
Augmenting The Performance Of Mobile
Devices Through The Use of Dynamic

Partition Offloading With Heterogeneous
Mobile Clouds

MSc Research Project

Cloud Computing

Emmanuel Okechukwu Weje
Student ID: 19122411

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Emmanuel Okechukwu Weje

Student ID: 19122411

Programme: Cloud Computing

Year: 2019

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 17/08/2020

Project Title: Augmenting The Performance Of Mobile Devices Through
The Use of Dynamic Partition Offloading With Heterogeneous
Mobile Clouds

Word Count: 7344

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Augmenting The Performance Of Mobile Devices
Through The Use of Dynamic Partition Offloading

With Heterogeneous Mobile Clouds

Emmanuel Okechukwu Weje
19122411

Abstract

Smart mobile devices (SMD) are a part of our daily lives and sometimes we
cannot do without them. With this, they are expected to have high functionalities
and resources which is sometimes not the case i.e they are resource constrained.
The Mobile Cloud Computing (MCC) paradigm was introduced to solve this issue
and previous works have been implemented but are not without their flaws. Most
works do not consider the context of the SMD when making offloading decisions
and utilize only one offloading resource option which is not particularly ideal and
limits the usage of the paradigm. In this paper, we present a context aware hetero-
geneous approach to the MCC paradigm. We apply heterogeneity by using server-
less computing functions and remote mobile clients as our offloading options. We
make offloading decisions based on the SMDs context (battery, network & memory)
during runtime by applying dynamic partitioning. The core of our system is the
decision making engine and remote configurations. Remote configurations have
been implemented to change parameters in our approach without having to modify
source code. This provides flexibility. Results gotten from experiments carried out
showed our system was able to make offloading decisions based on changing context
and also up to 66% reduced execution time (Zhou et al. produced around 65%)
for offloaded tasks as compared to local executions thus reducing power utilization.
Our solution also proved to be cost efficient when utilizing serverless computing as
opposed to using cloud VMs as an offload resource.

1 Introduction

These days, the smart mobile device (SMD) is almost a necessity for every individual.
With the vast growing trend in technology, the SMD has positioned itself as a major player
in improving the life of people. Various applications are being developed to run on these
devices with the aim of providing some form of value to the mobile device user. With
this, SMDs are expected to provide an almost perfect platform for mobile application
developers to capitalize on and produce applications that will be beneficial to users but
this is not the case at all times. SMDs have limited resources such as battery life, CPU
power, memory, network etc. This puts them in the category of resource constrained
devices and as such limits the range of applications that should be able to run on them.
Sometimes, manufacturers of SMDs try to take this into consideration by manufacturing
high end devices that will often suit the needs of users. This is a good approach but often

1

times does not benefit the SMD user mostly basing on cost. Not all users would be able
to afford high end devices thereby maintaining the issue of constrained resources. In a
bid to solve this issue, the Mobile Cloud Computing (MCC) paradigm was introduced.

According to Buyya et al. (2018), the MCC is a paradigm that aims to augment
resource constrained mobile devices by bringing the vast amount of cloud resources to
the SMD. There are many Cloud Service Providers (CSP) such as Amazon Web Services
(AWS), Google Cloud Platform (GCP), Microsoft Azure, IBM Cloud etc. These CSPs
make available resources such as compute power, storage, network, proprietary solutions
etc that are offered as services and are readily made available on the cloud. With the Pay-
As-You-Use model of the cloud, cloud resources can be rapidly provisioned and integrated
to be consumed by applications running on SMDs to make them more efficient. With the
vast amount of positives the MCC introduces, it is not without its flaws. The MCC also
offers challenges that can potentially hinder a wider adoption of the paradigm. According
to Noor et al. (2018); Akherfi et al. (2018), some of these issues can be identified as singular
offloading choice, high costs, inadequate task profiling, power utilization, low flexibility.
These are issues that have to be considered before taking up the MCC and they also have
to be tackled.

In research papers by Buyya et al. (2018); Zhou and Buyya (2018), the MCC has been
identified to be made up of two models which are code offloading and task delegation.
In task delegation, the SMD uses cloud services from different CSPs and introduces a
potential interoperability issue (Buyya et al.; 2018) while code offloading has to do with
profiling the mobile application to identify task(s) that can be deemed resource intensive
and then be offloaded to external platforms with available resources. For this research
study, we aim to apply the code offloading model to augment SMDs.

In mobile code offloading, which can also be termed as computational offloading (the
two will be used interchangeably in this report), code is generally profiled and partitioned
with set objectives in mind. These objectives could include but not limited to reduction
in power utilization, increase in performance and scalability. Resource intensive tasks
are identified and a decision making system is employed to determine if a task should
be offloaded to a resource rich service or not (Zhou and Buyya; 2018). As discussed by
Flores et al. (2018), there is still an issue of correctly profiling and partitioning compute
intensive task(s) to offload. It is important to tackle this issue as wrong profiling and
partitioning will be detrimental to the SMD user. Partitioning in offloading can either be
static or dynamic as stated by Gu et al. (2018) with the difference being that dynamic
partitioning occurs during application runtime.

