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Abstract 

Software Defined Networking is a new model in the era of cloud computing. It provides 
programmability which in turn helps to configure and administer a network with 
continuously changing network state. Software Defined Networking has logical plane 
separated from the data plane. The logical plane is centralized where all the decision 
making happens. The data plane receives logical decisions from the control plane and works 
on forwarding of data packets. The control plane consists of the controllers and the data 
plane consists of the switches. A typical SDN has a controller which handles the routing 
decisions and switches that work on the decisions made by the controller. However, this 
has constraints as a single controller can be overloaded and become a single point of failure. 
This reduces scalability and performance of the whole network. Recent works have been 
put forward to mark these issues. Most of them suggested the placement of multiple 
controllers, instead of a single one, which can work concurrently to serve the switches 
better. However, this approach raises another problem. Since the network’s state keeps 
changing, placing of multiple controllers becomes more challenging. Hence, the problem of 
Dynamic Controller Placement comes in to picture. The number of controllers in a network 
should be increased dynamically depending on the number of switches and hosts. This will 
lead to load balancing among the controllers. When the controllers in a network are 
balanced, the performance increase can been seen in terms of increased throughput and 
reduced latency. 

• Keywords: Software Defined Networking, Dynamic controller placement, Controller Load 
Balance, Throughput 

1 Introduction 
Software Defined Networking has been widely adopted by organizations as it suits well to the needs 
of cloud computing. Surpassing the traditional internet, due to its lack of adaptability to huge 
networks such as cloud Datacentres, Software Defined Networking meets the key requirements of 
Cloud Computing. It provides programmability to configure and administer a network. In SDN, 
the logic and data planes are separated, where the logic plane is centralized for decision making 
(Bari et al.; 2013). With a typical set-up of the SDN, as the network grows, the controller gets 
overloaded and also becomes a single point of failure. Moreover, finding the best possible placement 
locations gets difficult. Similarly, the flow set-up time, the time taken to assign a forwarding rule 
to an Open Flow switch, increases which in turn affects the performance of networks and 
applications (Bari et al.; 2013). 
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Hence, the idea of placing multiple controllers, which are physically distributed but logically 
centralized, was proposed by (Hassas Yeganeh and Ganjali; 2012) and (Tootoonchian and Ganjali; 
2010). This gives rise to another problem which comes up because of the dynamic nature of the 
networks. Since the networks’ state keeps changing continuously, placing of controllers cannot be 
static. The best possible solution should consider the location of controllers, flow set-up time and 
controller communication overhead. In a multiple-controller environment, the controllers need to 
communicate to each other to have an updated network state. This communication can cause 
slowness. Moreover, the controller placement strategy should dynamically alter the number of 
controllers as well as the location, as traffic may change at different locations. Hence, the controller 
communication overhead problem cannot be ignored (Bari et al.; 2013). (Bari et al.; 2013) and 
(Lange et al.; 2015) are the works done on the aforementioned problems. (Bari et al.; 2013) 
formulated the problem of Dynamic Controller Placement and approached with 2 algorithms which 
worked together to solve the controller placement problem. They came up with a Greedy Knapsack 
algorithm, where they treated controllers as the knapsacks and switches as the objects to be added 
to those knapsacks. The algorithm assigned the switches to the controllers in each iteration. If any 
given switch was not assigned to a controller, that particular controller would be turned inactive. 
When all the switches were assigned to the controllers, the iteration would stop. The output of this 
algorithm would then go as an input to their second algorithm called Dynamic Controller 
Provisioning with Simulated Annealing (DCP-SA). This algorithm enhances the controller-switch 
assignments further. However, in the Greedy Knapsack algorithm has a probability of having 
unassigned switches. The algorithm assigns these switches to any random controller. This can 
affect performance significantly. (Lange et al.; 2015) also works on inter-controller latency and 
controller to node latency using Pareto based Simulated Annealing algorithm. They used POCO 
framework, implemented in MATLAB, which comprehensively analyses all the probable 
placements of the desired network topology. It considers various scenarios with respect to NFV 
also. This work proposes an algorithm to add controllers in a network, based on the number of 
switches. Furthermore, to map and remap the switches based whenever new controllers are added. 
The Algorithm is called as Round Robin Switch scheduler, which assigns switches one by one to 
each controller in turns making sure the load of switches on the controllers is balanced. 

