 

    ActiveSheet.Calculate 

    dValue = ActiveSheet.Range ("delta_value").Value 

    dDiscYield = ActiveSheet.Range ("delta_discount_rate").Value 

    dEqValue = ActiveSheet.Range ("delta_equity_value ").Value 

    dBundYield = ActiveSheet.Range ("delta_bund_yield").Value 

    dInflation = ActiveSheet.Range("delta_inflation").Value 

     

    ActiveSheet.Range("ag1").Offset(i, 0).Value = dValue 

    ActiveSheet.Range("ah1").Offset(i, 0).Value = dDiscYield 

    ActiveSheet.Range("ai1").Offset(i, 0).Value = dEqValue 

    ActiveSheet.Range("aj1").Offset(i, 0).Value = dBundYield 

    ActiveSheet.Range("ak1").Offset(i, 0).Value = dInflation       

Next i 

End Sub 
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The first half of the program is providing the input which the researcher wishes to 

replicate for said number of times and the second half of the program gives instruction as 

to where the output is desired in terms of the cell destination.  

Once the VBA program is drafted, then the macro is run which brings up the input 

window that allows the author to input the number of simulation that are wished to 

obtain. For the purpose of this study 100,000 simulation are generate. 

Now, 100,000 simulations of the future values of portfolio or the changes in the values 

have been obtained. Next, using the 100,000 simulated value VaR can be worked out. To 

obtain the VaR value, the ‘ =PERCENTILE(AG:AG,0.01)’ function in excel is used and 

the AG is reference provided of the column where the simulated final change in values 

have been obtained and 0.01 is the 1% significance level or the alpha at 99% confidence 

level. 



 

37 

 

Method 2: Computing VaR in R The overall R-command remains the same with slight 

alterations which are highlighted 

 

#Sensitivities 
D1 = 2e6  
D2 = 250e6  
D3 = -1.5e6  
D4 = -6e5  
floor = -200  
strike = 0.75 
 
numSims = 100000  
numMonths = 12  
res  = vector()  
DY = vector() 
EQ=vector()  
BY=vector()  
INF=vector()   
 
M =matrix(0,161,4)  
for(i in 1:161){ 
  M[i,1]=(mkt_data$Disc_Yield[i+1]-mkt_data$Disc_Yield[i])*100 
  M[i,2]=mkt_data$Eq_Mkt[i+1]/mkt_data$Eq_Mkt[i]-1 
  M[i,3]=(mkt_data$Bund_Yield[i+1]-mkt_data$Bund_Yield[i])*100 
  M[i,4]=(mkt_data$Infl_rate[i+1]-mkt_data$Infl_rate[i])*100 
} 
for (i in 1:numSims){ 
  factorMatrix =matrix(0,numMonths,4) 
  chosenMonths = sample(x=1:161,size =12,replace = TRUE) 
  for (j in 1:numMonths){ 
    factorMatrix[j,1]=M[chosenMonths[j],1] 
    factorMatrix[j,2]=M[chosenMonths[j],2] 
    factorMatrix[j,3]=M[chosenMonths[j],3] 
    factorMatrix[j,4]=M[chosenMonths[j],4] 
  } 
  DY[i] = max(sum(factorMatrix[,1]),floor) 
  EQ[i]= max(sum(factorMatrix[,2]),strike-1) 
  BY[i]= sum(factorMatrix[,3]) 
  INF[i]=sum(factorMatrix[,4]) 
  res[i]=D1*DY[i]+D2*EQ[i]+D3*BY[i]+D4*INF[i] 
} 
hist(res/1e6,100, main = 'Distribution of simulated changes in value', xlab = 'Change in 
value of pension scheme (in million)') 
print(cat('The VaR is €',quantile(res,0.01)/1e6, "million.\n")) 
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4.6 BACKTESTING THE VAR MODEL  

The author has successfully constructed the VaR model and therefore the next step is to 

test the VaR model and in order to do that author uses a backtest type approach. 

Backtesting is a terminology used by the industry to define a method used for testing the 

risk models' accuracy (Alexander, 2008). Backtesting is a model validation tool. 

Backtesting is undertaken for both the VaR model that has been constructed – VaR model 

without Floor and options and VaR model with Floor and options. 2 methods of 

backtesting are adopted for determining the effectiveness of both the model. The first 

method being used is the Z – test and the second being the Kupiec test. 

Assumptions for the Backtest model: 

The backtest model that is built makes to underlying assumptions: 

1. The risk factors are independent through time. 

The author has already tested for this assumption by testing if there exists any serial 

autocorrelation among the monthly changes in the returns of risk factors. The results 

of the test prove there exists no serial correlation. 

2. The variables are independent identically distributed random variables, in order 

words, variables are constant through time. To check for the fulfilment of the 

assumption the author conducts an F-test in Microsoft Excel to determine if the 

variances are constant with time or not. 

F –Test: Test to determine if variances are constant through time. 

The following steps are involved in performing the F-test: 

1. The data used for computation are the monthly changes of the risk factor which if 161 

observations for each risk factor. 

2. The use of data analysis function is made for computation and the test is performed at 

a standard confidence level of 95%. The data for each risk factor is divided into 2 for 

the purpose of providing the data range and thereby data range doe each factor is 79 

and 78 which sums up to 161. 

The formula for computation of F-test:  F = s2
1 / s

2
2 

3. This process is repeated for each risk factor.  
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The hypothesis that is being tested is: 

H0: σ
2
1 = σ2

2 

Ha: σ2
1 ≠ σ2

2  

Lastly, the F value is computed and compared to the F critical value in order to determine 

if the variables are constant or not. 

4.6.1 Backtesting the VaR model in Excel  

4.6.1.1. Z-Test 

Backtesting VaR model in Excel using VBA – No Floor or Option 

1. The first 12 step remains the same performed in the model building for VaR 

computation without floor and option. The initial steps remain the same because for 

the purpose of backtesting as well the process of bootstrapping is undertaken. 

