

Configuration Manual

MSc Research Project

FinTech

Sneha Sadaye

Student ID: x19107692

School of Computing

National College of Ireland

Supervisor: Noel Cosgrave

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Sneha Sadaye
……. ………

Student ID:

X19107692

………..……

Programme:

MSc in FinTech
………………………………………………………………

Year:

2020
…………………………..

Module:

MSc Research Project
…….………

Lecturer:

Noel Cosgrave

…….………
Submission Due
Date:

17th August 2020
…….………

Project Title:

Analysing the Impact of Demonetisation on Digital Payments in India
…….………

Word Count:

4685 18
……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

17th August 2020
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to

each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to
keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Sneha Sadaye

Student ID: x19107692

1 Introduction

This document describes the hardware and software requirements to perform the research for

the thesis titled “Analysing the Impact of Demonetisation on Digital Payments in India”. It

also lays out the steps to be followed to replicate the research and perform all the experiments

in a precise manner to ensure that the research can be easily reproduced, and results can be

analysed. To ensure in depth explanation of the steps performed, code snippets and important

outputs are also portrayed.

2 Data Collection

The data for this research is collected from Reserve Bank of India’s (RBI) Database on
Indian Economy1. It includes the monthly value and volume of financial transactions
performed through various payment systems in the period of April 2004 to October 2019.
The data is available in CSV format.

3 Hardware Configuration

The configuration of the laptop used for performing the research is presented in Table 1.

Table 1: Device configuration

Processor Intel® Core™ i5-5200U CPU @ 2.20GHz

Installed RAM 8.00 GB

System type 64-bit operating system, x64-based processor

Operating System Edition Windows 10 Pro

4 Software Configuration

The software tools used are shown in Table 2.

Table 2: Software configuration

Programming language R version 3.6.1

Integrated Development

Environment (IDE)

RStudio version 1.2.1335

1 https://dbie.rbi.org.in/DBIE/dbie.rbi?site=home

https://dbie.rbi.org.in/DBIE/dbie.rbi?site=home

2

5 Steps in the Analysis

The steps performed in the research are described in detail in the following sections.

5.1 Importing libraries

In RStudio, the relevant packages are installed and libraries are imported to use the time

series analysis functions and various other functions used for processing and visualising the

data. These libraries include forecast, ggplot2, tseries, lmtest, strucchange, tidyr, tsoutliers,

TSA and nlme.

5.2 Loading Data

The following code loads the data in RStudio:

pay_data <- read.csv("RBIB_Table_No._43___Payment_System_Indicators.csv",

stringsAsFactors = F)

5.3 Pre-processing Data

The data contains some rows having descriptions of the data, for example, the beginning of

each year etc. Such rows are removed from the data. Also, the first two rows containing

headers are removed. The code to do this is as follows:

pay_data_new <- pay_data[c(-3, -11, -24, -37, -50, -63, -76, -89, -102, -115, -128,

-141, -154, -167, -180, -193, -206, -207, -208),]

pay_data_new <- pay_data_new[c(-1,-2),]

The operations such as changing date to the desired format, converting datatype of numeric

values and ordering the data according to date are done using the following code:

Change Date format to YYYY-MM-DD

pay_data_new$Date <- as.Date(paste("01-", pay_data_new$Date, sep = ""), format =

"%d-%b-%Y")

Order by Date

pay_data_new <- pay_data_new[order(pay_data_new$Date),]

Convert to numeric

pay_data_new[c(2:length(pay_data_new))] <-

as.data.frame(sapply(pay_data_new[,c(2:length(pay_data_new))], as.numeric))

The raw data contains columns that are not useful for this research. These columns are

removed and a new dataframe is created with useful columns that represent transactions

through digital payment modes.

#Select the variables of interest (only digital modes of payment)

pay_data_digi <- pay_data_new[, c(1, 2, 3, 36, 37, 54, 55, 60, 61, 64, 65, 70, 71)]

colnames(pay_data_digi) <- c("Date", "RTGS Volume", "RTGS Value", "REC Volume",

"REC Value","CC POS Volume", "CC POS Value", "DC POS VOlume", "DC POS Value","m-

Wallet Volume", "m-Wallet Value", "Mobile Banking Volume", "Mobile Banking Value")

3

5.4 Exploratory Data Analysis

This step includes separating the individual payment system transactions as individual

datasets in order to visualise these over the period of study. These data are plot using the

following code:

By Volume

ggplot() +

geom_line(data = rtgs_data_vol, aes(x = Date, y = Volume, color = "RTGS")) +

geom_line(data = rec_vol, aes(x = Date, y = Volume, color = "Retail Electronic

Clearing")) +

geom_line(data = cardPOS_vol, aes(x = Date, y = Volume, color = "Total Card Usage

at POS")) +

geom_line(data = mwallet_vol, aes(x = Date, y = Volume, color = "m-Wallet")) +

geom_line(data = mobbank_vol, aes(x = Date, y = Volume, color = "Mobile Banking"))

+

scale_color_manual("",

breaks = c("RTGS", "Retail Electronic Clearing", "Total Card Usage at POS",

"m-Wallet", "Mobile Banking"),

values = c('#FFC300','#00AA11', '#F955BB',

"#9D75D7", '#00AFBC')) +

labs(title = "Digital Payments: Mode-wise Transaction Volume",

x = "Year",

y = "Lakhs") +

scale_x_date(date_labels = "%Y", date_breaks = "1 year") +

geom_vline(xintercept = as.Date("08-11-2016", format = "%d-%m-%Y"), color =

'#FF0000', linetype="dotted") +

theme(axis.text.x = element_text(face = "bold", size = 5, angle = 45))

By Value

ggplot() +

geom_line(data = rtgs_data_value, aes(x = Date, y = Value/1000, color = "RTGS")) +

geom_line(data = rec_value, aes(x = Date, y = Value/1000, color = "Retail

Electronic Clearing")) +

geom_line(data = cardPOS_value, aes(x = Date, y = Value/1000, color = "Total Card

Usage at POS")) +

geom_line(data = mwallet_value, aes(x = Date, y = Value/1000, color = "m-Wallet"))

+

geom_line(data = mobbank_value, aes(x = Date, y = Value/1000, color = "Mobile

Banking")) +

scale_color_manual("",

breaks = c("RTGS", "Retail Electronic Clearing", "Total Card Usage at POS",

"m-Wallet", "Mobile Banking"),

values = c('#FFC300','#00AA11', '#F955BB',

"#9D75D7", '#00AFBC')) +

labs(title = "Digital Payments: Mode-wise Transaction Value",

x = "Year",

y = "10 Billion INR") +

scale_x_date(date_labels = "%Y", date_breaks = "1 year") +

geom_vline(xintercept = as.Date("08-11-2016", format = "%d-%m-%Y"), color =

'#FF0000', linetype="dotted") +

theme(axis.text.x = element_text(face = "bold", size = 5, angle = 45))

This step also includes calculating transactions in each payment mode as percentage of the

total transactions (total of cash-based and digital). This is done in order to determine the

change in trend of each payment mode as a percentage of overall trend. The code to calculate

the percentage and plot the data is given below:

1. RTGS value as percentage of total value

rtgs_val_perc <- rtgs_data_value$Value/pay_data_all$total_value *100

rtgs_val_perc_df <- as.data.frame(rtgs_data_value$Date)

rtgs_val_perc_df <- cbind(rtgs_val_perc_df,rtgs_val_perc)

colnames(rtgs_val_perc_df) <- c("Date", "Percentage")

4

2. REC value as percentage of total value

rec_val_perc <- rec_value$Value/pay_data_all$total_value *100

rec_val_perc_df <- as.data.frame(rec_value$Date)

rec_val_perc_df <- cbind(rec_val_perc_df,rec_val_perc)

colnames(rec_val_perc_df) <- c("Date", "Percentage")

3. Card usage at POS value as percentage of total value

card_val_perc <- cardPOS_value$Value/pay_data_all$total_value *100

card_val_perc_df <- as.data.frame(cardPOS_value$Date)

card_val_perc_df <- cbind(card_val_perc_df,card_val_perc)

colnames(card_val_perc_df) <- c("Date", "Percentage")

#4. m-Wallet value as percentage of total value

length(mwallet_value$Value)

mwallet_val_perc <- mwallet_value$Value/pay_data_all$total_value[c(97:187)] *100

mwallet_val_perc_df <- as.data.frame(mwallet_value$Date)

mwallet_val_perc_df <- cbind(mwallet_val_perc_df, mwallet_val_perc)

colnames(mwallet_val_perc_df) <- c("Date", "Percentage")