1.1 Research Question 

Can the performance of Software Defined Networks be enhanced by dynamic placement of 
controllers using Round Robin Scheduler Algorithm? 

1.2 Research Objective 

To address the problem raised in the research question, the below mentioned objectives will be 
followed. Section 2 describes the SDN Architecture with detailed explanation of its components. 
Section 3 critically analyses the existing literature on multiple controllers problem and proposed 
solutions. It also describes the problem of Dynamic Controller Placement. Section 4 describes the 
methodology by explaining the algorithm of addition and removal of controllers in a multi controller 
SDN. Section 5 details the practical implementation of the proposed logic with brief description of 
the tools and technologies used. The evaluation of the work done has been described in section 6, 
with appropriate measurements and visual interpretations. Section 7 concludes with brief re-
iteration of the work done and potential areas to focus on as the future work. 

2 SDN Architecture 
In this section, Software Defined Networking architecture will be discussed. Different SDN layers 
and components will be discussed. Software Defined Networking divides the control plane and data 
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plane which makes the switches mere forwarding devices. The decision making takes place on 
logically centralized controllers (Zhang, Cui, Wang and Zhang; 2017). The controllers are in charge 
of policy enforcement, network configuration, topology management, link discovery etc. A Software 
Defined Network consists of 3 layers i.e. Application layer, Control layer and Infrastructure layer. 
It also consists of two interfaces i.e. Southbound interface and Northbound interface. 

 
Fig.1 SDN Architecture (Zhang, Cui, Wang and Zhang; 2017). 

2.1 Infrastructure Layer 

Switches and various network devices constitute the infrastructure layer. The flow forwarding 
information will be passed on to the controllers by the infrastructure layer via the data-control 
plane. This plane is also referred as Southbound APIs. The infrastructure layer is responsible to 
send traffic in accordance with the logic of control layer. There are three main components of the 
switch, Secure Channel, Flow Table and OpenFlow protocol. Every OpenFlow switch is linked to 
the controller using Secure Channel interface. Flow table stores all forwarding policies. The 
southbound API which links the control plane and data plane is the OpenFlow protocol (Zhang, 
Cui, Wang and Zhang; 2017). 

2.2 Southbound APIs 

The infrastructure layer and the control layer are linked by the Southbound APIs. Providing 
communication between the controllers and other network devices, for finding the network 
topology, update flow table and put in force the control policies, is the key objective of the 
Southbound APIs. The most widely used Southbound API for SDN is the OpenFlow protocol 
(Zhang, Cui, Wang and Zhang; 2017). 

2.3 Control Layer 

It is the central layer that is in charge of managing the network. It can have a single controller or 
many controllers. It forms required network policies and configures switches by having overall 
network information. It also communicates with different controllers through east-west interface 
(Zhang, Cui, Wang and Zhang; 2017). 

2.4 Northbound APIs 

It is a link in between the application layer and the control layer. Making applications to utilize 
network resources and capabilities is the main objective of the Northbound APIs. In contrast to the 
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Southbound APIs, the Northbound APIs does not have standard protocols yet. This Is mainly 
because of the fact that there are different characteristics of controllers and applications (Zhang, 
Cui, Wang and Zhang; 2017). 

2.5 Application Layer 

SDN applications and services developed as per user specifications constitutes the application 
layer. Both the data plane switches and the control layer can be accessed by the application layer 
through control layer and Northbound APIs respectively (Zhang, Cui, Wang and Zhang; 2017). 