2. The next step is formulating to compute the simulated hypothetical P&L. In any given 

cell, we input the value from where the computation is deemed desirable to begin. In 

this study the total number of instances are 161 and computation, in this case, begins 

from 61 corresponding to the year 2012 onwards. From here onwards an expanding 

model is creating where for instance, for the first computation the random numbers 

will be selected from the first 60 values and for the next computation from the first 61 

values and this goes on expanding until it reaches 161. Also, the model that is built 

enables to project through time more easily rather than making an assumption about 

the square root of time. 

3. Next, Program is written in VBA as seen in appendix 5 so as to repeat the process for 

n time. The program gives input of the number of simulation to be considered for 

computing the VaR values and the Simulated P&L which is 10,000 in this study. The 

program inputs for truncated VaR for the purpose of backtesting to be computed at 3 

different confidence levels – 95%, 97.5%, and 99%. The code provides the reference 

of the destination cell where the output is desired. 

4. Once the output has been derived the next step involves finding the number of 

exceedances in the obtained result. The use of an excel function of ‘if’ analysis is 

made and the formula looks like ‘IF(C9<D9,1,0)’ where C9 is the hypothetical P&L 

value derived and D9 is the respective VaR value. This is done 3 time to compute the 
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exceedances of 95% VaR, 97.% VaR and 99% VaR respectively. The results will be 

obtained in 0 and 1 where 1 is the number of time VaR exceeds the hypothetical 

P&L. The sum of 1 is the observes exceedances. 

5. Next, the 3 standard deviation values are computed for VaR at 3 different confidence 

levels. The last step, involves computing the Z value using the following formula: 

 

In the above formula: X is the observed exceedances 

                                   µ is the expected exceedances 

                                   σ is the standard deviation 

The hypothesis being test is: 

H0: Number of observed exceedance = Number of expected exceedance 

Ha: Number of observed exceedance ≠ Number of expected exceedance 

6. Lastly, the Z value is computed and compared to the Z critical value in order to 

determine where the model has passed or failed the backtest. 

Backtesting VaR model in Excel using VBA – With Floor on discount yield and Put 

Option to equity price 

1. The first 2 steps remain the same as performed in the model building for VaR 

computation with floor and option. The initial steps remain the same because for the 

purpose of backtesting as well the process of bootstrapping is undertaken and the only 

difference being from the steps above in the inclusion of effective discount yield on 

the floor and put option to equity prices. 

2. The same steps from 2 to 6 are implemented as applied for the backtesting VaR 

model without floor and option.  

The hypothesis remains:  

H0: Number of observed exceedance = Number of expected exceedance 

Ha: Number of observed exceedance ≠ Number of expected exceedance 

The results determine whether or not the model passes the backtest 
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4.6.1.2. Kupiec Test 

Kupiec test - Backtesting VaR model in Excel using VBA – No Floor or Option 

1. The first 5 steps remain the same as in the Z-test backtest model.    

2. The next step involves computing the Kupiec statistic using the following formula: 

 

In the above formula:  obs is the observed proportion of the exceedances 

                                    exp is the expected proportion of the exceedances 

                                   n is the sample size of the backtest 

                                   n1 is the observed number of exceedances 

                                   n0 is n - n1 

The hypothesis being test is: 

H0: proportion of observed exceedance = proportion of expected exceedance 

Ha: proportion of observed exceedance ≠ proportion of expected exceedance 

3. The confidence level of the VaR model tested are 95% VaR, 97.5% VaR, and 99% 

VaR and all the 3 tests at Kupiec confidence level of 99%. 

4. Lastly, the VBA program is drafted for computation of the Kupiec statistic and 

compared to the Kupiec critical value which is computed using ‘=CHIINV’ function 

in excel, in order to determine where the model has passed or failed the backtest. 

Kupiec test: Backtesting VaR model in Excel using VBA – With Floor on discount 

yield and Put Option to equity price 

1. The first 2 steps remain the same as performed in the model building for VaR 

computation with floor and option. The initial steps remain the same because for the 

purpose of backtesting as well the process of bootstrapping is undertaken and the only 

difference being from the steps above in the inclusion of effective discount yield on 

the floor and put option to equity prices. 

2. The same steps from 1 to 4 are implemented as applied for the Kupiec test - 

backtesting VaR model without floor and option.  

The hypothesis remains:  

H0: proportion of observed exceedance = proportion of expected exceedance 
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Ha: proportion of observed exceedance ≠ proportion of expected exceedance 

The results determine whether or not the model passes the backtest. 

4.6.2 Backtesting the VaR model in RStudio. 

The Author has drafted 2 R-commands as seen in appendix 6 and 7: first, performs the Z-

test along with the Kupiec test in the same program without incorporating any floor or 

option and the second, performs the Z-test along with the Kupiec test in the same 

program while incorporating floor on discount yield of -200 basis points and Put option 

with strike of 75% to the equity prices. 

An additional functionality is reflected in R-command which is of Seeding which in 

simple words means that every time the program is run the use of same random numbers 

is made and due to which the output is more consistent. 

The hypothesis remains the same as stated before: 

For Z-test: 

The hypothesis being test is: 

H0: Number of observed exceedance = Number of expected exceedance 

Ha: Number of observed exceedance ≠ Number of expected exceedance 

For Kupiec test: 

H0: proportion of observed exceedance = proportion of expected exceedance 

Ha: proportion of observed exceedance ≠ proportion of expected exceedance 

The respective confidence levels remain the same as used in the computations performed 

in excel. 

The results of the respective test will reflect if the backtest model has failed or passed. 
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5 FINDINGS 

This Section of the research intends to state and analyzing the results. The findings are 

presented in a multi-segment approach so as to facilitate simplified presentation and 

reading of results. The author analyses the results obtained from the test of 

autocorrelation which was performed in RStudio. Next, the results obtained by running 

the VaR model that is constructed in Microsoft Excel and RStudio, both with and without 

Put options and floor, are discussed. Then, the results of the F-test which is conducted to 

test if the variances are constant through time or not and ultimately, to determine if the 

assumptions of backtest models are fulfilled or not. Lastly, the results of the backtest: Z-

Test and Kupiec Test obtained through Microsoft Excel and RStudio are analyzed. 

