
Configuration Manual

MSc Research Project

Cloud Computing

Conor Deegan
Student ID: x15023257

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Conor Deegan

Student ID: x15023257

Programme: Cloud Computing

Year: 2019

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 12/8/2019

Project Title: Configuration Manual

Word Count: XXX

Page Count: 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 24th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Conor Deegan
x15023257

1 Setting up the environment

The environment for this project was initially set up and deployed on a Virtual Machine
running on my local machine. The machine is a Lenovo Ideapad 530S with Windows 10
installed. The specs can be found in Table 1 below.

Model Lenovo Ideapad 530s

Processor Intel Core i5 1.6Ghz
Memory/RAM 8GB
Hard Drive 256 SSD
Operating System Windows 10(64-bit)

Oracle Virtual Box was used as the VMM software. Version 5.2.30 was downloaded
from https://www.virtualbox.org/wiki/Downloads. For the first phase of this project as
single VM was configured with CentOS 7 installed. The virtual machine image for the
machine was downloaded from centos.org.The minimal ISO was used in order to minimise
the footprint of the VM and because this laboratory only requires the command line
interface in order to achieve it’s goals. .t is important to distinguish between 32-bit
and 64-bit Opertaing systems in order to ensure compatibility of the virtual machine
image with your host machine.In the case of the host machine used in this labratory
configuration, the 64-bit virtual box image was chose as shown in the figure below.

1



Once both Virtual Box and the appropriate VM image are downloaded, Virtual Box
is installed by using the launch wizard with all of the standard configurations.A note is
to be taken of the location of the downloaded virtual image. The next step is to Create
a new Virtual Machine within VirtualBox. For the purpose of this laboratory, the name
Jenkins was chosen and the Linux OS was selected. As CentOS does not appear as an
option in the list of distributions, RedHat(64-bit) was chosen to ensure compatibility with
our VM image. This can be seen in the image below.

The next screen prompts the user to allocate RAM for the VM. At this stage 2GB
was selected. Note that this can be adjusted later if needed. The next stage is creating a
virtual hard disk to attach to the VM. There is an option to use an existing vdi(virtual
disk image) or create a new one. For this lab it is recommended to specify 20GB and
allocate this dynamically.Now that the specifications of the VM is complete it is time to
create a network interface for the VM. This will vary depending on the type of connection

2



your host machine has. In the case of the host machine used in this lab, a Bridged adapter
was specified. This was then connected to the Intel Wireless adapter as shown in the
image below. This binds the VM with the selected network interface.

After this, click the ’Start’ button to initiate the start up process. Then you will be
prompted to select a start-up disk.Navigate to the downloaded CentOS 7 iso and select
this. At the next screen navigate to the ’Install CentOS’ using the keyboard arrows and
hit enter. The next screen will prompt the user to select a preferred language. In the
next section, navigate to the ’Network Host Name’ section. Ensure that the network
adapter is turned on, as seen in the image below.

After this is configured, ensure that the preferred keyboard configuration is selected
and click ’Begin Installation’.The user will then be prompted to set a root password.
After doing this, click ’Done’ and click on the ’Create a User’ button. Create a user
using a preferred username and password. Make sure to make this user an administrator

3



by ticking this box. This adds the user to the ’sudo’ group and allows the account the
sudo privileges which will be required to complete the lab set up. After this click on
’Finished configurations’ and wait for the installation process to complete. The user will
be prompted to reboot the machine and then the machine will load. Sign in using the
user credentials which were just created. Now we can SSH into the machine using Putty.

Firstly the user will need to determine the IP address of the newly created. This is
done in linux by typing ’ip addr’. Take note of this and proceed to download Putty for
Windows 64-bit. When this is downloaded, install it using the provided launch wizard
and install it. Run the Putty program and you will be prompted with the UI shown
in the image below. Please enter the IP address under Host Name and save the session
for convenience. click ’Yes’ to allow the connection and enter the user credentials for
the VM that were created earlier. This concludes the first section. A Virtual Machine
running CentOS has been initialised using VirtualBox and a user with admin privileges
has been created.A connection to the virtual machine has been achieved using the SSH
client Putty.