3 Literature Review and Related Work 
There are a number of multiple controller platforms that have been worked upon previously. These 
works were tailored for different applications and requirements. The works done previously were 
of two approaches. One of them involving shared datastores in order to share the network state 
and other ones working based on the traffic conditions. 

(Bari et al.; 2013) formulated the problem of Dynamic Controller Placement and approached with 
two algorithms which worked together to solve the controller placement problem. They came up 
with a Greedy Knapsack algorithm, in which they treated controllers as the knapsacks and 
switches as the objects to be added to those knapsacks. The algorithm assigned the switches to the 
controllers in each iteration. If any given switch was not assigned to a controller, that particular 
controller would be turned inactive. When all the switches were assigned to the controllers, the 
iteration would stop. The output of this algorithm would then go as an input to their second 
algorithm called Dynamic Controller Provisioning with Simulated Annealing (DCPSA). This 
algorithm enhances the controller-switch assignments further. However, in the Greedy Knapsack 
algorithm has a probability of having unassigned switches. The algorithm assigns these switches 
to any random controller. This can affect performance significantly. 

(Lange et al.; 2015) works on inter-controller latency and controller to node latency using Pareto 
based Simulated Annealing algorithm. They used POCO framework, implemented in MATLAB, 
which comprehensively analyses all the probable placements of the desired network topology. It 
considers various scenarios with respect to NFV also. 

(Hassas Yeganeh and Ganjali; 2012) devised a framework which divides the controllers in two 
layers. The bottom layer consists of local controllers which are unaware of the network state. Local 
control applications alone are run in this layer. The upper layer consists of a root controller which 
is aware of the overall network state. The network operators will be capable of replicating the local 
controllers on the go and reduce overhead on the top layer using Kandoo’s design. 

(Botelho et al.; 2014) is the work done based on a shared replicated datastore that saves the overall 
network state. The architecture of Smartlight incorporates a primary centralized controller and 
backup controllers. The idea is to fail over the backup controllers in when the primary centralized 
controller goes down. The cache of the datastore is managed by the primary controller. 

A clustering based distributed datastore architecture has been proposed by (Kim et al.; 2017). It 
comprises of Shards, part of the datastore. All cluster members contain a shard. In order to have 
consistency, the shard leader alone has the authority to receive updates. Dispersing the shard 
leaders throughout the controllers is the major objective of the OpenDaylight platform. 

(Lee et al.; 2014) worked on developing IRIS, a recursive SDN controller platform which involves 
horizontally scalable architecture. It increases performance on the go by adding servers to the 
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controller cluster. It reduces management cost, transport interoperation by adopting domainbased 
network abstraction. 

Elasticon (Dixit et al.; 2014) was proposed as framework for elastic distributed controllers. They 
worked on the idea that the controller pool would expand and contract based on the traffic. The 
load is balanced across controllers. For balancing load among many controllers and incorporating 
elasticity, novel switch migration protocol and algorithms were used. Load and imbalance among 
controllers is identified by Elasticon, which monitors controllers in a timely manner and the lightly 
loaded controllers are assigned with switches from the overloaded ones. Since OpenFlow is not 
suited for disruption free switch assignment, assignment of a switch from one controller to another 
might lead to disturbance majorly affecting Datacentre applications. Hence, they came up with a 
four-phase migration protocol which is compliant to the Open Flow protocol. Generating a single 
trigger which is communicated over to the controllers, to perform the hand off without any 
disturbance, is the main functionality of the protocol. 

Another novel approach in (Krishnamurthy et al.; 2014) is used for allocation of switches and 
partitions of application state to the distributed controllers. The assignment problem has been 
developed with strict time constraints. They have claimed to achieve reduction of flow set-up time 
and controller operating costs by 44% and 42% respectively. 