#5. Mobile Banking value as percentage of total value

length(mobbank_value$Value)

length(pay_data_all$total_vol)

mobbank_val_perc <- mobbank_value$Value/pay_data_all$total_value[c(85:187)] *100

mobbank_val_perc_df <- as.data.frame(mobbank_value$Date)

mobbank_val_perc_df <- cbind(mobbank_val_perc_df, mobbank_val_perc)

colnames(mobbank_val_perc_df) <- c("Date", "Percentage")

#Plot - By Value

ggplot() +

 geom_line(data = rtgs_val_perc_df, aes(x = Date, y = Percentage/10, color =

"RTGS")) +

 geom_line(data = rec_val_perc_df, aes(x = Date, y = Percentage, color = "Retail

Electronic Clearing")) +

 geom_line(data = card_val_perc_df, aes(x = Date, y = Percentage, color = "Total

Card Usage at POS")) +

 geom_line(data = mwallet_val_perc_df, aes(x = Date, y = Percentage, color = "m-

Wallet")) +

 geom_line(data = mobbank_val_perc_df, aes(x = Date, y = Percentage, color =

"Mobile Banking")) +

 scale_color_manual("",

 breaks = c("RTGS", "Retail Electronic Clearing", "Total Card

Usage at POS","m-Wallet", "Mobile Banking"),

 values = c('#FFC300','#00AA11', '#F955BB',

 "#9D75D7", '#00AFBC')) +

 labs(title = "Mode-wise Transaction Value % of Total Transaction Value",

 x = "Year") +

 scale_x_date(date_labels = "%Y", date_breaks = "1 year") +

 scale_y_continuous(name = "Percentage",

 sec.axis = sec_axis(~.*10, name = "RTGS Percentage"))+

 geom_vline(xintercept = as.Date("08-11-2016", format = "%d-%m-%Y"), color =

'#000000', linetype = "dotted") +

 theme(axis.text.x = element_text(size = 8, angle = 45))

The above code is for the value data. A similar EDA for volume data is also performed.

For the analysis performed in this study, a sum total of all the digital transactions in terms of

volume and value is used. This represents the transactions performed through all the five

modes described above as single dataset. The sum of digital transactions and its percentage of

the total transactions is calculated as shown below:

Calculate sum of all digital modes

pay_data_digi$`Total Volume` <- rowSums(pay_data_digi[,c(2,4,6,8,10)], na.rm = T)

pay_data_digi$`Total Value` <- rowSums(pay_data_digi[,c(3,5,7,9,11)], na.rm = T)

Digital transaction volume as percentage of total volume

5

digital <- pay_data_digi[,c(1,12,13)]

colnames(digital) <- c('Date', 'Volume', 'Value')

Remove the first 12 months as they show almost 100%

digital_volume_perc <- digital$Volume[-c(1:12)]/pay_data_all$total_vol[-c(1:12)]

*100

#Create a dataframe

digital_volume_perc_df <- as.data.frame(digital$Date[-c(1:12)])

digital_volume_perc_df <- cbind(digital_volume_perc_df, digital_volume_perc)

colnames(digital_volume_perc_df) <- c("Date", "Percentage")

#Plot

ggplot(digital_volume_perc_df, aes(x = Date, y = Percentage)) +

 geom_line(color = "#00AFBC", size = 1) +

 labs(title = "Digital Transaction Volume as Percentage of Total Volume",

 x = "Month-Year", y = "Percentage") +

 scale_x_date(date_labels = "%m-%y", date_breaks = "1 year") +

 geom_vline(xintercept = as.Date("08-11-2016", format = "%d-%m-%Y"), color =

'red')

5.5 Preliminary analysis using Segmented Regression

For determining the change caused by demonetisation, the data of all digital transactions is

summed and calculated as a percentage of total. The data is then analysed using segmented

regression. The date of demonetisation is used to create variables to represent intervention. A

variable for time encoding T is created, starting with 1 and increasing successively by 1 for

all time points. The variable for intervention X is coded as 0 before demonetisation and 1

after demonetisation. The variable Ti is coded as 0 before demonetisation and incremented by

1 successively after demonetisation. These variables are used to fit regression lines to the pre-

and post-demonetisation data. The gls() function is used. To account for the autocorrelation

in data, an Autoregressive and Moving Average order is set using the corARMA() function

and passed to the correlation parameter. The code for segmented regression for digital

volume data is as follows:

digi_vol_lm_df <- digital_volume_perc_df

digi_vol_lm_df$T = as.numeric(1:length(digi_vol_lm_df$Percentage))