2 Setting up Docker and Jenkins

Now it is time to install Docker on the virtual machine. Docker and ’docker-compose’
will be used to create and manage the various containers and the network between them.
Installing docker differs depending on the distribution. In CentOS the following steps
were found in the Docker documentation https://docs.docker.com/install/linux/docker-
ce/centos/;

4



• Ensure that you are logged in as the user created earlier

• Ensure the yum utils and yum config utilities are installed :sudo yum install -y
yum-utils device-mapper-persistent-data lvm2

• Use the next command to set up the repository: sudo yum-config-manager –
add-repo https://download.docker.com/linux/centos/docker-ce.repo NOTE: when
downloading the repo, I had an error where the download kept timing out. This
was resolved by first ensuring the time and date was correct in the machine using
the timedatectl command. If this does not fix it try running a sudo yum update -y.

• Use the following command to install Docker using the stable repo previously down-
loaded; sudo yum install docker-ce docker-ce-cli containerd.io

• After this, use the following command to start the Docker service; sudo systemctl
start docker

• Next the user can enable the docker service at boot using sudo systemctl enable
docker

• Then we must add the user we created to the docker group in order to run docker
commands from this account using the following command: sudo usermod -aG
docker username(replace with your username)

• log out of the putty session and log back in to initialise this change.

5



Once docker is installed, its time to install docker-compose. Docker-compose makes
the process of Installing and configuring our network of containers much easier than
using the traditional docker build process. For the scale of this project, docker-compose
is perfect. However, in larger scale, industry environments, tools like Docker Swarm
would be better suited. As this laboratory is a simulation, docker-compose is perfect for
what is needed.

• First we will download the current version of docker-compose using : sudo curl -L
”https://github.com/docker/compose/releases/download/1.24.0/docker-compose-(uname−
s)−(uname -m)” -o /usr/local/bin/docker-compose

• Then we give execution permissions to docker-compose using : sudo chmod +x
/usr/local/bin/docker-compose

• Finally test it is working by entering : docker-compose and if it returns a list of
possible commands, the installation has been successful.

6



The next section will cover the configuration of the Jenkins container, which will act
as the CI server for the lab.

3 Configuring Jenkins in a Docker Container

This lab will utilize Docker to recreate a Continuous Integration/Delivery Pipeline at a
smaller scale than a typical industry installation. Jenkins will be installed in a container
and the docker-compose tool will be used to configure the containers that will interact
with Jenkins in order to simulate a full CI/CD pipeline. The next stage of this lab
configuration involves setting up Jenkins in a Docker container using docker-compose.
Make sure you are signed in as the admin user created earlier and in the home directory
for this user. OPTIONAL: This section will involve editing files within the VM. If you
have a preferred text editor for Linux, now is the time to install it. I prefer to use the
vim editor which I installed using the command: sudo yum install vim

• First find the official Jenkins image on Docker Hub: https://hub.docker.com/r/jenkins/jenkins/

• return to the command line of the VM and type in: docker pull jenkins/jenkins and
wait for the image to download.

• Ensure the image was successfully downloaded by running: docker images. This
should display the details of the new image.

• Next create a new directory using the command mkdir jenkins-data. The name of
the folder is not significant.

• Within this folder we will create a YAML file which will define the configuration of
our containers. The following command was used vim docker-compose.yml NOTE:
The name of this file is significant. A rough guide to defining a Jenkins container us-
ing docker-compose can be found here: https://docs.docker.com/compose/compose-
file/

• add the configurations shown in the image below.

• Press ’ESC’ button and the type ’:wq’ to save the file.

• make a new folder to store the volume to persist the data in the jenkins container
using mkdir jenkins home. This directory will contain all of the files generated by
our jenkins container as the lab progresses including the workspaces for the jenkins
jobs that will be created.