(Moazzeni et al.; 2018) works on improving the reliability of controllers by devising a new method 
called “Reliable Distributed SDN”. Their idea is to divide the network into multiple domains, each 
having a master controller along with one or many slave controllers. The reliability rate of the 
controllers is found out by the master controller of each domain by using the proposed formula. 
Each controller receives the reliability rate in regular time intervals via edge switches through the 
East/West bound interface. To check the status of all the controllers on a regular time interval, the 
controller with the best reliability rate would be assigned as a coordinator. In case of a controller 
discovered to be inactive, the coordinator makes a decision on selecting the best possible active 
controllers to take over the sub network. The coordinates do this by getting the reliability rates 
from the cache and will run the fast recovery till the failed controller is fixed. 

3.1 OpenFlow protocol 

OpenFlow protocol is an open standard southbound API for Software Defined Networking. It is one 
of the most widely used protocols (Zhang, Cui, Wang and Zhang; 2017). Open Networking 
Foundation, an organization committed to SDN’s advancement, governs this protocol’s standards. 
To enhance reliability of controllers, OpenFlow describes a multi-controller approach from version 
1.2.0 (Zhang, Cui, Wang and Zhang; 2017). Creating communication of switches with multiple 
controllers was put forward in version 1.2.0. The protocol is getting enhanced since version 1.0.0 to 
version 1.5.0 (Zhang, Cui, Wang and Zhang; 2017). Table 1 describes different the development of 
the OpenFlow protocol. 

Table 1: OpenFlow protocol versions 

Version Date Features 

OpenFlow 1.0.0 Dec, 2009 Fundamental architecture, single flow table, IPv4 
OpenFlow 1.1.0 Feb, 2011 Multiple flow table, group table, MPLS and VLAN 
OpenFlow 1.2.0 Dec, 2011 IPv6, multiple controllers 
OpenFlow 1.3.0 June, 2012 Single flow measure, IPv6 extend header 
OpenFlow 1.4.0 October, 2013 Flow table synchronization mechanism, bundling message 
OpenFlow 1.5.0 December, 2014  et type identification process, egress table, scheduled bundle exp 
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(Zhang, Cui, Wang and Zhang; 2017) 

3.2 Architecture of multiple controllers 

SDN was initially designed to handle the network switches from a centralized controller. However, 
one controller managing the switches gets overloaded and becomes a single point of failure. To 
combat this issue, the concept of having multiple controllers came into existence. Based on the 
functionality of controllers, the architecture of SDN multiple controllers comes in two 
classifications: centralized and distributed architecture (Zhang, Cui, Wang and Zhang; 2017). A 
centralized controller architecture has only one controller, whereas a distributed architecture has 
multiple controllers which are logically centralized (Zhang, Cui, Wang and Zhang; 2017). The 
centralized controller architecture was worked upon by (Botelho et al.; 2014). It was done based on 
a shared replicated datastore that saves the overall network state. The architecture of Smartlight 
incorporates a primary centralized controller. There are other backup controllers which come into 
play only in case failure of the primary one. (Lee et al.; 2014) involved scalable architecture. It 
increases performance on the go by adding servers to the controller cluster. It reduces management 
cost, transport interoperation by adopting domain-based network abstraction. The centralized 
architecture has its limitations in terms of performance and scalability. The distributed 
architecture addresses the concerns related to the former. Smartlight (Botelho et al.; 2014) devised 
backup controllers for fault tolerance. However, it does not fully eliminate the issues of 
performance and scalability as single controller still handles requests from all the switches. In case 
of IRIS (Lee et al.; 2014), the scalability is relatively high. 

This section discussed two major categories of controller architecture in SDN: centralized and 
distributed. The centralized architecture has only a single controller responsible for managing the 
underlying switches. In contrary, the distributed architecture has many controllers working 
together which in turn performs better in terms of performance and scalability. 

