

Configuration Manual

MSc Research Project

FinTech

Sean Khye Lee

Student ID: x19116888

School of Computing

National College of Ireland

Supervisor: Victor Del Rosal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Sean Khye Lee

……

Student ID:

X19116888

………..……

Programme:

MSc in Fintech

………………………………………………………………

Year:

2020

…………………………..

Module:

Research Project

…….………

Lecturer:

Victor Del Rosal

…….………

Submission

Due Date:

17 August 2020

…….………

Project Title:

Analysing the Evolution of Permissioned Blockchain in Financial Sector

…….………

Word Count:

1775 8

……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Sean Khye Lee

Student ID: x19116888

1 Introduction

This configuration manual was used to describe the technical requirements as well as the code

execution when developing the application and testing the experiments. Steps were arranged

accordingly to allow the research can be replicated for the project titled “Analysing the

Evolution of Permissioned Blockchain in Financial Sector”.

2 Hardware Requirements

 Windows 10 Core Single Language X64bit

 RAM: 12GB

 Processor: Intel(R) Core (TM) i5-4200 CPU @ 1.60GHz

 Hard Disk Drive: 1TB

3 Software Requirements

 Sublime Text 3 - This was used to edit the code

 Oracle Virtual Machine - This was used as the environment to deploy smart contract

 Command-line interface (CLI) - This was used to execute the operating system function

 Hyperledger Composer - This was used as tool to deploy the smart contract

 Angular - This was connected REST API to the front-end

 Apache JMeter - This was used to test the scalability

 GitHub - This was used to store the coding

 Microsoft Word 2016 - This was used to write the report

 Microsoft Excel 2016 - This was used to create and modify the table for evaluation

 Tableau Public - This was used to visualise the .csv file to get data insight

4 Developing Multon Decentralised Application

4.1 Steps to integrate blockchain application with Hyperledger fabric

Step 1: Clone File from GitHub

 $ git clone https://github.com/Sean5678/Multon-Dapp.git

Step 2: Starting fabric

Change directory into fabric-dev-servers by executing the following in the terminal

 $ cd /home/hyperledger/fabric-dev-servers

https://github.com/Sean5678/Multon-Dapp.git

2

Start fabric

 $./startFabric.sh

Create credentials

 $./createPeerAdminCard.sh

Step 3: Setting up our business network

To use the yo tool, execute the following commands in the terminal.

 $ cd ~/

 $ yo hyperledger-composer:businessnetwork

Set up the network as follows:

 Business network name: multon

 Description: BankApp

 Author name: <Your name>

 Author email: <Your email>

 License: Apache-2.0

 Namespace: multon.bc.bank

 Do you want to generate an empty template network?: No

 Files will now be available in multon

Step 4: Defining the Business Network

Update the model file(.cto), access control file(.acl), and logic file(.js) to define assets,

participants and transactions and save the changes.

Defining the .cto file

 $ cd multon

 $ ls

 $ cd models

 $ more multon.bc.bank.cto

Account is an asset which is uniquely identified with accountId. Each account is linked

with Customer who is the owner of the account. Account has a property of balance which

indicates how much money the account holds at any moment. Customer is a participant which

is uniquely identified with customerId. Each Customer has firstName and lastName.

AccountTransfer is a transaction that can occur to and from an Account. And how much money

is to be transferred is stored in amount.

Defining the .js file

 $ cd ..

 $ cd lib

 $ more logic.js

Defining the .acl file

 $ cd ..

 $ more permissions.acl

Step 5: Generating the Business Network Archive file (.bna)

 $ cd /home/hyperledger/multon

 $ composer archive create -t dir -n .

3

Step 6: Deploying Business Network

Here we will use PeerAdmin business network card which is already created during the

installation step of Hyperledger fabric, to deploy the business network. PeerAdmin card is used

to install and instantiate chaincodes on peers of fabric network.

When we deploy a business network to the Hyperledger Fabric, we will install the

business network Hyperledger Composer. Then, we will start the business network for building

the new participant, identity and related card as a network administrator. Eventually, the

business network card must be imported into the network administrator for use, and the network

can then be pinged to check its response.

To install the business network, from the multon directory, run the following command:

 $ composer network install --card PeerAdmin@hlfv1 --archiveFile multon@0.0.1.bna

To start the business network, run the following command:

 $ composer network start --networkName multon --networkVersion 0.0.1 --

networkAdmin admin --networkAdminEnrollSecret adminpw --card PeerAdmin@hlfv1 --file

networkadmin.card

To import the network administrator identity as a usable business network card, run the

following command:

 $ composer card import --file networkadmin.card

To check that the business network has been deployed successfully, run the following

command to ping the network:

 $ composer network ping --card admin@multon

After these steps, business network has been deployed and integrated with Hyperledger

fabric. Now, we can define the REST API for our business network as well as create an

application for the same.

Step 7: Generate REST Server

To generate REST API, run the following command from multon

 $ composer-rest-server

 Choose the following options/Enter the following data when prompted.

 Enter the name of the business network card to use: admin@multon

 Specify if you want namespaces in the generated REST API: never use namespaces

 Specify if you want to use an API key to secure the REST API: N

 Specify if you want to enable authentication for the REST API using passport: N

 Specify if you want to enable event publication over WebSockets: Y

 Specify if you want to enable TLS security for the REST API: N

 The REST server will now be installed.