5.1 AUTOCORRELATION 

 
Figure 5: Autocorrelograms generated in RStudio depicting autocorrelation of the risk factors. 
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One of the possible criticism of the VaR model that is constructed could be that the 

monthly changes are not independent which if true, it means that there exists serial 

correlation and we need to be able to correct for it. The above-seen figure is the output 

derived in R when the autocorrelation function is run. In the figure, the series 1 reflects 

the history of discount yield changes, series 2 reflects the history of equity price changes, 

series 3 reflects the history of bund yield changes and series 4 reflects the history of 

inflation rate changes. In the given figure, the focus remains on the diagonals from left to 

right because the author aims to know the correlation of a given variable with itself at a 

certain lag.  

In all the 4 autocorrelograms it is noted that at 0 lag all the four variables have a 

correlation with itself of 100% which is as expected because any given variable will tend 

to be 100% correlated with itself. But it is seen, in case of all 4 variables, that with the 

incorporation of even a 1-day lag the autocorrelation coefficient somewhat stays with the 

dotted blue lines which means that the autocorrelation is not significant. In series 3 which 

is the history of bund yield changes they are a slight outliner at lag 6 and in the case of 

series 4 that is a history of inflation rate change at lag 13 there is a slight crossing of the 

blue line. Though overall none of the variables have a significant level of autocorrelation. 

Because there is no serial autocorrelation, the author can state that change in one variable 

on a given day is not correlated to the change in another variable on some other given 

day. To conclude, it can be said that as there exists no significant autocorrelation and 

therefore the approach adopted by the author of simulating with replacement is valid. 

5.2 MODEL BUILDING: MONTE CARLO SIMULATION USING NON-PARAMETRIC 

BOOTSTRAPPING 

The scope of the study is to identify the potential change in the value of the pension 

scheme and in order to do that author has effectively built a VaR model based on the 

steps discussed in the preceding chapter. The constructed model simulates the potential 

change in the value of a pension scheme for the purposes of capital attribution in a 

financial institution.  
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The model computes the VaR value which is the estimated change in the value of the 

pension scheme and likewise, the pension scheme will lose the said amount of money. An 

important aspect of pension scheme for any given financial institution is that even if the 

pension scheme is in surplus it is not deemed to contribute to the capital of the financial 

institution whereas if there is pension scheme with deficit then that will directly have 

implications on the capital. 

As stated earlier, Author has made a fair assumption that the pension scheme is fully 

funded from an IAS 19 valuation perspective in so far as the value of the assets are 

exactly matched by the value of the liabilities. There is no loss of generality in the made 

assumption, which means, for instance if the initial value of the pension scheme was zero 

then the model stands valid, secondly if the initial value of the pension scheme is € -

100,000,000 still the model stand valid and lastly, if the initial value of the pension 

scheme is €100,000,000 the model still has validity. 

5.2.1 VaR model built in Excel 
Comparison: VaR computation without any Floor and Put options v/s VaR 

computation with Floor and Put options. 
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A. CHANGE IN VALUE OF PENSION SCHEME 

• The VaR model built without floor and put option simulates the change in the value 

of the pension scheme to be € 234,566,527 and that is the amount of money that the 

pension scheme will lose at 99% confidence level. Whereas, the VaR model 

constructed with incorporation of the effective floor to the discount yield and Put 

option to the equity price simulates the change in the value of the pension scheme to 

be € 229,504,947 and that is the amount of money that the pension scheme will lose 

at 99% confidence level. The VaR value falls because the floor on discount yields 

and the put option on Equity prices restrict it from falling. 

• The Histograms seen below are constructed in Microsoft Excel which shows the 

distribution of the potential changes and the VaR being measure and presented is € 

234,566,527 and € 229,504,947 in figure 6 and in figure 7 respectively.   

 
Figure 6: Histogram constructed in Microsoft Excel depicting the simulated change in the value of the 
               pension scheme. 
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Figure 7 : Histogram constructed in Microsoft Excel depicting the simulated change in the value of the 
               pension scheme with incorporation of floor and put option. 

B. CHANGE IN DISCOUNT YIELDS 

 
Figure 8: Histogram depicting the simulated change in the discount yield without floor. 

The two given figures show the changes in the distribution of the discount yield with and 

without floor. In the above figure, it is noted that discount rate is not restricted from 

falling as there is no floor applied to the discount yield and thereby unrestrictedly the 

discount rate falls to -321.13 basis points. On contrary the figure below reflects 

bunching on the left edge, which is because, by apply floor of -200 basis points on the 



 

48 

 

discount yield the author restricts the discount yield from falling below -200 basis 

points. 

 
Figure 9: Histogram depicting the simulated change in the discount yield with floor of -200 basis points. 

C. CHANGE IN EQUITY PRICES 

 
Figure 10: Histogram depicting the simulated change in the equity price without Put option . 

The two given figures show the changes in the distribution of the equity price with and 

without put option. In the above figure, it is noted that no put option has been 

incorporate to the equity price. Whereas the figure given below reflects bunching on the 

left edge which is around 25% and the same is because the put option with strike of 75% 

has been applied which does not allow the equity price to fall below 25%.  



 

49 

 

 
Figure 11: Histogram depicting the simulated change in the equity price with Put option of 75%. 

D. CHANGE IN BUND YIELDS AND CHANGE IN INFLATION RATE 

The figures below show that there is almost no change in the distribution of the risk 

factors that is the Bund yield and the Inflation rate when floor is incorporated in the 

pension discount yield and Put option is embedded to the Equity. 

 
Figure12: Histograms constructed in Microsoft Excel showcasing the simulated change in the Bund yields. 