3.3 Dynamic controller placement 

Even though physically dispersed, the distributed controllers should work in a logically centralized 
way. This requires having a consistent overall view of the network which demands the sharing of 
information between controllers. Issues arise while communicating information between 
controllers, such as deciding the number and location of controllers (Zhang, Cui, Wang and Zhang; 
2017). The placement of controllers dynamically comes with two major problems: Controller 
consensus overhead and controller to switch latency. In order to appropriately place the controllers, 
a number of metrics have been put forward (Zhang, Cui, Wang and Zhang; 2017). (Bari et al.; 2013) 
has worked on different costs as parameters to decide upon the correct placement of controllers. 

• Statistics collection cost – For gathering information from their assigned switches, the 
number of messages required for the controllers every second, is the statistics collection cost 
(Bari et al.; 2013). 

• Flow setup cost – Initiating flow related rules between switch and controller generates flow 
setup cost (Bari et al.; 2013). Initial path setup request, intermediate path setup request and 
the rule installation cost are further derived from the flow setup cost (Bari et al.; 2013). 

• Synchronization cost – To maintain the overall view of the network, the controllers need to 
communicate with each other. The number of messages sent and received among controllers 
is the synchronization cost (Bari et al.; 2013). 

• Switch reassignment cost – The cost incurred while allocating a switch to a new controller is 
the switch reassignment cost (Bari et al.; 2013). 



10 

The POCO framework used by (Lange et al.; 2015) considered the problem of controller-to-controller 
latency to make sure the latency is as low as possible during the synchronization of controllers. Their 
work represented the calculation in Fig 2. They did so by representing the controllers in colours. i.e. 
every controller is shaded according to the distance to the most far away controller. 

 
Fig.2 Controller-to-Controller latency (Lange et al.; 2015). 

Therefore, the POCO framework in (Lange et al.; 2015) has considered both controller to 
controller latency and node to controller latency. (Lange et al.; 2015) also points out that the 
latencies among controllers and controller to switch latency is low in a tightly coupled clusters 
while it is vice versa in case of a widely dispersed layout of controllers. Hence, POCO framework 
gives the options to the decision makers about their choices while finding out possible placements. 
While (Lange et al.; 2015) builds a Pareto based optimal placement framework POCO for 
evaluating all the possible placements for given topologies, it does not consider the traffic factor. 
POCO is a Heuristic based approach which can be used for large-scale networks as well. However, 
as the networks grow, one the most important factors to consider is the network traffic, which is 
ever-changing, Hence, we can conclude that POCO is not dynamic in nature, whereas (Bari et al.; 
2013) considers various metrics, described in cost measurements and also considers traffic. The 
algorithms used by (Bari et al.; 2013), Greedy Knapsack and Simulated Annealing, consider the 
traffic matrix which gives (Bari et al.; 2013) an edge over (Lange et al.; 2015) which is not dynamic. 
In this section, we discussed the problems related to placement of controllers, the metrics to be 
considered and the placement considering traffic as a key factor. Placing controllers by speculating 
the number and location of controllers, dynamically is the best possible way to deal with the 
controller placement problem. 

 
Fig.3 Application state for multi-tenant virtualized datacentre application (Krishnamurthy et 

al.; 2014). 

In this section, we have discussed distributed datastore approach and application state 
partitioning approach. Both of these approaches are quite different than that of typical approaches 
to the controller placement problem. The former approach works by dividing the datastores into 
several parts called ‘shards’, whereas, the latter approach works on dividing the state of an 
application and assigning it, along with the SDN switch, to the controllers. 
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4 Methodology 
The placement of controllers in a dynamic environment is the necessity of the day. In this work, we 
propose an algorithm known as Round Robin Switch Scheduler, which would allocate the OpenFlow 
switches to multiple controllers on a round robin basis. The idea is to provide load balancing among 
the controllers, so that the controllers are not overwhelmed with more number of switches. On a 
particular Network Topology, based on the number of controllers running, the algorithm assigns 
each controller, the switches in every turn. This gives the network better stability as the load of 
switches on a set of controllers is continuously balanced. Furthermore, it maintains the upper 
threshold of 70%. If this threshold is reached on any of the controllers, another controller is added 
dynamically and the switches are automatically redistributed based on the number of switches and 
controllers. The controllers would be removed or made inactive if the percentage on any of the 
controllers falls back to below 30%. This would increase the network performance by reducing the 
controller communication overhead and optimizing the network throughput. 