#Define xreg = 0 pre-intervention and 1 post-intervention

pre_inter <- digi_vol_lm_df$Date < as.Date("2016-11-01")

ind_pre <- which(pre_inter)

ind_post <- which(!pre_inter)

xreg = rep(0,length(digi_vol_lm_df$Percentage))

for (i in ind_post) {

 xreg[i] = 1

}

digi_vol_lm_df$X <- xreg

Ti = rep(0,length(digi_vol_lm_df$Percentage))

for (i in ind_post) {

 Ti[i] = Ti[i-1] + 1

}

digi_vol_lm_df$'Ti' <- Ti

Fit the regression model

gls.model.1 <- gls(Percentage ~ T + X + Ti,

 data = digi_vol_lm_df,

 correlation = corARMA(form = ~ T, p = 1, q = 1),

 method = "ML")
checkresiduals(gls.model.1)

6

The residuals of this model suggest that autocorrelation is present and that the residuals are

not completely white noise. The QQ plot and ACF plot of the model residuals are shown in

Figure 1.

Figure 1:QQ plot and ACF plot of residuals of the segmented regression model for digital

volume data.

Similar steps are followed for digital value data by fitting an appropriate segmented

regression model. The residuals for this model also show autocorrelation and are significantly

different from white noise.

gls.model.2 <- gls(Percentage ~ T + X + Ti,

 data = digital_value_perc_lm_df,

 correlation = corARMA(form = ~ T, p = 1, q = 1),

 method = "ML")

Figure 2 shows the QQ plot and ACF plot of the model residuals for the digital value data.

Figure 2:QQ plot and ACF plot of residuals of the segmented regression model for digital value

data.

5.6 Time series analysis

Here, the data is converted to time series by using the ts() method as shown below:

digi_vol_perc_ts <- ts(digital_volume_perc_df, start = c(2005, 4), frequency = 12)

7

The start date as mentioned as April 2005 because from the plots from EDA, it was seen that

for the first 12 months, the digital volume percent was almost 100%. This might be because

of no records present for other types of payments.

Next, the stationarity of time series data is checked using ADF and KPSS tests as shown

below:

adf.test(digi_vol_perc_ts)

kpss.test(digi_vol_perc_ts)

The ADF test returns a p-value of 0.8024 and the KPSS test return a p-value of 0.01, both

indicating that the series is not stationary.

The ndiffs() function is used to determine the number of differences required to make the

series stationary.

ndiffs(digi_vol_perc_ts)

digi_vol_perc_ts_diff1 <- diff(digi_vol_perc_ts)

After taking the first difference, the series becomes stationary as indicated by ADF and KPSS

tests. This shows that the differencing parameter d = 1 should be used in the Arima models.

For automatic detection of the ARIMA order, auto.arima() function is used. In cases where

the automatic order detection does no detect d = 1, it is specified explicitly.

The series is decomposed to view the trend and seasonal components.

dec_tot_vol_per <- decompose(digi_vol_perc_ts)

The data is seasonally adjusted before further processing.

deseasonal_tot_vol_per <- seasadj(dec_tot_vol_per)

The data is split into train and test series as shown in the code below:

digi_vol_perc_ts_train <- window(deseasonal_tot_vol_per, end = c(2018, 10),

frequency = 12)

digi_vol_perc_ts_test <- window(deseasonal_tot_vol_per, start = c(2018, 11),

frequency = 12)

Different models are estimated as described below.

5.6.1 Dynamic Regression Models

In this step, an ARIMA model with an external regressor is estimated for the digital volume

and digital value percentage data. The external regressors are determined in two ways: 1)

detect break points in the data and if a breakpoint is found around the demonetisation time

then use it to create a variable with value 0 before and 1 after the breakpoint index; 2) detect

outliers in the data and use the level shift and additive outliers as external regressors.

5.6.1.1 Using breakpoints to create external regressors

To determine if there was change in the trend or mean level of the series caused by

demonetisation, the series is analysed using changepoint analysis using the strucchange

package. The breakpoints() function is used to determine breaks in the series as shown below.

break_point <- breakpoints(digi_vol_perc_ts_train ~ 1)

summary(break_point)

plot(digi_vol_perc_ts_train)

lines(fitted(break_point, breaks = 5), col = 4)

8

lines(confint(break_point, breaks = 5))

Figure 3:Break points in the digital volume data.