Adopting a heterogeneous approach to the MCC is a potential solution to some issues
identified and it is a field that has not been really taken into account by previous research
works as they regularly make use of only one offload resource (Zhou et al.; 2017) and
rarely consider the context of the SMD before offloading. Some of these previous works
include frameworks such as mRARSA (Islam et al.; 2020), Mildip (Lu et al.; 2020),
MobiCop (Benedetto et al.; 2018) etc. The heterogeneous mobile cloud (HMC) is one
that can be made up of public clouds, mobile cloudlets and mobile ad-hoc networks
(MANET). Research papers by Alonso-Monsalve et al. (2018) and Zhou et al. (2017)
have presented the HMC but did not seem to tackle all issues presented by the MCC.
Alonso-Monsalve et al. (2018) does not properly define how to adequately profile intensive
tasks for offloading and while Zhou et al. (2017) does this, the HMC presented by authors
is met with a power utilization problem during a device discovery service implemented
and also cost incurred utilizing cloud VMs as offloading resources.

2

These issues and challenges identified have therefore led us to our research question
and research objectives. Our research question is given below:
RQ: Can dynamic partitioning of a mobile application running compute intensive task(s)
be made to function more efficiently by applying the code offloading model in a context
aware heterogeneous mobile cloud environment while also reducing costs that might be
incurred on users?

In a bid to answer the given research question, our research work has the following
objectives:

• Perform research on the current state of the art in mobile code offloading.

• Design and implement a code offloading approach that will tackle issues identified
and thus answering the research question.

• Evaluate the derived code offloading approach using appropriate test measures in
order to determine performance.

Our main contributions are:

• A HMC system consisting of local code execution, public cloud resources and remote
mobile client resources.

• Design and implement a context aware offloading resource decision making al-
gorithm using dynamic partitioning.

• Apply the serverless computing approach in order to reduce costs that might be
incurred from utilizing cloud VMs.

• Integrate remote configuration to enable flexibility during offloading decision mak-
ing

The main report is divided in the following sections. Section 2 describes related works,
Section 3 introduces the methodology we employ, Section 4 gives the design specification,
Section 5 describes the implementation, Section 6 shows our evaluation and lastly in
Section 7 we bring the research to a conclusion and define any future work.

2 Related Work

In this section, we discuss related works as regards to the research topic. Many works
have been presented as regards to code offloading in the MCC paradigm. This section is
structured as follows. First, we review papers on context aware offloading, heterogeneous
mobile cloud computing, existing code offloading frameworks and lastly, we compare
frameworks.

2.1 Context Aware Offloading

The context of mobile device is beneficial during a code offloading decision making pro-
cess. This context can be in terms of its current battery life, available network, location,
memory etc. Correctly applying these factors would lead to an efficient offloading process
as the context of a mobile device tends to change continuously.

3

Basing on this, Chen et al. (2017); Islam et al. (2020) proposed context aware com-
putational offloading frameworks that apply a dynamic approach in selecting the most
suitable remote resource to offload tasks to. The framework by Chen et al. (2017) comes
with an estimation model that chooses what cloud resource to offload a resource in-
tensive task to. The idea behind this is that the available cloud resources offer varying
performance and network quality. The estimation model works with tasks meant to be
offloaded, the network quality and performance power of cloud resources. Islam et al.
(2020) mainly focused on the network context (e.g signal strength and range) to make
offload decisions. Both frameworks make their decision making during the application
runtime through dynamic partitioning. This process ensures that the current context of
the device is used in the decision making and therefore an adequate resource is selected.
Result from Chen et al. (2017) showed a reduced execution time of about 6% to 96%
and power utilization was down to about 60% to 90% while results Islam et al. (2020)
demonstrated appropriate offloading decisions while also offering better performance and
power utilization. Even with these good results, the frameworks are not robust enough
to different offloading options. This is what we aim to achieve with our HMC approach.

Also, a research work by Xu et al. (2020) studied the inclusion of deep learning in
wearable mobile devices. The motivation behind the study is that wearable devices take
in lots of information and require processing in order to gain meaningful insights. Similar
to Chen et al. (2017) and Islam et al. (2020), a context aware offloading scheduling
process was implemented. Device context that was considered include latency, network
signal strength, battery life etc. The study focused on offloading compute tasks from the
wearable to a handheld device. One issue with this approach is that handheld devices
are as well restricted in resources and therefore issues might arise if a task needs to
be offloaded and the handheld device does not have enough resources to allocate. An
adequate approach to this would have been to implement alternative offloading options
such as a remote cloud or other nearby devices.

Understanding the current context of device is beneficial to offloading decision making
algorithms. This helps to ensure that an adequate offloading resource is being selected
because as stated before, the context of a mobile device changes continuously. One major
disadvantage noticed in the papers above is that they only considered offloading to a
remote cloud or a nearby device and not creating an option for both. Having multiple
offloading options would have made the proposed frameworks presented more robust and
efficient.