The following image shows the initial configurations defined to get the Jenkins container
up and running.Firstly the version of Docker being used is defined. Then under the
services heading the name of the container is listed. This is useful in distinguishing the
containers as the number of them grows. Then the image which is to be installed in the
container is defined. The image which was downloaded earlier will be used. In order to
connect to the front end of the Jenkins container, the ports which will be mapped to the
container are then defined. Then the volume which will hold the data of the container is
defined. The folder which was created in the last step is used. After this a network will be
defined which will connect the Jenkins container to the various other components of the

7



CI/CD pipeline which will be defined in the future. Then the container is connected to
this network by adding the ’-net’ to the container configuration.Once the docker-compose
file has been created and the folder to store the data from the Jenkins container has been
created, the Jenkins service can be started using docker-compose.

NOTE: Ensure that the jenkins home folder is owned by the user that we created.
Run an ’ll’ and if both the user and the group of this folder is not same as the user that
was created, change ownership of the folder using sudo chown userid:userid jenkins home

-R . If you are unsure of the id of your user run the command ’id’. In the case of this lab
it should be 1000

• The next step is to spin up the container using the following command: ’docker-
compose up -d’

• In order to check to see if the container is up and running, run thi command:
’docker ps’. If not check that you have given the docker-compose.yml executable
permissions and that the current user is the owner of the file.

• Next it is necessary to check the logs to obtain the initial password. This will allow
us to sign into the Jenkins front end and create the initial admin user. Run the
following command: ’docker logs -f jenkins’. Take note of the initial password.

• Go to your browser and type in the IP address of your VM followed by the ports
you defined in the docker-compose file. It should look something like the following
0.0.0.0:8080

• You will be prompted to enter the password take from the logs. Enter this and
create a user called ’admin’ and create a password. You should be redirected to the
Jenkins home screen.

• Click on install the suggested Plugins and allow some time for the installation
process to take place.

• Create a user, ensuring to use a strong password.

• Proceed with the standard url provided by Jenkins. It should look something like
0.0.0.0:8080

Now that Jenkins is running within a Docker container, the next sections will cover
installing the necessary plugins for the CI/CD pipeline and securing Jenkins using Role-
Based authentication.

If you are setting up an AWS EC2 instance with docker and jenkins, ensure your in-
stance has a security group associated with it with the following rules : https://christopherstoll.org/2016/01/08/install-
jenkins-docker-aws-ec2.html

4 Remote Job Execution in Jenkins

This section will demonstrate how to set up remote job execution in Jenkins. A central
part of a CI/CD pipeline is the ability to deploy the finished application to the production
server.

• In the Jenkins GUI, click on ’Manage Jenkins’. Then click on ’Manage Plugins’

8



• Next click on the ’Available’ tag and type in ’SSH’ into the search bar.

• Check the box beside the ’SSH’ plugin.

• Click on Install without restart and wait for the download and installation process
to complete.

• Check the box that says ’Restart Jenkins after installation’

• Verify that the installation was successful by returning to the ’Manage Plugin’
screen and ensuring that SSH is now listed under the ’Installed’ tab.

This next section can only be completed once a production VM has been spun up.
This VM will act as the production environment, and will be where the built and tested
app gets deployed to at the end of the pipeline. For the purpose of testing during the
development process, this was initially set up as an open-ssh container and connected to
the jenkins container on the development VM. This was later amended in order to more
accurately simulate a real-world use case for the purpose of more accurate experiment
results.

• Ensure Docker and docker-compose have been installed on the production VM.

•

5 Securing Jenkins

Your fifth section. Change the header and label to something appropriate.

9



6 Email Notifications in Jenkins

This section will demonstrate how to install email plugin in Jenkins. Emails notifcations
are useful in keeping the admin/developers informed of failed builds. As in any profes-
sional environment, developers and administators are not at their desks around the clock,
this feature allows them to keep on top of the pipeline and react faster to any potential
outages. Builds can fail due to failed tests, failed environment setups etc.

