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1 Introduction 
 

This document describes the hardware and software requirements to perform the research for 

the thesis titled “Analysing the Impact of Demonetisation on Digital Payments in India”. It 

also lays out the steps to be followed to replicate the research and perform all the experiments 

in a precise manner to ensure that the research can be easily reproduced, and results can be 

analysed. To ensure in depth explanation of the steps performed, code snippets and important 

outputs are also portrayed. 
 

 

2 Data Collection 
 

The data for this research is collected from Reserve Bank of India’s (RBI) Database on 
Indian Economy1. It includes the monthly value and volume of financial transactions 
performed through various payment systems in the period of April 2004 to October 2019. 
The data is available in CSV format. 
 

 

3 Hardware Configuration  
 

The configuration of the laptop used for performing the research is presented in Table 1. 

Table 1:  Device configuration 

Processor Intel® Core™ i5-5200U CPU @ 2.20GHz  

Installed RAM 8.00 GB 

System type 64-bit operating system, x64-based processor 

Operating System Edition Windows 10 Pro 
 

 

4 Software Configuration 
 

The software tools used are shown in Table 2. 

Table 2:  Software configuration 

Programming language R version 3.6.1 

Integrated Development 

Environment (IDE) 

RStudio version 1.2.1335 

 
 

 

 
1 https://dbie.rbi.org.in/DBIE/dbie.rbi?site=home 

https://dbie.rbi.org.in/DBIE/dbie.rbi?site=home
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5 Steps in the Analysis  
 

The steps performed in the research are described in detail in the following sections. 

5.1 Importing libraries 
 

In RStudio, the relevant packages are installed and libraries are imported to use the time 

series analysis functions and various other functions used for processing and visualising the 

data. These libraries include forecast, ggplot2, tseries, lmtest, strucchange, tidyr, tsoutliers, 

TSA and nlme. 

5.2 Loading Data 
 

The following code loads the data in RStudio: 

 
pay_data <-  read.csv("RBIB_Table_No._43___Payment_System_Indicators.csv", 

stringsAsFactors = F) 

5.3 Pre-processing Data 
 

The data contains some rows having descriptions of the data, for example, the beginning of 

each year etc. Such rows are removed from the data. Also, the first two rows containing 

headers are removed. The code to do this is as follows: 

 
pay_data_new <- pay_data[c(-3, -11, -24, -37, -50, -63, -76, -89, -102, -115, -128, 

-141, -154, -167, -180, -193, -206, -207, -208),] 

pay_data_new <- pay_data_new[c(-1,-2),] 

 

The operations such as changing date to the desired format, converting datatype of numeric 

values and ordering the data according to date are done using the following code: 

 
# Change Date format to YYYY-MM-DD 

pay_data_new$Date <- as.Date(paste("01-", pay_data_new$Date, sep = ""), format = 

"%d-%b-%Y") 

 

# Order by Date 

pay_data_new <- pay_data_new[order(pay_data_new$Date), ] 

 

# Convert to numeric 

pay_data_new[c(2:length(pay_data_new))] <- 

as.data.frame(sapply(pay_data_new[,c(2:length(pay_data_new))], as.numeric)) 

 

The raw data contains columns that are not useful for this research. These columns are 

removed and a new dataframe is created with useful columns that represent transactions 

through digital payment modes. 

 
#Select the variables of interest (only digital modes of payment) 

pay_data_digi <- pay_data_new[, c(1, 2, 3, 36, 37, 54, 55, 60, 61, 64, 65, 70, 71)] 

colnames(pay_data_digi) <- c("Date", "RTGS Volume", "RTGS Value", "REC Volume", 

"REC Value","CC POS Volume", "CC POS Value", "DC POS VOlume", "DC POS Value","m-

Wallet Volume", "m-Wallet Value", "Mobile Banking Volume", "Mobile Banking Value") 
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5.4 Exploratory Data Analysis 
 

This step includes separating the individual payment system transactions as individual 

datasets in order to visualise these over the period of study. These data are plot using the 

following code: 

 
# By Volume 

ggplot() + 

geom_line(data = rtgs_data_vol, aes(x = Date, y = Volume, color = "RTGS")) + 

geom_line(data = rec_vol, aes(x = Date, y = Volume, color = "Retail Electronic 

Clearing")) + 

geom_line(data = cardPOS_vol, aes(x = Date, y = Volume, color = "Total Card Usage 

at POS")) + 

geom_line(data = mwallet_vol, aes(x = Date, y = Volume, color = "m-Wallet")) + 

geom_line(data = mobbank_vol, aes(x = Date, y = Volume, color = "Mobile Banking")) 