Figure 3 shows that there is a breakpoint at the end of 2016. Use the index of this breakpoint

to create a variable with 0 before and 1 after it, as follows:
ind_post = break_point$breakpoints[length(break_point$breakpoints)]

xreg <- c(rep(0,ind_post), rep(1, length(digi_vol_perc_ts_train)-ind_post))

Use this variable as an external regressor and fit an ARIMA model to the data. Use the

auto.arima() function from the forecast package and set the stepwise and approximation

parameters as False to prevent the function from skipping orders or approximating the

information criteria while selecting the best model.

model1.t.vol <- auto.arima(digi_vol_perc_ts_train,

 xreg = xreg,

 method = "ML",

 stepwise = F,

 approximation = F,

 trace = T)

The fitted model is subject to diagnostic checks by using the checkresiduals() function.
cbind("Regression Errors" = residuals(model1.t.vol, type="regression"),

 "ARIMA errors" = residuals(model1.t.vol, type="innovation")) %>%

autoplot(facets=TRUE)

checkresiduals(model1.t.vol)

Ljung-Box test

data: Residuals from Regression with ARIMA(1,0,0)(0,0,1)[12] errors

Q* = 5.4263, df = 20, p-value = 0.9995

Model df: 4. Total lags used: 24

The graphs in Figure 4 show the regression errors and errors from ARIMA model.

Figure 4: Residuals from Regression with ARIMA(1,0,0)(0,0,1)[12] errors model.

9

The ARIMA errors follow a white noise pattern. The ACF plot of residuals shows that there

is no significant autocorrelation and the p-value of the Ljung-Box test indicates that the

residuals are not significantly different from white noise.

Forecast the values for the next 12 months by using the forecast() function with the xreg

parameter as a vector of 1s, since the level shift will continue, and the h parameter set to 12.

fcast <- forecast(model1.t.vol, xreg=rep(1,12), h=12)

Calculate the accuracy of forecasts by using the accuracy() function from the forecast

package.

accuracy(fcast, digi_vol_perc_ts)

Modify the order of ARIMA and fit different models. Compare the AIC, AICc and BIC

values and select the model with the lowest values. Compare the forecast accuracy for the test

sets using different model fits as shown for the above model and determine the best model

based on least value of error measures like RMSE, MAE, MAPE and MASE.

Perform the same steps for digital value data to determine the best model.

(break_point <- breakpoints(digi_value_perc_ts_train ~ 1))

Create a level shift variable with value = 0 pre-intervention and 1 post-

intervention

ind_post = break_point$breakpoints[length(break_point$breakpoints)]

xreg <- c(rep(0,ind_post), rep(1, length(digi_value_perc_ts_train)-ind_post))

Fit an ARIMA model with xreg to account for intervention

model1.t.val <- auto.arima(digi_value_perc_ts_train,

 xreg = xreg,

 method = "ML",

 stepwise = F,

 approximation = F,

 trace = T)

#Diagnostic checks

checkresiduals(model1.t.val) # residuals are not significantly different from white

noise

#Forecast

fcast <- forecast(model1.t.val,

 xreg=rep(1,12), h=12)

model1.t.val.acc <- accuracy(fcast, digi_value_perc_ts_test)

5.6.1.2 Outliers as external regressors

To detect outliers in the time series data, the tso() function from the tsoutliers package is

used.

outliers_t.vol <- tso(digi_vol_perc_ts_train, types = c("TC", "AO", "LS", "IO",

"SLS"))
plot(outliers_t.vol)

Figure 5 shows the outliers in digital volume data and shows the presence of level shift

outliers at the end of 2016.

10

Figure 5: Outliers in the digital volume data.

Find the effect of the Level Shift and Additive Outliers at each data point in the series.
Level shift outlier at the indices

ls_index <- outliers_t.vol$outliers$ind[which(outliers_t.vol$outliers$type ==

'LS')]

ls_outliers <- outliers("LS", ls_index)

#Find effect at each point in the time series

n <- length(digi_vol_perc_ts_train)

ls_effect <- outliers.effects(ls_outliers, n)

Additive outlier at the indices

ao_index <- outliers_t.vol$outliers$ind[which(outliers_t.vol$outliers$type ==

'AO')]

ao_outliers <- outliers("AO", ao_index)

#Find effect

ao_effect <- outliers.effects(ao_outliers, n)

Create a matrix of these outliers and use as external regressors in ARIMA.
xreg.outliers <- cbind(ls_effect, ao_effect)

model4.t.vol <- auto.arima(digi_vol_perc_ts_train,

 stepwise = F,

 approximation = F,

 trace = T,

 xreg = xreg.outliers)

The function auto.arima() detects the best model as Regression with

ARIMA(0,0,4)(0,0,1)[12] errors.