 

50 

 

 
Figure 13: Histogram constructed in Microsoft Excel showcasing the simulated change in the Inflation rate. 
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5.2.2. VaR Model Building in RStudio 

COMPARISON: VAR COMPUTATION WITHOUT ANY FLOOR AND PUT OPTIONS V/S VAR 
                             COMPUTATION WITH FLOOR AND PUT OPTIONS. 

A. CHANGE IN VALUE OF PENSION SCHEME 

• The VaR model built without floor and put option simulates the change in the value 

of the pension scheme to be € 234.3291 million and that is the amount of money that 

the pension scheme will lose at 99% confidence level. Whereas, the VaR model 

constructed with incorporation of the effective floor to the discount yield and Put 

option to the equity price simulates the change in the value of the pension scheme to 

be € 229.4298 and that is the amount of money that the pension scheme will lose at 

99% confidence level. The VaR value falls because the floor on discount yields and 

the put option on Equity prices restrict it from falling. 

• The Histograms seen below are constructed in RStudio that shows the distribution of 

the potential changes and the VaR being measure and presented is € 234,566,527 

and € 229,504,947 in figure 14 and in figure 15 respectively. 

 
Figure 14: Histogram constructed in RStudio depicting the simulated change in the value of the pension scheme. 
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Figure  15: Histogram constructed in RStudio depicting the distribution of simulated change in the value of the 
               pension scheme with incorporation of floor and put option. 
 

B. CHANGE IN DISCOUNT YIELDS 

 
Figure 16: Histogram depicting the distribution of simulated change in the discount yield without floor. 
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The two given figures show the changes in the distribution of the discount yield with and 

without floor. In the above figure, it is noted that discount rate is not restricted from 

falling as there is no floor applied to the discount yield and thereby unrestrictedly the 

discount rate falls to -321.13 basis points. On contrary the figure below reflects 

bunching on the left edge, which is because, by apply floor of -200 basis points on the 

discount yield the author restricts the discount yield from falling below -200 basis 

points. 

 
Figure 17: Histogram constructed in RStudio depicting the simulated change in the discount yield with floor of -
200 basis points. 
 

C. C HANGE IN EQUITY PRICES 
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Figure 18: Histogram depicting the simulated change in the equity price without Put option . 

The two given figures show the changes in the distribution of the equity price with and 

without put option. In the above figure, it is noted that no put option has been 

incorporate to the equity price. Whereas the figure given below reflects bunching on the 

left edge which is around 25% and the same is because the put option with strike of 75% 

has been applied which does not allow the equity price to fall below 25%.  

 
Figure 19: Histogram depicting the simulated change in the equity price with Put option having strike of 75%. 
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D. CHANGE IN BUND YIELDS  

The figures below show that there is almost no change in the distribution of the Bund 

yield when floor is incorporated in the pension discount yield and Put option is 

embedded to the Equity. 

 
Figure 20: Histogram constructed in RStudio showcasing the simulated change in the Bund yields. 

 
Figure 21: Histogram constructed in RStudio showcasing the simulated change in the Bund yields. 
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E. CHANGE IN INFLATION RATE 

The figures below show that there is almost no change in the distribution of the Inflation 

rate when floor is incorporated in the pension discount yield and Put option is embedded 

to the Equity. 

 
Figure 22: Histogram showcasing the simulated change in the Inflation rate without floor or put option. 

 
Figure 23: Histogram showcasing the simulated change in the Inflation rate with floor and option. 

5.3 BACKTESTING 

Results of F-test: 

The hypothesis that is being tested is: 

H0: σ
2
1 = σ2

2 
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Ha: σ2
1 ≠ σ2

2  

α = 5% 

F Value F Critical one-tail value Result 

1.35264 1.448438 Fail to reject the null hypothesis 

1.20559 1.448438 Fail to reject the null hypothesis 

2.35626 1.448438 Reject the null hypothesis 

1.73568 1.448438 Reject the null hypothesis 

Table: 1 – F-test result    

Based on the above computations it can be concluded that not all the variances are 

statistically constant through time based on the F-test results.  

The results above show a potential weakness of the backtest model. The backtesting 

model implicitly assumes that the risk factors are independent identically distributed 

random variables and the same form the basis on which the use of the square root of time 

can be made. Now, the variables are proven to be independent but not identically 

distributed because they vary through time resulting from the feature of the financial time 

series. 

The VaR model  built by the author is a 1-year VaR model and the same is produced at a 

99% confidence level which means the expected waiting time to observe an exceedance 

is a 100 year which is quite unreasonable and not practical so instead the researcher has 

opted to use a semi-heuristic approach to backtesting whereby the author backtests a 

related model and the related model opted uses the one month VaR which is consistent 

with the bootstrapping model.  

Backtesting in Microsoft Excel: 

Results of Z-test: 

The hypothesis that is being tested is: 

H0: Number of observed exceedance = Number of expected exceedance 

Ha: Number of observed exceedance ≠ Number of expected exceedance 
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Backtesting  - confidence level 95% 97.5% 99%

Observed Exceedences 2 1 1

expected 5 2.5 1

sd 2.18 1.56 0.99

z Value -1.37649 -0.96077 0

z Critical Value 1.65 1.96 2.33

Incorporating Floor and Put Option

Results of Z-Test in Microsoft Excel

Table 2: Z-test result 

 

Backtesting  - confidence level 95% 97.5% 99%

Observed Exceedences 2 1 1

expected 5 2.5 1

sd 2.18 1.56 0.99

z Value -1.37649 -0.96077 0

z Critical Value 1.65 1.96 2.33

Without Incorporating Floor and Put Option

Results of Z-Test in Microsoft Excel

 Table 3: Z-test result 

Based on the above results it can be concluded that the model passes the backtest because 

in all the cases the z value is less than the z critical value. Thereby, we fail to reject the 

null hypothesis 

Z-test Backtesting results plotted - When incorporating floor and option: 