+ 

scale_color_manual("", 

breaks = c("RTGS", "Retail Electronic Clearing", "Total Card Usage at POS", 

"m-Wallet", "Mobile Banking"), 

values = c('#FFC300','#00AA11', '#F955BB', 

"#9D75D7", '#00AFBC')) + 

labs(title = "Digital Payments: Mode-wise Transaction Volume", 

x = "Year", 

y = "Lakhs") + 

scale_x_date(date_labels = "%Y", date_breaks = "1 year") + 

geom_vline(xintercept = as.Date("08-11-2016",  format = "%d-%m-%Y"), color = 

'#FF0000', linetype="dotted")  + 

theme(axis.text.x = element_text(face = "bold", size = 5, angle = 45)) 

 
# By Value 

ggplot() + 

geom_line(data = rtgs_data_value, aes(x = Date, y = Value/1000, color = "RTGS")) + 

geom_line(data = rec_value, aes(x = Date, y = Value/1000, color = "Retail 

Electronic Clearing")) + 

geom_line(data = cardPOS_value, aes(x = Date, y = Value/1000, color = "Total Card 

Usage at POS")) + 

geom_line(data = mwallet_value, aes(x = Date, y = Value/1000, color = "m-Wallet")) 

+ 

geom_line(data = mobbank_value, aes(x = Date, y = Value/1000, color = "Mobile 

Banking")) + 

scale_color_manual("", 

breaks = c("RTGS", "Retail Electronic Clearing", "Total Card Usage at POS", 

"m-Wallet", "Mobile Banking"), 

values = c('#FFC300','#00AA11', '#F955BB', 

"#9D75D7", '#00AFBC')) + 

labs(title = "Digital Payments: Mode-wise Transaction Value", 

x = "Year", 

y = "10 Billion INR") + 

scale_x_date(date_labels = "%Y", date_breaks = "1 year") + 

geom_vline(xintercept = as.Date("08-11-2016",  format = "%d-%m-%Y"), color = 

'#FF0000', linetype="dotted")  + 

theme(axis.text.x = element_text(face = "bold", size = 5, angle = 45)) 

  

This step also includes calculating transactions in each payment mode as percentage of the 

total transactions (total of cash-based and digital). This is done in order to determine the 

change in trend of each payment mode as a percentage of overall trend. The code to calculate 

the percentage and plot the data is given below: 

 
# 1. RTGS value as percentage of total value  

rtgs_val_perc <- rtgs_data_value$Value/pay_data_all$total_value *100 

rtgs_val_perc_df <- as.data.frame(rtgs_data_value$Date) 

rtgs_val_perc_df <- cbind(rtgs_val_perc_df,rtgs_val_perc) 

colnames(rtgs_val_perc_df) <- c("Date", "Percentage") 
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# 2. REC value as percentage of total value  

rec_val_perc <- rec_value$Value/pay_data_all$total_value *100 

rec_val_perc_df <- as.data.frame(rec_value$Date) 

rec_val_perc_df <- cbind(rec_val_perc_df,rec_val_perc) 

colnames(rec_val_perc_df) <- c("Date", "Percentage") 

 

# 3. Card usage at POS value as percentage of total value  

card_val_perc <- cardPOS_value$Value/pay_data_all$total_value *100 

card_val_perc_df <- as.data.frame(cardPOS_value$Date) 

card_val_perc_df <- cbind(card_val_perc_df,card_val_perc) 

colnames(card_val_perc_df) <- c("Date", "Percentage") 

 

#4. m-Wallet value as percentage of total value  

length(mwallet_value$Value) 

mwallet_val_perc <- mwallet_value$Value/pay_data_all$total_value[c(97:187)] *100 

mwallet_val_perc_df <- as.data.frame(mwallet_value$Date) 

mwallet_val_perc_df <- cbind(mwallet_val_perc_df, mwallet_val_perc) 

colnames(mwallet_val_perc_df) <- c("Date", "Percentage") 

 

#5. Mobile Banking value as percentage of total value  

length(mobbank_value$Value) 

length(pay_data_all$total_vol) 

mobbank_val_perc <- mobbank_value$Value/pay_data_all$total_value[c(85:187)] *100 

mobbank_val_perc_df <- as.data.frame(mobbank_value$Date) 

mobbank_val_perc_df <- cbind(mobbank_val_perc_df, mobbank_val_perc) 

colnames(mobbank_val_perc_df) <- c("Date", "Percentage") 