Check residuals of the model.
checkresiduals(model4.t.vol)

Ljung-Box test

data: Residuals from Regression with ARIMA(0,0,4)(0,0,1)[12] errors

Q* = 136.6, df = 10, p-value < 2.2e-16

Model df: 14. Total lags used: 24

Figure 6: Residuals from Regression with ARIMA(0,0,4)(0,0,1)[12] errors

11

ACF plot of residuals in Figure 6 shows that autocorrelation is present and Ljung-box test p-

value indicates that residuals are not white noise. ndiffs() function indicated that differencing

of order 1 is required, therefore pass the parameter d = 1 in auto.arima().

model5.t.vol <- auto.arima(digi_vol_perc_ts_train,

 stepwise = F,

 approximation = F,

 trace = T,

 xreg = xreg.outliers, d = 1)

This returns Regression with ARIMA(0,1,1)(1,0,1)[12] errors as the best model. Residual

checks indicate that residuals are not significantly different from white noise as shown in

Figure 7.

Figure 7: Residuals from Regression with (0,1,1)(1,0,1)[12] errors model

Use the model to forecast for the next 12 months using the forecast() function. The future

values of xreg parameter are calculated as shown below. For level shifts, the future values

will be 1 and for additive outliers, the future values will be 0.

LS17 <- rep(1,12)

LS29 <- rep(1,12)

LS73 <- rep(1, 12)

LS118 <- rep(1, 12)

LS128 <- rep(1, 12)

LS140 <- rep(1, 12)

LS158 <- rep(1,12)

AO141 <- rep(0, 12)

fut.xreg <- cbind(LS17, LS29, LS73, LS118, LS128, LS140, LS158, AO141)

fut.xreg <- as.matrix(fut.xreg)

fcast <- forecast(model5.t.vol,

 xreg = fut.xreg, h=12)

Plot the forecasts and actual values.

plot(fcast, main = "Digital transaction Volume forecasts", sub = "Regression with
ARIMA(0,1,1)(1,0,1)[12] errors" ,

 xlab = "Time", ylab = "Percentage")

lines(digi_vol_perc_ts_test, col = "red")

legend(2005, 75, legend = c("Actual", "Predicted"), col = c("red", "blue"), lty = 1

, cex= 0.8)

Calculate the accuracy of forecasts.

accuracy(fcast, digi_vol_perc_ts_test)

12

Modify the order of ARIMA and fit different models. Compare the AIC, AICc and BIC

values and select the model with the lowest values. Compare the forecast accuracy for the test

sets using different model fits and determine the best model based on least value of error

measures like RMSE, MAE, MAPE and MASE.

Perform the same steps for digital value data to determine the best model.

outliers_t.val <- tso(digi_value_perc_ts_train, types = c("TC", "AO", "LS", "IO",

"SLS"))

n <- length(digi_value_perc_ts_train)

Level shift outlier at the indices

ls_index <- outliers_t.val$outliers$ind[which(outliers_t.val$outliers$type ==

'LS')]

ls_outliers <- outliers("LS", ls_index)

ls_effect <- outliers.effects(ls_outliers, n)

Additive outlier at the indices

ao_index <- outliers_t.val$outliers$ind[which(outliers_t.val$outliers$type ==

'AO')]

ao_outliers <- outliers("AO", ao_index)

ao_effect <- outliers.effects(ao_outliers, n)

xreg.outliers <- cbind(ls_effect, ao_effect)

Modelling with ARIMA with outliers as xreg variables

model4.t.val <- auto.arima(digi_value_perc_ts_train,

 stepwise = F,

 approximation = F,

 trace = T,

 xreg = xreg.outliers)

Diagnostic checks

checkresiduals(model4.t.val)

#Forecast

LS92 <- rep(1,12)