 
Fig.4 Flow Chart of Round Robin Switch Scheduler. 

5 Implementation and Design 
5.1 Tools and Technologies 

5.1.1 Mininet and Mininet Python API 

Algorithms can be tested and worked upon by the Mininet simulator. It has been worked upon to 
enhance the performance (Mallesh; 2017). As (Mallesh; 2017) has pointed out,(Barrett et al.; 2017) 
has worked on contrasting the performance of the Mininet and other test beds. They have inferred 
that Mininet simulator works better for in order to test. Moreover, it suits OpenFlow protocol. The 
real-time networks can be duplicated involving various topologies.(Mallesh; 2017) also mentioned 



12 

that (Ortiz et al.; 2016) worked on evaluating the performance and compatibility of the Mininet 
framework. Datacentre type topology was duplicated and it was concluded that the performance of 
Mininet was better. 

 
Fig.5 Active, Mininet Design (Mallesh; 2017). 

Mininet allows you to create and run networks using the mn command. However, to implement 
customized topologies and better controlling the network deployment, the Mininet Python API is 
used. It uses Python programming for Software Defined Networking. In this research project, we 
have used the Python API for generating custom topologies with single and multi-controller 
scenarios. The network is deployed using python scripts. 

5.1.2 POX Controller 

POX is one of the famous types of Controllers used. The OVS or OpenFlow Switches talk to this 
controller seamlessly to receive the flow rules. In this project, we have deployed the POX controller 
on a separate LINUX based Ubuntu VM. The network topologies connect to this Controller using 
its IP address and the default port for Controllers. 

5.1.3 Operating System and Virtualization Platform 

Mininet simulator works with LINUX operating systems such as Ubuntu. In order to install, 
configure and work on Mininet, a 64-bit virtual machine with Ubuntu 20.04 Desktop Operating 
System, has been created in Oracle Virtual Box. It also provides a CLI for running Linux commands 
to manage the framework. The virtual machine will need to have at least 2 GB of RAM. As part of 
the network configurations, a Host-Only Network Adapter has been added with DHCP enabled. 
The IP address assigned by the DHCP will be used to SSH into the VM from the Host machine, in 
this case, a MacBook Pro. 

5.1.4 XTerminal 

Along with the tools used, another important application used is XTerminal. It is used to leverage 
the graphical experience of applications in LINUX based Operating Systems. 

In this project, XTerm is used extensively for the following needs: 
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• SSH into the VM from host - This is done by using the -X or -Y option in the SSH command 

• Running Shell of each host in the deployed Mininet topology - This is used in the Mininet CLI 

when the network is running 

• Running Wireshark on individual hosts deployed in the Mininet topology. 

 
Fig.6 Using XTerm to display instances of multiple hosts. 

5.1.5 Gnuplot and Iperf 

Iperf is utilized to measure speed and throughput of a network. In Mininet, it can be used to dump 
measurements readings to a file. We can use this file as an input and pass it on to the Gnuplot tool 
for generating some meaningful insights. 
Using Gnuplot, we can chart graphs of throughput and latency from the input file carrying the 
measurement readings. 

5.1.6 Wireshark 

Wireshark is one of the best packet analyser tools and it is widely used by researchers, developers 
and networking engineers. It records detailed information of the packets generated on a particular 
network interface. In this project, Wireshark has been used on the Ubuntu VM and on individual 
hosts from the Mininet Network. It lists all the packets with details such as Time, Source (MAC 
address/IP address), Destination (MAC address/IP address), Protocol (ICMP, MDNS, OF etc). 

Fig.7 Wireshark packet analysis of the Mininet Network connected a remote POX Controller. 
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5.2 Topology Generation 

In order to address the issue of network congestion and reduced throughput because of having a 
single controller, we have demonstrated the following scenarios with single and multiple 
controllers environment. 