 
#Plot - By Value 

ggplot() +  

  geom_line(data = rtgs_val_perc_df, aes(x = Date, y = Percentage/10, color = 

"RTGS")) + 

  geom_line(data = rec_val_perc_df, aes(x = Date, y = Percentage, color = "Retail 

Electronic Clearing")) + 

  geom_line(data = card_val_perc_df, aes(x = Date, y = Percentage, color = "Total 

Card Usage at POS")) + 

  geom_line(data = mwallet_val_perc_df, aes(x = Date, y = Percentage, color = "m-

Wallet")) + 

  geom_line(data = mobbank_val_perc_df, aes(x = Date, y = Percentage, color = 

"Mobile Banking")) + 

  scale_color_manual("",  

                     breaks = c("RTGS", "Retail Electronic Clearing", "Total Card 

Usage at POS","m-Wallet", "Mobile Banking"),  

                     values = c('#FFC300','#00AA11', '#F955BB',  

                                "#9D75D7", '#00AFBC')) +  

  labs(title = "Mode-wise Transaction Value % of Total Transaction Value", 

       x = "Year") +  

  scale_x_date(date_labels = "%Y", date_breaks = "1 year") +  

  scale_y_continuous(name = "Percentage",  

                     sec.axis = sec_axis(~.*10, name = "RTGS Percentage"))+ 

  geom_vline(xintercept = as.Date("08-11-2016",  format = "%d-%m-%Y"), color = 

'#000000', linetype = "dotted")  + 

  theme(axis.text.x = element_text( size = 8, angle = 45)) 

 

The above code is for the value data. A similar EDA for volume data is also performed. 

 

For the analysis performed in this study, a sum total of all the digital transactions in terms of 

volume and value is used. This represents the transactions performed through all the five 

modes described above as single dataset. The sum of digital transactions and its percentage of 

the total transactions is calculated as shown below: 

 
## Calculate sum of all digital modes 

pay_data_digi$`Total Volume` <- rowSums(pay_data_digi[,c(2,4,6,8,10)], na.rm = T) 

pay_data_digi$`Total Value` <- rowSums(pay_data_digi[,c(3,5,7,9,11)], na.rm = T) 

 

# Digital transaction volume as percentage of total volume 
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digital <- pay_data_digi[,c(1,12,13)] 

colnames(digital) <- c('Date', 'Volume', 'Value') 

 

# Remove the first 12 months as they show almost 100% 

digital_volume_perc <- digital$Volume[-c(1:12)]/pay_data_all$total_vol[-c(1:12)] 

*100 

 

#Create a dataframe 

digital_volume_perc_df <- as.data.frame(digital$Date[-c(1:12)]) 

digital_volume_perc_df <- cbind(digital_volume_perc_df, digital_volume_perc) 

colnames(digital_volume_perc_df) <- c("Date", "Percentage") 

#Plot 

ggplot(digital_volume_perc_df, aes(x = Date, y = Percentage)) +  

  geom_line(color = "#00AFBC", size = 1) +  

  labs(title = "Digital Transaction Volume as Percentage of Total Volume",  

       x = "Month-Year", y = "Percentage") +  

  scale_x_date(date_labels = "%m-%y", date_breaks = "1 year") +  

  geom_vline(xintercept = as.Date("08-11-2016",  format = "%d-%m-%Y"), color = 

'red') 

 

5.5 Preliminary analysis using Segmented Regression 
 

For determining the change caused by demonetisation, the data of all digital transactions is 

summed and calculated as a percentage of total. The data is then analysed using segmented 

regression. The date of demonetisation is used to create variables to represent intervention. A 

variable for time encoding T is created, starting with 1 and increasing successively by 1 for 

all time points. The variable for intervention X is coded as 0 before demonetisation and 1 

after demonetisation. The variable Ti is coded as 0 before demonetisation and incremented by 

1 successively after demonetisation. These variables are used to fit regression lines to the pre- 

and post-demonetisation data. The gls() function is used. To account for the autocorrelation 

in data, an Autoregressive and Moving Average order is set using the corARMA() function 

and passed to the correlation parameter. The code for segmented regression for digital 

volume data is as follows: 

 
digi_vol_lm_df <- digital_volume_perc_df 

digi_vol_lm_df$T = as.numeric(1:length(digi_vol_lm_df$Percentage)) 

 

#Define xreg = 0 pre-intervention and 1 post-intervention 

pre_inter <- digi_vol_lm_df$Date < as.Date("2016-11-01") 

ind_pre <- which(pre_inter) 

ind_post <- which(!pre_inter) 

xreg = rep(0,length(digi_vol_lm_df$Percentage)) 

for (i in ind_post) { 

  xreg[i] = 1 

} 

digi_vol_lm_df$X <- xreg 

 