AO73 <- rep(0, 12)

fut.xreg <- cbind(LS92, AO73)

fut.xreg <- as.matrix(fut.xreg)

fcast <- forecast(model4.t.val,

 xreg = fut.xreg, h=12)

5.6.2 ARIMA models with transfer functions

To fit at an ARIMA model with transfer function, the ARIMA order of the pre-intervention

series is detected by using auto.arima() function with parameters stepwise and approximation

set to False.

auto.arima(window(digi_vol_perc_ts_train, end = c(2016,10)),

 stepwise = F,

 approximation = F,

 trace = T)

This order is then used on the entire training series along with the transfer function

parameters passed to the arimax() function. In the code shown below, the xtransf parameter is

used to specify an external covariate which is a pulse indicator at index 140. It is known that

demonetisation occurred at time point 140 in the series. Therefore, the covariate is created

such that it has the value 1 at index 140 and 0 otherwise, indicating a temporary change. The

transfer parameter contains a list of (p,q) which determines the AR and MA order of the

13

covariate. Here, this value is set as (0,0) to specify that no lagged effects of covariates are

taken into consideration. The estimation method used is Maximum Likelihood estimation.

Pulse function

model7.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),

 seasonal = list(order=c(0,0,1), period=12),

 xtransf = data.frame(Nov16 = 1 *

(seq_along(digi_vol_perc_ts_train) == 140)),

 transfer = list(c(0,0)),

 method = "ML")

Perform diagnostic tests on the model residuals.

checkresiduals(model7.t.vol)

Ljung-Box test

data: Residuals from ARIMA(0,1,0)(0,0,1)[12]

Q* = 6.6342, df = 22, p-value = 0.9993

Model df: 2. Total lags used: 24

The residuals represent white noise.

Various transfer functions are estimated by changing the covariates and transfer lists. The

step function is modelled by setting the covariate as 0 before and 1 after demonetisation.

#Step function

model8.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),

 seasonal = list(order=c(0,0,1), period=12),

 xtransf = data.frame(Nov16 = 1 *

(seq_along(digi_vol_perc_ts_train) >= 140)),

 transfer = list(c(0,0)),

 method = "ML")

A pulse function with AR(1) effect is modelled as shown below. This is used to determine if

the lagged values of the covariate are significant in affecting the actual series.

Pulse function with AR(1) --> effect gradually dies out

model9.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),

 seasonal = list(order=c(0,0,1), period=12),

 xtransf = data.frame(Nov16 = 1 *

(seq_along(digi_vol_perc_ts_train) == 140)),

 transfer = list(c(1,0)),

 method = "ML")

A step function with AR(1) is modelled as shown below. The lagged values of the covariate

affect the series, indicating that there is a gradual change in the mean level of the series.

Step Function with AR(1) -- intervention affects the mean of the series gradually

model10.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),

 seasonal = list(order=c(0,0,1), period=12),

 xtransf = data.frame(Nov16 = 1 *

(seq_along(digi_vol_perc_ts_train) >= 140)),

 transfer = list(c(1,0)),

 method = "ML")

An instantaneous pulse followed by a step AR(1) transfer function is modelled as shown

below.

Instantaneous pulse + step function with AR(1)

model11.t.vol <- arimax(digi_vol_perc_ts_train, order = c(0,1,0),

 seasonal = list(order=c(0,0,1), period=12),

14

 xtransf = data.frame(Nov16 = 1 *

(seq_along(digi_vol_perc_ts_train) == 140),

 Nov16 = 1 *

(seq_along(digi_vol_perc_ts_train) >= 140)),

 transfer = list(c(0,0),c(1,0)),

 method = "ML")

The residuals of all these models are tested using the checkresiduals() function and the best

model is selected based on the lowest value of AIC. The best model is found as the step

function with AR(1). Coefficients of the model are shown below:

Coefficients:

 sma1 Nov16-AR1 Nov16-MA0

 -0.1909 0.3095 10.1734

s.e. 0.0815 0.1948 2.6717

To forecast the values for the next 12 months, the future values of the covariates are

estimated using the coefficients of the covariates from the model fit. The filter() function is

used to calculate the effect.

eff <- 1*(seq_along(1:(length(digi_vol_perc_ts_train)+12))>=140)

tf <- filter(eff, filter = 0.309462, method = "recursive", sides = 1) * (10.173352)

Since the TSA package does not provide any function to forecast, the Arima() function from

the forecast package is used to include the effect of covariates by passing to the xreg

parameter. The estimates of this model are used in the forecast() method.