• Scenario 1: Having a single controller 

In this scenario, we have deployed a Mininet network with a single local Controller running 
on default port 6633. We have used tree topology with depth level 2 and Fanout 5. This will 
deploy 1 Controller, 6 OVSSwitches and 25 hosts. 

 
Fig.8 Topology generated in Mininet using Python Script 
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Fig.9 Python Script for Single Controller Network. 

• Scenario 2: Having two Controllers in a Network 

In this scenario, we have deployed 2 Controllers, one running locally on 127.0.0.1 and another 
one is the POX Controller running remotely on 192.168.56.105. We have used tree topology 
with 2 levels of depth and Fanout being 5. This will deploy 2 Controllers, 6 OVSSwitches and 
25 hosts. The Switches are mapped to their corresponding Controllers using the cmap 
function. 

 
Fig.10 Topology with two controllers generated in Mininet using Python Script. 
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Fig.11 Python Script for Two Controllers Network. 

• Scenario 3: Having three Controllers in a Network 

In this scenario, a network has been deployed with 2 local controllers and a remote POX 
Controller. We have used tree topology with 2 levels of depth and Fanout of 8. This deploys 
3 Controllers, 9 OVSSwitches and 64 hosts. 

 
Fig.12 Topology with three controllers generated in Mininet using Python Script. 



17 

 
Fig.13 Python Script for Three Controllers Network. 

6 Evaluation 
When a large scale SDN is deployed, it is practically next to impossible to leave it on a single 
Controller. The throughput and latency of the network takes a hit and the whole purpose of the 
SDN is not served. We have demonstrated this by deploying the network in 3 scenarios using the 
Mininet Emulator. There has been thorough analysis and of the network performance by 
measuring the throughput. 

As discussed in the topology section, in the first scenario, we have seen that the throughput of the 
network with a single controller is quite low when compared to that of multi controller networks. 
As we progress with the multi controller environment, we see that the overall throughput of the 
network increases significantly. As the proposed algorithm is executed, the number of controllers 
increase as there is a rise in the fanout number. Hence, when the switch count increases, the 
controllers are increased and the load is balanced across all the network controller. When this 
model is deployed on the real time large scale networks, there would be better throughput and 
stability in the network. 

6.1 Performance of a Single Controller Network 

The Single Controller Network recorded a maximum throughput of around 22 Gbps. However, 
when the packets were flooded for a brief period of time, the throughput decreased and kept 
fluctuating around 21 Gbps mark. The graph clearly shows that the throughput decreased and 
remained on the lower side. 
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Fig.14 Throughput of a Single Controller Network 

6.2 Performance of a Two-Controller Network 

With two controllers, we can see that the throughput improved and kept at around 23 Gbps 
throughout. 

 
Fig.15 Throughput of a Two Controller Network 

6.3 Performance of a Three-Controller Network 

With three controllers, the network performance surged significantly. The network throughout 
kept around 25 Gbps and with minimal fluctuations among the values. 
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Fig.16 Throughput of a Three Controller Network 

7 Conclusion and Future Work 
In this paper, we have discussed about Software Defined Networks with single controller and multi 
controllers. Based on the multi controller scenarios, an algorithm is proposed to add multiple 
controllers in a network and assign switches to them in a round robin fashion. Based on the upper 
threshold of 70% of switches and the lower threshold of 30% of switches the number of controllers 
will increase and decrease respectively. Mininet is used to simulate multiple topology networks 
and demonstrate the working of algorithm. Based on the experimental results, it is evident that 
the throughput increases drastically from one controller to two and more controllers. 

Another area to focus in the future works could be applying this working model on a real time 
large Datacentre SDN network wherein the performance can be measured on the real time network 
traffic. Furthermore, this model can be enhanced further to include inter-controller latency and 
overall network latency. 
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