 

Figure 24: Backtesting – 95% Confidence level – With floor and option 
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Figure 25: Backtesting – 97.5% Confidence level – With floor and option 

 

Figure 26: Backtesting – 99% Confidence level – With floor and option 

Z-test Backtesting results plotted - without floor and option: 

  

Figure 27: Backtesting – 95% Confidence level – Without floor and option 
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Figure 28: Backtesting – 97.5% Confidence level – Without floor and option 

 

Figure 29: Backtesting – 99% Confidence level – Without floor and option 

Results of Kupiec test: 

The hypothesis that is being tested is: 

H0: proportion of observed exceedance = proportion of expected exceedance 

Ha: proportion of observed exceedance ≠ proportion of expected exceedance  
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VaR - Confidence level 95% 97.5% 99%

Backtesting  - confidence level 99% 99% 99%

Kupiec Statistic 2.428592 1.190378 0

Kupiec Critical Value 6.634897 6.634897 6.634897

Incorporating Floor and Put Option

Results of Kupiec Test in Microsoft Excel

 Table 4: Kupiec test result 

VaR - Confidence level 95% 97.5% 99%

Backtesting  - confidence level 99% 99% 99%

Kupiec Statistic 0.976859 1.190378 0

Kupiec Critical Value 6.634897 6.634897 6.634897

Without Incorporating Floor and Put Option

Results of Kupiec in Microsoft Excel

 Table 5: Kupiec test result 

 

Based on the above results it can be concluded that the model is passing the backtest as in 

all the cases the Kupiec statistic is less than the Kupiec critical value. Thereby, we fail to 

reject the null hypothesis. 

Backtesting in RStudio: 

The hypothesis that is being tested in Z-test is: 

H0: Number of observed exceedance = Number of expected exceedance 

      Ha: Number of observed exceedance ≠ Number of expected exceedance 

The hypothesis that is being tested in Kupiec test is: 

H0: proportion of observed exceedance = proportion of expected exceedance 

Ha: proportion of observed exceedance ≠ proportion of expected exceedance  

The confidence level of respective test remains the same as applied while computing the 

tests in Microsoft Excel. 

The results of the tests: 
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 VaR_Model        Statistic      Value Critical Values 

   95% VaR  Num Exceedences    2.0000000 5

   95% VaR      Z Statistic -1.3764944 1.65

   95% VaR Kupiec Statistic  2.4285921 6.634897

 97.5% VaR  Num Exceedences    1.0000000 2.5

 97.5% VaR      Z Statistic -0.9607689 1.96

 97.5% VaR Kupiec Statistic  1.1903780 6.634897

   99% VaR  Num Exceedences    1.0000000 1

   99% VaR      Z Statistic -1.3764944 2.33

   99% VaR Kupiec Statistic  2.4285921 6.634897

Incorporating Floor and Put Option

Results of Z-Test and Kupiec test in RStudio

 Table 6: Backtest result in RStudio 

 

 

 

 

 

 

 

Table 7: Backtest result in RStudio 

The results as seen from the table above state that in all the cases the critical value is 

greater than the respective Z value or the Kupiec statistic value which means that the 

model has passed the backtest and in all cases researcher fails to reject the null 

hypothesis. 

To conclude, the author has performed backtesting of a related model and the related 

model is the one-month VaR model which is consistent with the bootstrapping method in 

modelling. It is valid to extrapolate the backtest of one-month model to a one-year model 

if the risk factors are i.i.d random variables but  it is untrue in case of this study. 

However, though the risk factors are  not i.i.d random variables still the fact remains that 

the related VaR model did pass its backtest and therefore is a valid and accurate model.  

 VaR_Model        Statistic      Value Critical Values 

1   95% VaR  Num Exceedences    1.0000000 5

2   95% VaR      Z Statistic -1.8353259 1.65

3   95% VaR Kupiec Statistic  4.9472300 6.634897

4 97.5% VaR  Num Exceedences    1.0000000 2.5

5 97.5% VaR      Z Statistic -0.9607689 1.96

6 97.5% VaR Kupiec Statistic  1.1903780 6.634897

7   99% VaR  Num Exceedences    1.0000000 1

8   99% VaR      Z Statistic -1.8353259 2.33

9   99% VaR Kupiec Statistic  4.9472300 6.634897

Results of Z-Test and Kupiec test in RStudio

Without Incorporating Floor and Put Option
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Figure 30: Backtest Plot generated in RStudio where the line depicts the VaR and set of points representing the 

hypothetical P&L of the portfolio. (without Floor and Put options). 
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Figure 31: Backtest Plot generated in RStudio where the line depicts the VaR and set of points representing the 
hypothetical P&L of the portfolio. (with Floor and Put options). 
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6 DISCUSSION 

The results obtained from the constructed VaR model in form of the potential change in 

the value of the pension scheme seem quite reasonable and the model used for 

computation has been effectively backtested and because the model did pass the accuracy 

test, it can be said that the model is valid. Although the study has accomplished the aim 

that was put out, which was to attempt at modeling and backtesting the Value at Risk 

model with a longer time horizon and high confidence level, there exist a range of 

concerns which have to be addressed so as to recognize the shortcomings around the 

model constructed and backtested. This section views the limitation of the model as well 

as the scope for the research to be further expanded.  

A particular limitation observed is regarding the technique of computation, while the 

model is non-parametric and does not assume normality, its projections are strictly 

constrained by history, the model can only generate simulated rate changes from a 

combination of rate changes that have happened. 

The standard approach used while modeling long horizon risk is to use a GARCH model 

but the author intends at choosing an alternative to that so overcome the complexity 

involved with a GARCH model. An issue with the GARCH model is pertaining to the 

hyper-reactive feature associated with it and by their nature, such a model adapts to sharp 

changes in market volatility. In this study, if the GARCH model was constructed for 

pension risk and applied in the year 2020 then there would be a sharp increase would 

have been highlighted and followed by a sharp decrease accounting to volatility in the 

month of March. Though this model is suited better as per author, there is scope to 

explore computation using the GARCH model and the GARCH model might prove 

superior in one aspect that is GARCH type volatility may deal better with volatility 

clustering.      