fcast <- Arima(digi_vol_perc_ts_train, c(0,1,0),

 seasonal = list(order=c(0,0,1), period=12),

 xreg = tf[1:(length(tf)-12)])

fc <- forecast::forecast(fcast, h = 12, xreg=tf[(length(tf)-11):length(tf)])

The forecasted and actual values are plot using the below code.

plot(fc, main = "Digital transaction Volume forecasts", sub =

"ARIMA(0,1,0)(0,0,1)[12] with transfer function",

 xlab = "Year", ylab = "Percentage")

lines(digi_vol_perc_ts_test, col = "red")

legend(2005, 85, legend = c("Actual", "Predicted"), col = c("red", "blue"), lty = 1

, cex= 0.8)

The impact of demonetisation which is estimated by using the filter() function is visualised

using the below code.

demonetisation_effect_ts <- ts(tf, frequency = 12, start = c(2005, 04), end =

c(2019, 10))

plot(demonetisation_effect_ts, type = "h",

 main = "Demonetisation effect on Digital Transaction volume",

 xlab = "Year", ylab = "Percent")

The magnitude of the impact is found from the model estimates as below.

window((demonetisation_effect_ts), start = c(2016, 11))

 Jan Feb Mar Apr May Jun Jul Aug

Sep Oct

2016

2017 14.29589 14.59739 14.69069 14.71956 14.72850 14.73126 14.73212 14.73238

14.73246 14.73249

2018 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250

14.73250 14.73250

15

2019 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250 14.73250

14.73250 14.73250

 Nov Dec

2016 10.17335 13.32162

2017 14.73250 14.73250

2018 14.73250 14.73250

2019

This shows that the instantaneous impact in November 2016 was an increase of 10.17%. This

grew in the next few months till October 2017 and remained constant thereafter at around

14.73%.

The transfer function modelling for the digital value percentage series is also performed in a

similar manner by determining the ARIMA order from the pre-intervention data and

estimating the pulse and step functions with and without the effect of lagged values. The best

model for this data was also determined based on lowest AIC value. The best model for

digital value percentage data is found to be the step function, as shown below.

model8.t.val <- arimax(digi_value_perc_ts_train, order = c(3,1,0),

 seasonal = list(order=c(0,0,1), period=12),

 xtransf = data.frame(Nov16 = 1 *

(seq_along(digi_value_perc_ts_train) >= 140)),

 transfer = list(c(0,0)),

 method = "ML")

For forecasting, the model estimates of the covariates are used as shown below.

eff <- 1*(seq_along(1:(length(digi_value_perc_ts_train)+12))>=140)

tf <- (eff * (-1.850245))

fcast <- Arima(digi_value_perc_ts_train, order = c(3,1,0),

 seasonal = list(order=c(0,0,1), period=12),

 xreg = tf[1:(length(tf)-12)])

fc <- forecast::forecast(fcast, h = 12, xreg=tf[(length(tf)-11):length(tf)])

The forecasts and actual values are plotted using the below code.

plot(fc, main = "Digital transaction Value forecasts", sub = "ARIMA(3, 1,

0)(0,0,1)[12] with transfer function" ,

 xlab = "Year", ylab = "Percentage")

lines(digi_value_perc_ts_test, col = "red")

legend(2008, 45, legend = c("Actual", "Predicted"), col = c("red", "blue"), lty = 1

, cex= 0.8)

The impact of demonetisation is plotted using the below code.

demonetisation_effect_ts <- ts(tf, frequency = 12, start = c(2005, 04), end =

c(2019, 10))

plot(demonetisation_effect_ts, type = "h",

 main = "Demonetisation effect on Digital Transaction Value",

 xlab = "Year", ylab = "Percentage")

The magnitude of impact is found as shown below.

window(demonetisation_effect_ts, start = c(2016, 11))

Jan Feb Mar Apr May Jun Jul Aug Sep

2016

2017 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -

1.850245 -1.850245

16

2018 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -

1.850245 -1.850245

2019 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -1.850245 -

1.850245 -1.850245

 Oct Nov Dec

2016 -1.850245 -1.850245

2017 -1.850245 -1.850245 -1.850245

2018 -1.850245 -1.850245 -1.850245

2019 -1.850245

Thus, demonetisation caused a permanent negative change of around 1.85% on the levels of

digital transaction value.