Ti = rep(0,length(digi_vol_lm_df$Percentage)) 

for (i in ind_post) { 

  Ti[i] = Ti[i-1] + 1 

} 

digi_vol_lm_df$'Ti' <- Ti 

# Fit the regression model 

gls.model.1 <- gls(Percentage ~ T + X + Ti,  

                   data = digi_vol_lm_df, 

                   correlation = corARMA(form = ~ T, p = 1, q = 1), 

                   method = "ML") 
checkresiduals(gls.model.1) 
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The residuals of this model suggest that autocorrelation is present and that the residuals are 

not completely white noise. The QQ plot and ACF plot of the model residuals are shown in 

Figure 1. 

 

  

Figure 1:QQ plot and ACF plot of residuals of the segmented regression model for digital 

volume data. 

 

Similar steps are followed for digital value data by fitting an appropriate segmented 

regression model. The residuals for this model also show autocorrelation and are significantly 

different from white noise. 

 
gls.model.2 <- gls(Percentage ~ T + X + Ti,  

                   data = digital_value_perc_lm_df, 

                   correlation = corARMA(form = ~ T, p = 1, q = 1), 

                   method = "ML") 

 

Figure 2 shows the QQ plot and ACF plot of the model residuals for the digital value data. 

 

   

Figure 2:QQ plot and ACF plot of residuals of the segmented regression model for digital value 

data. 

5.6 Time series analysis 
 

Here, the data is converted to time series by using the ts() method as shown below: 

 
digi_vol_perc_ts <- ts(digital_volume_perc_df, start = c(2005, 4), frequency = 12) 
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The start date as mentioned as April 2005 because from the plots from EDA, it was seen that 

for the first 12 months, the digital volume percent was almost 100%. This might be because 

of no records present for other types of payments. 

Next, the stationarity of time series data is checked using ADF and KPSS tests as shown 

below: 

 
adf.test(digi_vol_perc_ts)  

kpss.test(digi_vol_perc_ts) 

 

The ADF test returns a p-value of 0.8024 and the KPSS test return a p-value of 0.01, both 

indicating that the series is not stationary. 

The ndiffs() function is used to determine the number of differences required to make the 

series stationary. 

 
ndiffs(digi_vol_perc_ts) 

digi_vol_perc_ts_diff1 <-  diff(digi_vol_perc_ts) 

 

After taking the first difference, the series becomes stationary as indicated by ADF and KPSS 

tests. This shows that the differencing parameter d = 1 should be used in the Arima models. 

For automatic detection of the ARIMA order, auto.arima() function is used. In cases where 

the automatic order detection does no detect d = 1, it is specified explicitly. 

The series is decomposed to view the trend and seasonal components. 

 
dec_tot_vol_per <- decompose(digi_vol_perc_ts) 

 

The data is seasonally adjusted before further processing. 

 
deseasonal_tot_vol_per <- seasadj(dec_tot_vol_per) 

 

The data is split into train and test series as shown in the code below: 

 
digi_vol_perc_ts_train <- window(deseasonal_tot_vol_per, end = c(2018, 10), 

frequency = 12) 

digi_vol_perc_ts_test <- window(deseasonal_tot_vol_per, start = c(2018, 11), 

frequency = 12) 

 

Different models are estimated as described below.  

5.6.1 Dynamic Regression Models 

In this step, an ARIMA model with an external regressor is estimated for the digital volume 

and digital value percentage data. The external regressors are determined in two ways: 1) 

detect break points in the data and if a breakpoint is found around the demonetisation time 

then use it to create a variable with value 0 before and 1 after the breakpoint index; 2) detect 

outliers in the data and use the level shift and additive outliers as external regressors. 

5.6.1.1 Using breakpoints to create external regressors 

To determine if there was change in the trend or mean level of the series caused by 

demonetisation, the series is analysed using changepoint analysis using the strucchange 

package. The breakpoints() function is used to determine breaks in the series as shown below. 

 
break_point <- breakpoints(digi_vol_perc_ts_train ~ 1) 

summary(break_point) 

plot(digi_vol_perc_ts_train) 

lines(fitted(break_point, breaks = 5), col = 4) 
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lines(confint(break_point, breaks = 5)) 

 

 

Figure 3:Break points in the digital volume data. 