• First click on ’Manage Jenkins’

• Then ’Manage Plugins’

• Go to the ’Available’ and search for ’Mail’

• install and restart the server

• add a post build action to any jenkins called email notifcation and add your email
address

7 Jenkins and Maven

Maven is a powerful build to which allows us to build Java applications. https://plugins.jenkins.io/maven-
plugin. It can also be easily integrated into Jenkins using a plugin.

When Maven is integrated into Jenkins, Continuous Integration can be achieved. The
idea being that when a developer commits new code to the SCM(GitLAb in this case),
teh build stage is triggered in which maven takes the Java source code from the SCM
and builds a jar file. This JAR file then is tested and if it passses the requirements, the
code is then deployed to the production environment.

• Click on Manage Jenkins nd navigate to the Manage Plugins screen

• Click on available and search for Maven

• Check the box beside ’Maven Integration’

• Download an restart Jenkins

• Verify the installation was succcesful by checking that Maven Integration is now in
the ’Installed tab’

• Also ensure that Git client and Git plugin are installed. If you installed suggested
plugins during the initial installation of Jenkins, then this should already be done.

We will be utilising the sample Maven application found in the Jenkins docs on Github
: https://github.com/jenkins-docs/simple-java-maven-app.git We will firstly test Maven
by creating a new job which will pull the sample maven app from the git repo found on
the link above, and then build a jar file from this and also run a couple of unit tests
against the jar.

• Take note of the URL of the git repo. In thi case it is https://github.com/jenkins-
docs/simple-java-maven-app.git

10



• Go to the Jenkins GUI and click on ’New Item’.

• Specify a ’Freestyle Project’ and click ’OK’

• under the ’SCM’ tab check the ’Git’ box

• in the URL box enter the URL of the gihub repo. The branch can be specified
under the Advanced tab. It is set as master and for the purpose of this test this
will be used.

• Click on ’Build Now’

• By checking the ’Console Output’ of the build, you can verify that the code was
downloaded to the workspace folder in the jenkins home directory. Every job that
is created in Jenkins has a workspace. Verify this by going to the VM command
line and firstly entering into the jenkins container using : docker exec -ti jenkins
bash

Then ’cd /var/jenkins home/workspace’ all of the jobs we create have a directory
in here.

• cd maven-job to verify that the source code has been cloned to the job

• Go to the Jenkins GUI and then go to Manage Jenkins and the go to ’Global Tool
Configuration.

• Under the ’Maven’ tab , give the installation any name and choose the latest version
in the drop down menu as shown below. Then click Save

• Next return to the maven-job and click ’Configure’ Under the build tab click on
’Invoke top-level Maven targets’ in the dropdown. Specify the installation name we
configured in the previous step.

• In the Goals field enter the following Maven code; ’-B DskipTests clean package’
found on https://jenkins.io/blog/2017/02/07/declarative-maven-project/

• Save this job and then click ’Build Now’ again. The job will begin to install the
necessary Maven packages and then build the jar file. The resulting jar is then
saved within the workspace folder under the maven-job directory.

11



The newest version of the repository is downloaded. Because this is teh first time
Maven is invoked in the Jenkins installation, it will first download the Maven version
that was specified in the global tools configuration. Then the jar is built. Niw that
Maven has been verified as working in conjunction with Jenkins, we can test the code
using the minimal unit tests provided in the sample maven app.

• Go to Configure under the maven job.

• Add another step under the ’Build’ tab

• Select Invoke top level maven target from the dropdown.

• Save the config and click Build Now again.

• Check the results in the Console Output

Now that the tests have run and the jar file has passed the test, its possible to deploy
the jar locally in order to examine the output of the application.

• Go back to ’Configure’ the maven job

• Go to the Build Step and add another step. Select ’Invoke shell script’ from the
dropdown

• in the script add the following: ’java -jar /var/jenkins home/workspace/maven-
job/target/my-app-1.0-SNAPSHOT.jar’

• Save the job and Build again

• Check the Console Output. The outout of the build should show ’Hello World!’