 Do not close this terminal window.

Now, go to our browser and open up http://localhost/3000

We should see something like this:

mailto:multon@0.0.1.bna

4

Step 8: Test the application using Composer Playground

Now that we have deployed fabric on top of a business network, and started a REST server, let

us take a look at the Composer Playground.

Open another terminal window and execute

 $ composer-playground

A browser window with the address http://localhost/8080 will open as below

We can now go into our project and check our model files(.cto), permission file(.acl), and

script(.js). Playground offers a very good web interface so we can edit our code. We can now

go into admin and see all our business networks and connect to them.

Step 9: Creating an Angular App to interact with the network

We are going to use the yo tool again.

In a new terminal window, execute

 $ yo hyperledger-composer:angular

 Select the following options.

 Do you want to connect to a running Business Network? Y

 Project name: Angular-Multon-Bankdapp

 Description: Hyperledger Composer Angular project

 Author name: <Your name>

 Author email: <Your email>

 License: Apache-2.0

5

 Name of the Business Network card: admin@multon

 Do you want to generate a new REST API or connect to an existing REST API?:

Connect

 to an existing REST API

 REST server address: http://localhost

 REST server port: 3000

 Should namespaces be used in the generated REST API?: Namespaces are not used

Go to local directory:

 $ cd /home/hyperledger/multon/Angular-Multon-Bankdapp

Start the server by executing

 $ npm start

Go to localhost:4200. We should see something like this.

Addressing the Transaction Problem in Angular for Hyperledger Blockchain Application

After starting the server, navigate the multon/ Angular-Multon-Bankdapp /src/app and replace

the coding in the AccountTransfer, Deposit, withDraw, and message folder for the html file

using the Sublime Text editor.

First: Fix the invoke button

Go to the last line of html file. Then, describe the click function and add the data-target as

below:

 </div>

 </div>

 <button (click)="resetForm()" type="button" class="btn btn-primary

invokeTransactionBtn" data-toggle="modal" data-

target="#addTransactionModal">Invoke</button>

 </div>

 </div>

</div>

Second: Remove the additional input like transactionId and timestamp

Find the similar code below in html file and replace the code as below:

 <!--<div class="form-group text-left">

 <label for="transactionId">transactionId</label>

 <input formControlName="transactionId" type="text" class="form-control">

6

 </div>

 <div class="form-group text-left">

 <label for="timestamp">timestamp</label>

 <input formControlName="timestamp" type="text" class="form-control">

 </div> -->

*For repetition from step 1 to step 9

composer card delete --card admin@multon

5 Result and Evaluation

5.1 Apache JMeter (Performance for Scalability)

5.1.1 Open the JMeter

 $ cd apache-jmeter-5.3/bin/

 $./jmeter

Then, the JMeter will open as below:

5.1.2 To run the Experiments in Ubuntu. Use below command:

Move to the directory:

 $ cd apache-jmeter-5.3

 $ cd bin

Experiment 1

Before running the code snippet, Exp1.jmx file is saved with thread properties as below:

Number of users: 5

Ramp-up period (seconds): 1

Loop count: 1

$./jmeter.sh -n -t /home/hyperledger/Documents/Exp1.jmx -l

/home/hyperledger/Documents/Exp1.csv

7

Experiment 2

Before running the code snippet, Exp2.jmx file is saved with thread properties as below:

Number of users: 50

Ramp-up period (seconds): 10

Loop count: 1

$./jmeter.sh -n -t /home/hyperledger/Documents/Exp2.jmx -l

/home/hyperledger/Documents/Exp2.csv

Experiment 3

Before running the code snippet, Exp3.jmx file is saved with thread properties as below:

Number of users: 500

Ramp-up period (seconds): 100

Loop count: 1

$./jmeter.sh -n -t /home/hyperledger/Documents/Exp3.jmx -l

/home/hyperledger/Documents/Exp3.csv

Experiment 4

Before running the code snippet, Exp4.jmx file is saved with thread properties as below:

Number of users: 5000

Ramp-up period (seconds): 1000

Loop count: 1

$./jmeter.sh -n -t /home/hyperledger/Documents/Exp4.jmx -l

/home/hyperledger/Documents/Exp4.csv

Experiment 5

Before running the code snippet, Exp5.jmx file is saved with thread properties as below:

Number of users: 6000

Ramp-up period (seconds): 1200

Loop count: 1

$./jmeter.sh -n -t /home/hyperledger/Documents/Exp5.jmx -l

/home/hyperledger/Documents/Exp5.csv

5.2 Tableau

Finally, Tableau will be used to visualise the .csv file for 5 experiments to get the average

response time vs the number of users as shown below.

8

References

https://github.com/

https://www.hyperledger.org/use/composer

https://www.oracle.com/ie/virtualization/technologies/vm/downloads/virtualbox-

downloads.html

https://angular.io/

https://jmeter.apache.org/download_jmeter.cgi

https://public.tableau.com/en-us/s/

https://github.com/
https://www.hyperledger.org/use/composer
https://www.oracle.com/ie/virtualization/technologies/vm/downloads/virtualbox-downloads.html
https://www.oracle.com/ie/virtualization/technologies/vm/downloads/virtualbox-downloads.html
https://angular.io/
https://jmeter.apache.org/download_jmeter.cgi
https://public.tableau.com/en-us/s/