Figure 3 shows that there is a breakpoint at the end of 2016. Use the index of this breakpoint 

to create a variable with 0 before and 1 after it, as follows: 
ind_post = break_point$breakpoints[length(break_point$breakpoints)] 

xreg <-  c(rep(0,ind_post), rep(1, length(digi_vol_perc_ts_train)-ind_post)) 

 

Use this variable as an external regressor and fit an ARIMA model to the data. Use the 

auto.arima() function from the forecast package and set the stepwise and approximation 

parameters as False to prevent the function from skipping orders or approximating the 

information criteria while selecting the best model. 

 
model1.t.vol <- auto.arima(digi_vol_perc_ts_train, 

                           xreg = xreg,  

                           method = "ML", 

                           stepwise = F,  

                           approximation = F, 

                           trace = T) 

 

The fitted model is subject to diagnostic checks by using the checkresiduals() function. 
cbind("Regression Errors" = residuals(model1.t.vol, type="regression"), 

      "ARIMA errors" = residuals(model1.t.vol, type="innovation")) %>%  

autoplot(facets=TRUE) 

checkresiduals(model1.t.vol) 

Ljung-Box test 

data:  Residuals from Regression with ARIMA(1,0,0)(0,0,1)[12] errors 

Q* = 5.4263, df = 20, p-value = 0.9995 

Model df: 4.   Total lags used: 24 

 

The graphs in Figure 4 show the regression errors and errors from ARIMA model.  

  
Figure 4: Residuals from Regression with ARIMA(1,0,0)(0,0,1)[12] errors model. 
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The ARIMA errors follow a white noise pattern. The ACF plot of residuals shows that there 

is no significant autocorrelation and the p-value of the Ljung-Box test indicates that the 

residuals are not significantly different from white noise. 

 

Forecast the values for the next 12 months by using the forecast() function with the xreg 

parameter as a vector of 1s, since the level shift will continue, and the h parameter set to 12. 

 
fcast <- forecast(model1.t.vol, xreg=rep(1,12), h=12) 

 

Calculate the accuracy of forecasts by using the accuracy() function from the forecast 

package. 

 
accuracy(fcast, digi_vol_perc_ts) 

 

Modify the order of ARIMA and fit different models. Compare the AIC, AICc and BIC 

values and select the model with the lowest values. Compare the forecast accuracy for the test 

sets using different model fits as shown for the above model and determine the best model 

based on least value of error measures like RMSE, MAE, MAPE and MASE.  

 

Perform the same steps for digital value data to determine the best model. 

 
(break_point <- breakpoints(digi_value_perc_ts_train ~ 1)) 

# Create a level shift variable with value = 0 pre-intervention and 1 post-

intervention 

ind_post = break_point$breakpoints[length(break_point$breakpoints)] 

xreg <-  c(rep(0,ind_post), rep(1, length(digi_value_perc_ts_train)-ind_post)) 

 

# Fit an ARIMA model with xreg to account for intervention 

model1.t.val <- auto.arima(digi_value_perc_ts_train, 

                           xreg = xreg,  

                           method = "ML", 

                           stepwise = F, 

                           approximation = F, 

                           trace = T) 

#Diagnostic checks 

checkresiduals(model1.t.val) # residuals are not significantly different from white 

noise 

#Forecast 

fcast <- forecast(model1.t.val, 

                  xreg=rep(1,12), h=12) 

model1.t.val.acc <- accuracy(fcast, digi_value_perc_ts_test) 

5.6.1.2 Outliers as external regressors 

To detect outliers in the time series data, the tso() function from the tsoutliers package is 

used. 

 
outliers_t.vol <- tso(digi_vol_perc_ts_train, types = c("TC", "AO", "LS", "IO", 

"SLS")) 
plot(outliers_t.vol) 

 

Figure 5 shows the outliers in digital volume data and shows the presence of level shift 

outliers at the end of 2016. 
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Figure 5: Outliers in the digital volume data. 

Find the effect of the Level Shift and Additive Outliers at each data point in the series. 
# Level shift outlier at the indices 

ls_index <- outliers_t.vol$outliers$ind[which(outliers_t.vol$outliers$type == 

'LS')] 

ls_outliers <- outliers("LS", ls_index) 

#Find effect at each point in the time series 

n <- length(digi_vol_perc_ts_train) 

ls_effect <- outliers.effects(ls_outliers, n) 

 

# Additive outlier at the indices 

ao_index <- outliers_t.vol$outliers$ind[which(outliers_t.vol$outliers$type == 

'AO')] 

ao_outliers <- outliers("AO", ao_index) 

#Find effect 

ao_effect <- outliers.effects(ao_outliers, n) 

 

Create a matrix of these outliers and use as external regressors in ARIMA. 
xreg.outliers <- cbind(ls_effect, ao_effect) 

model4.t.vol <- auto.arima(digi_vol_perc_ts_train,  

                           stepwise = F,  

                           approximation = F, 

                           trace = T,  

                           xreg = xreg.outliers) 

 

The function auto.arima() detects the best model as Regression with 

ARIMA(0,0,4)(0,0,1)[12] errors.  