The next section will cover configuring GitHub to trigger jobs automatically once new
code is committed to the source code.

12



8 Jenkins and Git Source Code Management

In a CI/CD pipeline, the Source Code Management is the first link in the chain. When
new code gets committed to the repository of an application, the pipeline is then triggered
in which a jar is built and then tested and pushed to deployment. There are a couple of
ways of doing this. For the purpose of this laboratory environment, we will be utilising
Docker to spin up a local git server which will become the SCM for the pipeline build.

NOTE: If using AWS, GitHub can be used in the same way by utilising the webhooks
feature to trigger builds.

The first part of this section involves spinning up a container with a gitlab image
installed. This will be done by defining the service in the docker-compose file.

NOTE: This part of the lab involves spinning up a gitlab container in the VM. This is a
fairly heavy install and the website recommends a minimum of 4GB of RAM and 2 cores in
order for it to run correctly. Please refer to the following link.https://docs.gitlab.com/ee/install/requirements.html
VMs in VirtualBox can be configured by clicking on the VM and then on Settings. Go
to System and there you can modify the memory.Reboot the VM after modification

After this go to the jenkins-data folder (’cd jenkins-data’). Then return to the in-
stallation documentation to find the template for installing gitlab using docker-compose.
https://docs.gitlab.com/omnibus/docker/

• First edit the docker-compose.yml: ’vim docker-compose.yml’

• then add a container name of your choosing.

• refer to the image name found in the gitlab docs.

• give the hostname

• define the ports through which the git server can be accessed

• define the volumes in which the git data will persist

• Finally define the network that the container will connect to. In this case its the
one we defined earlier.

• Save the file and exit

After configuring this, its time to spin up the new git server using the following
command; ’docker-compose up -d’. The git server will take a few minutes to initialise.This
is due to the large size of the git-server. you can check the docker logs(docker logs -f to
monitor the progress of the installation. Then go to IP-ADDR:8090(referring to the
port we opened) in the browser.Once you do this you should be prompted to change the
password. Do this and then set up the root user. The username will be ’root’ and the
password is whatever you have chosen. Now it is time to create the first repository.

• First create a group. The name is not significant.Define it as private.

• Click on ’New Project’ next. The name should be ’maven’

• Next we can create a new user. use whatever name is easiest to remember.Then set
a password.

13



• Next got o the repo we created earlier. Go to settings and then project members.

• Then add the new user to the project.

Next we will upload the sample app we created earlier to the new repo. First install
git using ’sudo yum -y git’

• Make sure your’e in the jenkins-data folder

• use the following command to clone the repo : ’git clone https://github.com/jenkins-
docs/simple-java-maven-app.git’

• Next do a vim /etc/hosts and add the IP address followed by gitlab.example.com(possible
change later)

• next clone the empty git repository we created earlier. make sure to pass the
credentials into the url so it looks like: username:password@gitlab.example.com

• Next make sure your’e in the new maven folder.Now do a ’cp ../simple-maven-app/*
.

• Git add . and then git commit -m ”first commit” then git commit origin master.

• go back to the git server UI and reload to ensure he files have been uploaded.

The next exercise is integrating the Git server so that when new code is committed
to the repository we created, an automated build is triggered. The maven job that was
created earlier will be used to test the git integration, then later git will be integrated
into the pipeline. This will be achieved using githooks or webhooks. This is the trigger
that notifies Jenkins when code is pushed to the repository.

14



• First go to credentials. then add credentials. the add a username and password
which os the same as that for our SCM(GitLab or Github)

• Now configure the Maven job we created earlier. Go to SCM section and change the
repo URL to that of the GitHub/GitLab Repo for the source code. Then change
the credentials to the ones created in the previous step.Save the job.Build the job
to ensure the link was successful.

• login to the git server. docker exec -ti git-server bash

• cd /var/opt/gitlab/git-data/repositories/jenkins/maven.git.