The author has restricted the computation of VaR to Microsoft Excel and R statistical 

programming whereas the same can be extended for computation in MATLAB, SPSS, 

SAS, and Python and there are past studies which show that effective results can be 

obtained using other statistical programming tools (Gonzalez, 2020; Preacher and Hayes, 

2004). 
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The backtest model constructed by the author is based on two backtesting methods: Z-test 

and Kupiec test. Backtest models like traffic light approach, independence test – 

Christoffersen test, and Joint test – Christoffersen’s interval forecast test can be used to 

backtest the accuracy of the model.  

Further research can be directed towards the development of a more robust backtesting 

technique. The failing of the F-test conveyed that the variances are not constant through 

time. A robust backtesting approach will engage in correcting and adjusting such that the 

variance is constant through time and that there are independent identically distributed 

variables. The author has researched producing 1-year projection on the basis of monthly 

VaR projections and future study can be undertaken pertaining to examination of the 

square root of time extension of daily/ weekly VaR projections to produce 1-year 

projection. Lastly, an examination of the use of overlapping data to estimate the standard 

deviation and correlation coefficients of the changes in the market rate can be explored.  
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7 CONCLUSION 

In this paper, the author demonstrates an effective method for computing VaR which in 

today’s time is gaining popularity as a risk measure for the long-term horizon, in general, 

and pension schemes, in particular. This thesis aimed to address an issue from the 

industry by constructing a VaR model that is Valid and provides accurate results. The 

first aspect of the study which is model building is effectively achieved by the author by 

constructing a Monte Carlo Simulation VaR model using the non-parametric 

bootstrapping to compute the change in the value of the pension scheme. As desired, the 

model is successfully constructed in both Microsoft Excel and RStudio. The results of the 

backtest are treated as invaluable feedback regarding the validity and accuracy of the 

built model. The author attempted to backtest the model by applying 2 backtesting 

techniques: Z-test and the Kupiec test. The results of the backtest were positive even at 

different confidence levels which proves that the model constructed is an accurate one 

and can be put to use in practical and industry scenarios. 

Overall, the model is fit for the purpose based on the statistical test performed by the 

author. 

The study leaves avenues for further investigation which if explored would complement 

this research. The potential scope for further research: first, the author detects a 

shortcoming in the backtest assumption about independent identically distributed random 

variables. The author successfully proves that variables are independent and not 

identically distributed even though the model built passes the backtest. Future studies can 

engage in correcting or adjusting for the identical distribution of the random variables. 

Second, apart from the backtest methods applied in the study, various other backtesting 

techniques can be explored in a similar context. 
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APPENDIX 

Appendix 1: Snapshot of Pop window 1 

 

Appendix 2: Snapshot of Pop window 2 
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Appendix 3: Snapshot of RStudio without Floor and Option 

 

Appendix 4: Snapshot of RStudio with Floor and Option 
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Appendix 5: VBA code backtesting VaR model – Z-test 

 

Appendix 6: Backtesting VaR model in RStudio (following is the R-Command) – Z-test and Kupiec 

test without floor and options 

#Sensitivities 
D1 = 2e6  
D2 = 250e6  
D3 = -1.5e6 
D4 = -6e5  
 
z_test <- function(numObs,numExceedences,alpha){ 
  mu <- numObs*alpha 
  x <- numExceedences 

  sig = sqrt(numObs*alpha*(1-alpha)) 
  z <- (x-mu)/sig 
} 
kup <- function(numObs,numExceedences,alpha){ 
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  Pi_obs <- numExceedences/numObs 
  n1 <- numObs-numExceedences 
  n0 <- numExceedences 
  LL_Null <- log((alpha^n0)*(1-alpha)^n1) 
  LL_Alt <- log((Pi_obs^n0)*(1-Pi_obs)^n1) 

  kup <- -2*(LL_Null-LL_Alt) 
} 
 
numSims = 10000  
numMonths = 12  
res  = vector()  
DY = vector() 
EQ=vector() 

BY=vector()  
INF=vector()   
my_99_var <- vector() 
my_975_var <- vector() 
my_95_var <- vector() 
my_PnL <- vector() 
my_dates <- vector() 
 

start_n <- 61  
end_n <- 160 
 
for (k in start_n:end_n){ 
  set.seed(42) 
  M =matrix(0,k,4)  
  for(i in 1:k){ 
    M[i,1]=(mkt_data$Disc_Yield[i+1]-mkt_data$Disc_Yield[i])*100 

    M[i,2]=mkt_data$Eq_Mkt[i+1]/mkt_data$Eq_Mkt[i]-1 
    M[i,3]=(mkt_data$Bund_Yield[i+1]-mkt_data$Bund_Yield[i])*100 
    M[i,4]=(mkt_data$Infl_rate[i+1]-mkt_data$Infl_rate[i])*100 
  } 
   
  for (i in 1:numSims){ 
    factorMatrix =matrix(0,numMonths,4) 
    chosenMonths = sample(x=1:k,size =12,replace = TRUE) 
    for (j in 1:numMonths){ 

      factorMatrix[j,1]=M[chosenMonths[j],1] 
      factorMatrix[j,2]=M[chosenMonths[j],2] 
      factorMatrix[j,3]=M[chosenMonths[j],3] 
      factorMatrix[j,4]=M[chosenMonths[j],4] 
    } 
    
    DY[i] = sum(factorMatrix[,1]) 
    EQ[i]= sum(factorMatrix[,2]) 

    BY[i]= sum(factorMatrix[,3]) 
    INF[i]=sum(factorMatrix[,4]) 
    res[i]=D1*DY[i]+D2*EQ[i]+D3*BY[i]+D4*INF[i] #Simulated P&L 
    