Check residuals of the model. 
checkresiduals(model4.t.vol) 

Ljung-Box test 

data:  Residuals from Regression with ARIMA(0,0,4)(0,0,1)[12] errors 

Q* = 136.6, df = 10, p-value < 2.2e-16 

Model df: 14.   Total lags used: 24 

 

 

Figure 6: Residuals from Regression with ARIMA(0,0,4)(0,0,1)[12] errors 
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ACF plot of residuals in Figure 6 shows that autocorrelation is present and Ljung-box test p-

value indicates that residuals are not white noise. ndiffs() function indicated that differencing 

of order 1 is required, therefore pass the parameter d = 1 in auto.arima(). 

 
model5.t.vol <- auto.arima(digi_vol_perc_ts_train,  

                           stepwise = F,  

                           approximation = F, 

                           trace = T,  

                           xreg = xreg.outliers, d = 1) 

 

This returns Regression with ARIMA(0,1,1)(1,0,1)[12] errors as the best model. Residual 

checks indicate that residuals are not significantly different from white noise as shown in 

Figure 7.  

 
 

Figure 7: Residuals from Regression with (0,1,1)(1,0,1)[12] errors model 

Use the model to forecast for the next 12 months using the forecast() function. The future 

values of xreg parameter are calculated as shown  below. For level shifts, the future values 

will be 1 and for additive outliers, the future values will be 0. 

 
LS17 <- rep(1,12) 

LS29 <- rep(1,12) 

LS73 <- rep(1, 12) 

LS118 <- rep(1, 12) 

LS128 <- rep(1, 12) 

LS140 <- rep(1, 12) 

LS158 <- rep(1,12) 

AO141 <- rep(0, 12) 

 

fut.xreg <- cbind(LS17, LS29, LS73, LS118, LS128, LS140, LS158, AO141) 

fut.xreg <- as.matrix(fut.xreg) 

 

fcast <- forecast(model5.t.vol, 

                  xreg = fut.xreg, h=12) 

 

Plot the forecasts and actual values. 

 
plot(fcast, main = "Digital transaction Volume forecasts", sub = "Regression with 
ARIMA(0,1,1)(1,0,1)[12] errors" , 

     xlab = "Time", ylab = "Percentage") 

lines(digi_vol_perc_ts_test, col = "red") 

legend(2005, 75, legend = c("Actual", "Predicted"), col = c("red", "blue"), lty = 1  

, cex= 0.8) 

 

Calculate the accuracy of forecasts. 

 
accuracy(fcast, digi_vol_perc_ts_test) 
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Modify the order of ARIMA and fit different models. Compare the AIC, AICc and BIC 

values and select the model with the lowest values. Compare the forecast accuracy for the test 

sets using different model fits and determine the best model based on least value of error 

measures like RMSE, MAE, MAPE and MASE.  

Perform the same steps for digital value data to determine the best model. 

 
outliers_t.val <- tso(digi_value_perc_ts_train, types = c("TC", "AO", "LS", "IO", 

"SLS")) 

n <- length(digi_value_perc_ts_train) 

 

# Level shift outlier at the indices 

ls_index <- outliers_t.val$outliers$ind[which(outliers_t.val$outliers$type == 

'LS')] 

ls_outliers <- outliers("LS", ls_index) 

ls_effect <- outliers.effects(ls_outliers, n) 

 

# Additive outlier at the indices 

ao_index <- outliers_t.val$outliers$ind[which(outliers_t.val$outliers$type == 

'AO')] 

ao_outliers <- outliers("AO", ao_index) 

ao_effect <- outliers.effects(ao_outliers, n) 

 

xreg.outliers <- cbind(ls_effect, ao_effect) 

 

# Modelling with ARIMA with outliers as xreg variables 

model4.t.val <- auto.arima(digi_value_perc_ts_train,  

                           stepwise = F,  

                           approximation = F, 

                           trace = T, 

                           xreg = xreg.outliers) 

# Diagnostic checks 

checkresiduals(model4.t.val) 

 

#Forecast 

LS92 <- rep(1,12) 

AO73 <- rep(0, 12) 

fut.xreg <- cbind(LS92, AO73) 

fut.xreg <- as.matrix(fut.xreg) 

 

fcast <- forecast(model4.t.val, 

                  xreg = fut.xreg, h=12) 

 