• mkdir customhooks

• https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks Then do a vi post-
receive and refer to the sample post-receive hook found on the link above. A post
receive hook is a server side which which can be used to notify the automation
server when changes are made to the source code. This file is saved on the git
server, but contains a crumb which calls pings the Jenkins server. We then set up
our job to listen for this ping and trigger a build whenever it hears it. Please find
below the file. NOTE plase replace the username and password with the ones which
we created earlier.

• this script is basically saying if the branch is equal to master, then trigger the crumb
which sends a POST to the url of the maven job which, once referred to as a build
step in the job, will trigger the job.

• give this file executable permissions : chmod +x post-receive

• change the owner of the file: chown git:git customhooks/−R

• exit the git server bash.

• test this git hook by modifying the source code. vi src/main/java/com/mycompany/app/App.java.
change the string to anything you like.

• vi src/main/java/com/mycompany/app/AppTest.java

modify the test file to reflect the change to the main file.

15



• commit these changes to the git repo. git add src/ git commit -m ”first test of
githooks” git push origin master

• Go back to the jenkins front end in the browser and observe that the maven job
has been triggered

9 Install Docker inside the Jenkins Container

In this section the instructions will be laid out to install Docker inside the Jenkins con-
tainer. This is a necessary step in building the CI/CD pipeline. This is because Jenkins
will be utilised to build docker images containing the sample application.

• The first step is creating a Dockerfile in which the specifications of the Docker in-
stallation will be defined. This tutorial was used https://docs.docker.com/compose/gettingstarted/.
Prior to doing this ensure that the Jenkins Pipeline plugins are installed. If you
installed the suggested plugins when installing Jenkins, these are already installed.

• In the VM, signed in as the user we created in section 1 and in the jenkins-data
folder, create a directory; mkdir pipeline

• In this folder, create a file; vim Dockerfile. The file should have the same contents
as the image below.

• This file installs Ansible, and installs docker as per the instructions found on the
docker website https://docs.docker.com/install/linux/docker-ce/debian/. The Jen-
kins container is a debian distribution so debian instructions are used. Docker
compose is then installed. A user ’jenkins’ is then added to the docker group.

• Go back to the jenkins data folder and modify the docker-compose.yml file.

• Change the context of the Jenkins container spec. Chenge the container name, and
the build context so that the pipeline folder with the Dockerfile is referenced. Then
add the docker.sock file to the container by referring to the folder which it is located
in under the volumes heading. The file should look like the image below.

16



• The next stage is to run the docker-compose file by using the command ’docker-
compsoe build’

• Now launch the new jenkins container with docker installed by running the com-
mand ’docker-compose up -d’

• Next change ownership of the docker sock file so that the jenkins user in the con-
tainer can execute docker commands. ’sudo chown 1000:1000 /var/run/docker.sock’

NOTE: If you are completing this on an EC2 instance, be advised that the user
id ’1000’ is already taken up by the user which is created when you spun up the
instance. This can have a variety of names depending on the distro. For RHEL
it was ’ec2-user’. Therefore when you change ownership of the file, you will still
get permission denied. The workaround I used was firstly, signing into the Jenkins
container as root using ’docker exec -ti -u root jenkins /bin/bash’. Then change
the id of the jenkins user to ’1001’ or whatever the id happens to be of the user
you created in the VM. Use the following command; ’usermod -u 1001 jenkins’. To
ensure you are selecting the right id, exit the container bash and type ’id’. This
will show you the id you need to match within the VM.

• Verify that this has worked by going inside the Jenkins container and doing a ’docker
ps’ If this has worked you shouldnt get any errors.

10 Integrating everything to complete the CI/CD

Pipeline

This section will integrate all of the tools and methodologies that have been set up in
the previous section to build the CI/CD pipeline for this experiment. The pipeline will
consist of four sections; Build, Test, Push and Deploy.