  } 
    my_99_var[k+1-start_n] <- quantile(res,0.01)  
  my_975_var[k+1-start_n] <- quantile(res,0.025) 
  my_95_var[k+1-start_n] <- quantile(res,0.05) 

  my_PnL[k+1-start_n] <- D1*M[k,1]+D2*M[k,2]+D3*M[k,3]+D4*M[k,4] 
} 
 
max_y = max(my_PnL) 
max_y = round(max_y,-8) 
min_y = min(my_PnL) 
min_y = min(my_PnL,min(my_99_var)/sqrt(12)) 



 

75 

 

min_y = round(min_y,-8) 
 
par(mfrow = c(3,1))  
plot(mkt_data$Date[61:160],my_99_var/sqrt(12),main='99% monthly VaR through time',ylim = 
c(min_y,max_y),type='l',col='blue', ylab = '99% VaR') 

points(mkt_data$Date[61:160],my_PnL[1:100]) 
grid() 
plot(mkt_data$Date[61:160],my_975_var/sqrt(12),main='97.5% monthly VaR through 
time',ylim=c(min_y,max_y),type ='l',col='blue', ylab = '97.5% VaR') 
points(mkt_data$Date[61:160],my_PnL[1:100]) 
grid() 
plot(mkt_data$Date[61:160],my_95_var/sqrt(12),main='95% monthly VaR through time',ylim=c(min_y,max_y),type 
='l',col ='blue',ylab = '95% VaR') 

points(mkt_data$Date[61:160],my_PnL[1:100]) 
grid() 
 
mydates <- mkt_data$Date[61:160] 
VaR95 <- my_95_var/sqrt(12) 
VaR975 <- my_975_var/sqrt(12) 
VaR99 <- my_99_var/sqrt(12) 
backtest_data <- data.frame(mydates,my_PnL,VaR95,VaR975,VaR99) 

 
n95 <- 0 
n975 <- 0 
n99 <- 0 
for (i in 1:100){ 
  if(my_PnL[i] < VaR95[i])  
  {n95 <- n95+1} 
    if(my_PnL[i] < VaR975[i])  

  {n975 <- n975+1} 
    if(my_PnL[i] < VaR99[i])  
  {n99 <- n99+1} 
    
} 
 
z95 <-  z_test(100,n95,0.05) 
k95 <- kup(100,n95,0.05) 
z975 <-  z_test(100,n975,0.025) 

k975 <- kup(100,n975,0.025) 
z99 <-  z_test(100,n99,0.01) 
k99 <- kup(100,n99,0.01) 
#Print the Backtest Statistics to the  
print('95% VaR') 
sprintf("Num Exceedences = %1.0f",n95) 
sprintf("Z = %f",z95) 
sprintf("Kupiec Statistic = %f",k95) 

print('975% VaR') 
sprintf("Num Exceedences = %1.0f",n975) 
sprintf("Z = %f",z975) 
sprintf("Kupiec Statistic = %f",k975) 
print('99% VaR') 
sprintf("Num Exceedences = %1.0f",n99) 
sprintf("Z = %f",z99) 
sprintf("Kupiec Statistic = %f",k99) 

 
VaR_Model <- vector() 
Statistic <- vector() 
Value <- vector() 
VaR_Model[1] <- '95% VaR' 
Statistic[1] <- 'Num Exceedences' 
Value[1] <- n95 
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VaR_Model[2] <- '95% VaR' 
Statistic[2] <- 'Z Statistic' 
Value[2] <- z95 
VaR_Model[3] <- '95% VaR' 
Statistic[3] <- 'Kupiec Statistic' 

Value[3] <- k95 
VaR_Model[4] <- '97.5% VaR' 
Statistic[4] <- 'Num Exceedences' 
Value[4] <- n975 
VaR_Model[5] <- '97.5% VaR' 
Statistic[5] <- 'Z Statistic' 
Value[5] <- z975 
VaR_Model[6] <- '97.5% VaR' 

Statistic[6] <- 'Kupiec Statistic' 
Value[6] <- k975 
VaR_Model[7] <- '99% VaR' 
Statistic[7] <- 'Num Exceedences' 
Value[7] <- n99 
VaR_Model[8] <- '99% VaR' 
Statistic[8] <- 'Z Statistic' 
Value[8] <- z95 

VaR_Model[9] <- '99% VaR' 
Statistic[9] <- 'Kupiec Statistic' 
Value[9] <- k95 
backTestStatistics <- data.frame(VaR_Model,Statistic,Value) 

 

Appendix 7: Backtesting VaR model in RStudio (following is the R-Command) – Z-test and Kupiec 

test with floor and options 

#Sensitivities 
D1 = 2e6  
D2 = 250e6  
D3 = -1.5e6 
D4 = -6e5  
my_floor = -200  

my_strike = 0.75  
 
z_test <- function(numObs,numExceedences,alpha){ 
  mu <- numObs*alpha 
  x <- numExceedences 
  sig = sqrt(numObs*alpha*(1-alpha)) 
  z <- (x-mu)/sig 
} 

kup <- function(numObs,numExceedences,alpha){ 
  Pi_obs <- numExceedences/numObs 
  n1 <- numObs-numExceedences 
  n0 <- numExceedences 
  LL_Null <- log((alpha^n0)*(1-alpha)^n1) 
  LL_Alt <- log((Pi_obs^n0)*(1-Pi_obs)^n1) 
  kup <- -2*(LL_Null-LL_Alt) 
} 

numSims = 10000  
numMonths = 12  
res  = vector()  
DY = vector() 
EQ=vector() 
BY=vector()  
INF=vector()   
my_99_var <- vector() 
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my_975_var <- vector() 
my_95_var <- vector() 
my_PnL <- vector() 
my_dates <- vector() 
 

start_n <- 61  
end_n <- 160 
 
for (k in start_n:end_n){ 
  set.seed(42) 
  M =matrix(0,k,4)  
  for(i in 1:k){ 
    M[i,1]=(mkt_data$Disc_Yield[i+1]-mkt_data$Disc_Yield[i])*100 