5.6.2 ARIMA models with transfer functions 
 

To fit at an ARIMA model with transfer function, the ARIMA order of the pre-intervention 

series is detected by using auto.arima() function with parameters stepwise and approximation 

set to False.  

 
auto.arima(window(digi_vol_perc_ts_train, end = c(2016,10)), 

           stepwise = F, 

           approximation = F, 

           trace = T) 

 

This order is then used on the entire training series along with the transfer function 

parameters passed to the arimax() function. In the code shown below, the xtransf parameter is 

used to specify an external covariate which is a pulse indicator at index 140. It is known that 

demonetisation occurred at time point 140 in the series. Therefore, the covariate is created 

such that it has the value 1 at index 140 and 0 otherwise, indicating a temporary change. The 

transfer parameter contains a list of (p,q) which determines the AR and MA order of the 
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covariate. Here, this value is set as (0,0) to specify that no lagged effects of covariates are 

taken into consideration. The estimation method used is Maximum Likelihood estimation. 

 
# Pulse function 

model7.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),  

                       seasonal = list(order=c(0,0,1), period=12), 

                       xtransf = data.frame(Nov16 = 1 * 

(seq_along(digi_vol_perc_ts_train) == 140)),  

                       transfer = list(c(0,0)),  

                       method = "ML") 

 

Perform diagnostic tests on the model residuals. 

 
checkresiduals(model7.t.vol) 

Ljung-Box test 

data:  Residuals from ARIMA(0,1,0)(0,0,1)[12] 

Q* = 6.6342, df = 22, p-value = 0.9993 

Model df: 2.   Total lags used: 24 

The residuals represent white noise. 

 

Various transfer functions are estimated by changing the covariates and transfer lists. The 

step function is modelled by setting the covariate as 0 before and 1 after demonetisation. 

 
#Step function 

model8.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),  

                       seasonal = list(order=c(0,0,1), period=12), 

                       xtransf = data.frame(Nov16 = 1 * 

(seq_along(digi_vol_perc_ts_train) >= 140)),  

                       transfer = list(c(0,0)),  

                       method = "ML") 

 

A pulse function with AR(1) effect is modelled as shown below. This is used to determine if 

the lagged values of the covariate are significant in affecting the actual series. 

 
# Pulse function with AR(1) --> effect gradually dies out 

model9.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),  

                       seasonal = list(order=c(0,0,1), period=12), 

                       xtransf = data.frame(Nov16 = 1 * 

(seq_along(digi_vol_perc_ts_train) == 140)),  

                       transfer = list(c(1,0)),  

                       method = "ML") 

 

A step function with AR(1) is modelled as shown below. The lagged values of the covariate 

affect the series, indicating that there is a gradual change in the mean level of the series. 

 
# Step Function with AR(1) -- intervention affects the mean of the series gradually 

model10.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),  

                        seasonal = list(order=c(0,0,1), period=12), 

                        xtransf = data.frame(Nov16 = 1 * 

(seq_along(digi_vol_perc_ts_train) >= 140)),  

                        transfer = list(c(1,0)),  

                        method = "ML") 

 

An instantaneous pulse followed by a step AR(1) transfer function is modelled as shown 

below. 

 
# Instantaneous pulse + step function with AR(1) 

model11.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),  

                        seasonal = list(order=c(0,0,1), period=12), 



14 

 

 

                        xtransf = data.frame(Nov16 = 1 * 

(seq_along(digi_vol_perc_ts_train) == 140), 

                                             Nov16 = 1 * 

(seq_along(digi_vol_perc_ts_train) >= 140)),  

                        transfer = list(c(0,0),c(1,0)),  

                        method = "ML") 

 

The residuals of all these models are tested using the checkresiduals() function and the best 

model is selected based on the lowest value of AIC. The best model is found as the step 

function with AR(1). Coefficients of the model are shown below: 

 
Coefficients: 

         sma1  Nov16-AR1  Nov16-MA0 

      -0.1909     0.3095    10.1734 

s.e.   0.0815     0.1948     2.6717 

 

To forecast the values for the next 12 months, the future values of the covariates are 

estimated using the coefficients of the covariates from the model fit. The filter() function is 

used to calculate the effect. 

 
eff <- 1*(seq_along(1:(length(digi_vol_perc_ts_train)+12))>=140) 

tf <- filter(eff, filter = 0.309462, method = "recursive", sides = 1) * (10.173352) 

 

Since the TSA package does not provide any function to forecast, the Arima() function from 

the forecast package is used to include the effect of covariates by passing to the xreg 

parameter. The estimates of this model are used in the forecast() method. 