Git, Jenkins,JUnit, Docker and Maven are the 5 main technologies which will be
utilised. Git is the source code management. Jenkins, which is triggered by any change
to the SCM, will build the docker images containing the sample application. JUnit tests
will then run against the sample application. This container will then be pushed to

17



DockerHub. Maven is the build tool which takes the Java source code and builds a JAR
file from which the application is tested and deployed.

The first stage of this process will be to create a Jenkinsfile. This file will define the
steps of the pipeline. It is the basis on which the CI/CD process is automated. Each of
the scripts which will be developed is referenced in here in its corresponding stage in the
pipeline. In the beginning the file will just return a string but as each stage is developed
and tested, a script will be added to each stage.

• ensure you are in the pipeline folder created earlier. https://jenkins.io/doc/book/pipeline/

• ’vim Jenkinsfile’ The file should look like the image below where the stages Build,
Test, Push and Deploy are defined.

Next we will develop the pipeline. This stage will utilise bash scripts to automate
packaging of the source code and the building of a Docker image of the generated Jar.
Each script will then be referred to within Jenkinsfile under the corresponding stage.

• Create a new directory inside the pipeline folder called ’jenkins’ mkdir jenkins

• inside this directory define four directories; Build, Test, Push and Deploy

• Within the build directory create two bash scripts; mvn.sh and build.sh. these will
automate the process of building the JAR and containerising it.

• Within the test folder define a bash script called mvn.sh This will automate the
Junit testing process.

• In the push directory create a file called push.sh. This will contain the code which
pushes the application container to DockerHub registry

• define two scripts in the deploy folder. deploy.sh will Deploy the application con-
tainer to the production VM. publish.sh will run the container in the production
VM.

After these files are written then integrate them into the Jenkinsfile
After this ensure that all of the files have executable permissions. As seen in Figure

8; OWASP Dependency Checker is called through the Jenkinsfile which automates the
security vulnerability scanning.

Now we commit all of this code to our git repo. This is where Jenkins will look for
the code when it executes the pipeline. git status, git add spring-pipeline, git commit
-m ”Complete pipeline”, git push -u origin master. Ensure the code has been committed
succesfully by checking the git server UI in the browser.

Now it is time to head to the jenkins UI in the browser and setup a job for the CI/CD
pipeline. First Go to ’Manage Plugins’ and install the OWASP Dependency Checker
plugin. restart the server.Then we go to Global Credentials and create the credentials
for our git server user so that jenkisn can login to access the SCM Click on new item
and call this job whatever you like and make sure you define it as a ’Pipeline Project’.
Then click on ’Configure Job’. In the configuration ensure that the correct path is listed
in th SCM which points to the git server. Remember that the Jenkins container and Git
container are communicating through the internal Docker network that was set up in the
docker-compose-yml file. This means we need to specify only the name which the git

18



server is referred to in this file. Then check that Jenkinsfile is listed in the correct place
and click ’Build Now’. The pipeline build process will begin.

Finally we can see the resulting pipeline builds.

10.1 References

• https://owasp.org/www-project-dependency-check/

• https://docs.docker.com/

• https://www.jenkins.io/doc/

• https://maven.apache.org/guides/index.html

• https://plugins.jenkins.io/

19



Figure 1: mvn.sh script

20



Figure 2: build.sh script

Figure 3: test script

Figure 4: push script

Figure 5: deploy script

21



Figure 6: publish script

Figure 7: Jenkinsfile Part 1

22



Figure 8: Jenkinsfile Part 2

Figure 9: Check the Git Server to ensure code was uploaded

23



Figure 10: Git Reference within the Jenkins Job

Figure 11: Pipeline execution with Continuous Security

24



Figure 12: Pipeline execution without Continuous Security

25


	Setting up the environment
	Setting up Docker and Jenkins
	Configuring Jenkins in a Docker Container
	Remote Job Execution in Jenkins
	Securing Jenkins
	Email Notifications in Jenkins
	Jenkins and Maven
	Jenkins and Git Source Code Management
	Install Docker inside the Jenkins Container
	Integrating everything to complete the CI/CD Pipeline
	References