    M[i,2]=mkt_data$Eq_Mkt[i+1]/mkt_data$Eq_Mkt[i]-1 
    M[i,3]=(mkt_data$Bund_Yield[i+1]-mkt_data$Bund_Yield[i])*100 
    M[i,4]=(mkt_data$Infl_rate[i+1]-mkt_data$Infl_rate[i])*100 
  } 
   
  for (i in 1:numSims){ 
    factorMatrix =matrix(0,numMonths,4) 
    chosenMonths = sample(x=1:k,size =12,replace = TRUE) 

    for (j in 1:numMonths){ 
      factorMatrix[j,1]=M[chosenMonths[j],1] 
      factorMatrix[j,2]=M[chosenMonths[j],2] 
      factorMatrix[j,3]=M[chosenMonths[j],3] 
      factorMatrix[j,4]=M[chosenMonths[j],4] 
    } 
     
    DY[i] = max(sum(factorMatrix[,1]),my_floor) 

    EQ[i]= max(sum(factorMatrix[,2]),my_strike-1) 
    BY[i]= sum(factorMatrix[,3]) 
    INF[i]=sum(factorMatrix[,4]) 
    res[i]=D1*DY[i]+D2*EQ[i]+D3*BY[i]+D4*INF[i] #Simulated P&L 
  } 
  my_99_var[k+1-start_n] <- quantile(res,0.01)  
  my_975_var[k+1-start_n] <- quantile(res,0.025) 
  my_95_var[k+1-start_n] <- quantile(res,0.05) 
  my_PnL[k+1-start_n] <- D1*M[k,1]+D2*M[k,2]+D3*M[k,3]+D4*M[k,4] 

} 
max_y = max(my_PnL) 
max_y = round(max_y,-8) 
min_y = min(my_PnL) 
min_y = min(my_PnL,min(my_99_var)/sqrt(12)) 
min_y = round(min_y,-8) 
 
par(mfrow = c(3,1))  

plot(mkt_data$Date[61:160],my_99_var/sqrt(12),main='99% monthly VaR through time',ylim = 
c(min_y,max_y),type='l',col='blue', ylab = '99% VaR') 
points(mkt_data$Date[61:160],my_PnL[1:100]) 
grid() 
plot(mkt_data$Date[61:160],my_975_var/sqrt(12),main='97.5% monthly VaR through 
time',ylim=c(min_y,max_y),type ='l',col='blue', ylab = '97.5% VaR') 
points(mkt_data$Date[61:160],my_PnL[1:100]) 
grid() 

plot(mkt_data$Date[61:160],my_95_var/sqrt(12),main='95% monthly VaR through time',ylim=c(min_y,max_y),type 
='l',col ='blue',ylab = '95% VaR') 
points(mkt_data$Date[61:160],my_PnL[1:100]) 
grid() 
 
mydates <- mkt_data$Date[61:160] 
VaR95 <- my_95_var/sqrt(12) 
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VaR975 <- my_975_var/sqrt(12) 
VaR99 <- my_99_var/sqrt(12) 
backtest_data <- data.frame(mydates,my_PnL,VaR95,VaR975,VaR99) 
 
n95 <- 0 

n975 <- 0 
n99 <- 0 
for (i in 1:100){ 
  if(my_PnL[i] < VaR95[i])  
  {n95 <- n95+1}   
  if(my_PnL[i] < VaR975[i])  
  {n975 <- n975+1} 
  if(my_PnL[i] < VaR99[i])  

  {n99 <- n99+1}   
} 
 
z95 <-  z_test(100,n95,0.05) 
k95 <- kup(100,n95,0.05) 
z975 <-  z_test(100,n975,0.025) 
k975 <- kup(100,n975,0.025) 
z99 <-  z_test(100,n99,0.01) 

k99 <- kup(100,n99,0.01) 
#Print the Backtest Statistics to the  
print('95% VaR') 
sprintf("Num Exceedences = %1.0f",n95) 
sprintf("Z = %f",z95) 
sprintf("Kupiec Statistic = %f",k95) 
print('975% VaR') 
sprintf("Num Exceedences = %1.0f",n975) 

sprintf("Z = %f",z975) 
sprintf("Kupiec Statistic = %f",k975) 
print('99% VaR') 
sprintf("Num Exceedences = %1.0f",n99) 
sprintf("Z = %f",z99) 
sprintf("Kupiec Statistic = %f",k99) 
 
VaR_Model <- vector() 
Statistic <- vector() 

Value <- vector() 
VaR_Model[1] <- '95% VaR' 
Statistic[1] <- 'Num Exceedences' 
Value[1] <- n95 
VaR_Model[2] <- '95% VaR' 
Statistic[2] <- 'Z Statistic' 
Value[2] <- z95 
VaR_Model[3] <- '95% VaR' 

Statistic[3] <- 'Kupiec Statistic' 
Value[3] <- k95 
VaR_Model[4] <- '97.5% VaR' 
Statistic[4] <- 'Num Exceedences' 
Value[4] <- n975 
VaR_Model[5] <- '97.5% VaR' 
Statistic[5] <- 'Z Statistic' 
Value[5] <- z975 

VaR_Model[6] <- '97.5% VaR' 
Statistic[6] <- 'Kupiec Statistic' 
Value[6] <- k975 
VaR_Model[7] <- '99% VaR' 
Statistic[7] <- 'Num Exceedences' 
Value[7] <- n99 
VaR_Model[8] <- '99% VaR' 
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Statistic[8] <- 'Z Statistic' 
Value[8] <- z95 
VaR_Model[9] <- '99% VaR' 
Statistic[9] <- 'Kupiec Statistic' 
Value[9] <- k95 

backTestStatistics <- data.frame(VaR_Model,Statistic,Value) 

 