 
fcast <- Arima(digi_vol_perc_ts_train, c(0,1,0),  

               seasonal = list(order=c(0,0,1), period=12),  

               xreg = tf[1:(length(tf)-12)]) 

fc <- forecast::forecast(fcast, h = 12, xreg=tf[(length(tf)-11):length(tf)]) 

 

The forecasted and actual values are plot using the below code. 

 
plot(fc, main = "Digital transaction Volume forecasts", sub = 

"ARIMA(0,1,0)(0,0,1)[12] with transfer function",  

     xlab = "Year", ylab = "Percentage") 

lines(digi_vol_perc_ts_test, col = "red") 

legend(2005, 85, legend = c("Actual", "Predicted"), col = c("red", "blue"), lty = 1  

, cex= 0.8) 

 

The impact of demonetisation which is estimated by using the filter() function is visualised 

using the below code. 

 
demonetisation_effect_ts <- ts(tf, frequency = 12, start = c(2005, 04), end = 

c(2019, 10)) 

 

plot(demonetisation_effect_ts, type = "h",  

     main = "Demonetisation effect on Digital Transaction volume",  

     xlab = "Year", ylab = "Percent") 

 

The magnitude of the impact is found from the model estimates as below. 

 
window((demonetisation_effect_ts), start = c(2016, 11)) 

          Jan      Feb      Mar      Apr      May      Jun      Jul      Aug      

Sep      Oct 

2016                                                                                           

2017 14.29589 14.59739 14.69069 14.71956 14.72850 14.73126 14.73212 14.73238 

14.73246 14.73249 

2018 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 

14.73250 14.73250 
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2019 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 

14.73250 14.73250 

          Nov      Dec 

2016 10.17335 13.32162 

2017 14.73250 14.73250 

2018 14.73250 14.73250 

2019     

 

This shows that the instantaneous impact in November 2016 was an increase of 10.17%. This 

grew in the next few months till October 2017 and remained constant thereafter at around 

14.73%. 

 

The transfer function modelling for the digital value percentage series is also performed in a 

similar manner by determining the ARIMA order from the pre-intervention data and 

estimating the pulse and step functions with and without the effect of lagged values. The best 

model for this data was also determined based on lowest AIC value. The best model for 

digital value percentage data is found to be the step function, as shown below. 

 
model8.t.val <- arimax(digi_value_perc_ts_train, order = c(3,1,0), 

                       seasonal = list(order=c(0,0,1), period=12),  

                       xtransf = data.frame(Nov16 = 1 * 

(seq_along(digi_value_perc_ts_train) >= 140)),  

                       transfer = list(c(0,0)),  

                       method = "ML") 

 

For forecasting, the model estimates of the covariates are used as shown below. 

 
eff <- 1*(seq_along(1:(length(digi_value_perc_ts_train)+12))>=140) 

tf <- (eff * (-1.850245)) 

fcast <- Arima(digi_value_perc_ts_train, order = c(3,1,0), 

               seasonal = list(order=c(0,0,1), period=12),  

               xreg = tf[1:(length(tf)-12)]) 

 

fc <- forecast::forecast(fcast, h = 12, xreg=tf[(length(tf)-11):length(tf)]) 

 

The forecasts and actual values are plotted using the below code. 

 
plot(fc, main = "Digital transaction Value forecasts", sub = "ARIMA(3, 1, 

0)(0,0,1)[12] with transfer function" , 

     xlab = "Year", ylab = "Percentage") 

lines(digi_value_perc_ts_test, col = "red") 

legend(2008, 45, legend = c("Actual", "Predicted"), col = c("red", "blue"), lty = 1  

, cex= 0.8) 

 

The impact of demonetisation is plotted using the below code. 

 
demonetisation_effect_ts <- ts(tf, frequency = 12, start = c(2005, 04), end = 

c(2019, 10)) 

 

plot(demonetisation_effect_ts, type = "h",  

     main = "Demonetisation effect on Digital Transaction Value",  

     xlab = "Year", ylab = "Percentage") 

 

The magnitude of impact is found as shown below. 

 
window(demonetisation_effect_ts, start = c(2016, 11)) 

Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep 

2016                                                                                           

2017 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -

1.850245 -1.850245 
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2018 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -

1.850245 -1.850245 

2019 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -

1.850245 -1.850245 

           Oct       Nov       Dec 

2016           -1.850245 -1.850245 

2017 -1.850245 -1.850245 -1.850245 

2018 -1.850245 -1.850245 -1.850245 

2019 -1.850245 

 

Thus, demonetisation caused a permanent negative change of around 1.85% on the levels of 

digital transaction value. 