2.2 Heterogeneous Mobile Cloud Computing

As discussed, adopting the HMC can be a potential solution to some of the problems
or challenges identified in the MCC. The HMC often involves having multiple offloading
options in order to make better offloading decisions. This makes offloading decisions more
robust and efficient when applied with the context of the device. In a paper by Alonso-
Monsalve et al. (2018), a proposed model for the HMC in hybrid clouds was introduced.
The model involved volunteer cloud system where people can offer resources of their
mobile devices to act as part of the cloud resources that would be utilized. The BOINC 1

open-source software was used to make both the volunteer devices and the cloud resources
interact with each other. Zhou et al. (2017) also proposed a HMC framework which uses
a multi-criteria decision making (MCDM) algorithm and cost estimation modelling to

1BOINC: https://boinc.berkeley.edu/

4

https://boinc.berkeley.edu/

determine a suitable resource to offload tasks to. The framework used VM migration and
Java Reflection to offload tasks. One issue with VM migration is that it might introduce
latency overheads to the offloading process. The MCDM in their approach is based on
the Technique for Order of Preference by Similarity (TOPSIS). TOPSIS is chosen here
because it is assumed to be lightweight and can be modified to accept other criteria if
the need arises.

Both frameworks above presented good results when implemented. The Alonso-
Monsalve et al. (2018) framework offered advantages in low costs, load distribution, better
performance and scalability. One main disadvantage of the framework is that it is mainly
dependent on its volunteer device model. If there are no volunteer devices, the frame-
work might not be able to function optimally and falls back to using provisioned cloud
VMs. Also, they did not consider device context during offloading. System evaluation
from Zhou et al. (2017) also presented good results. The MCDM implemented was able
to provide adequate medium at which compute tasks will be offloaded. The system also
implemented a discovery process to look for other close by devices to make offloading
decisions. This discovery seemed to provide some power utilization overhead which will
not be good for devices.

Lee and Lee (2018) presented a HMC system that mainly focused on the chances of
having outages during task offloading. The HMC comprised of external resources such as
public clouds and cloudlets. The system works by initially defining task offloading outage
possibilities with just a remote cloud then the same is done with the cloudlets. When
both definitions are done, they are then used to arrive at a general outage probability
involving both offload resources. Secondly, the system involved research on the right
choice on deployment of cloudlets. This research was focused on maximising profit for
CSPs. The downside to this is that maximizing profits for the CSPs is synonymous to
incurring more costs on users. The approach we apply aims to reduce costs for users
through the application of serverless computing as the cloud offload choice.

Zhou et al. (2019) presented a paper that provides a model to incentivize users that
offer their mobile device resources as part of the HMC. Issue of providing a mechanism
to incentivize users has before been raised by Buyya et al. (2018). In that paper, it was
said that this mechanism would lead to more users offering their unused resources in their
mobile devices. This is the issue Zhou et al. (2019) aimed to solve. A market place was
designed for users to sell their unused resources for offloading tasks in a HMC scenario.
The process was more of an auction strategy and users get to bid for resources at a price
with the winning user getting to pay the bid price. A penalty system was also implemen-
ted where a user whose mobile device wins an offloading bid and cannot complete the
offloading request for whatever reason is made to pay any extra costs incurred from push-
ing the failed offload request to a CSP which acts as a backup for failed requests. In as
much as this is good, there are possibilities that offload requests might fail and is caused
by issues beyond the mobile device owner’s control. In such as situation, it is unfair to
make such a user incur unwarranted cost for the failed offload request and this might
discourage users from participating. Overall, the system displayed performance efficiency
and a clear bidding process. Our approach does not currently involve incentivizing users
but can be considered for a future work as it is a feature that would drive acceptance for
the model.

In summary, the HMC should be a consideration when adopting the MCC. It delivers
more offloading options for tasks. In addition with the mobile device context and an
appropriate decision making system, the right choice of offloading will be made. This is

5

what we aim to achieve while taking into consideration issues identified in papers above.

2.3 Code Offloading Frameworks

In this section, we review various existing offloading frameworks. Over the years, vari-
ous studies and research works have introduced different frameworks to achieve code
offloading in SMDs. These frameworks usually come with different methodologies and
approaches which they use to achieve offloading.

In Chen et al. (2019), authors introduced an offloading solution called AndroidOff
which focused on cost estimation for the process of offloading tasks. This was done
through a prediction process which worked by applying test cases to some methods in
the application to determine how long it will take them to run. After this was done, a
weighted call graph for other methods was then created and their execution time predicted
basing on the previous test cases ran. Results gotten showed execution time saved up to
8% - 49% and lower power utilization of up to 12% - 49%. One limitation of this approach
is that the test cases used might not in all cases produce results suitable in a real world
situation. In Mahmoodi et al. (2019), authors proposed a joint scheduling approach for
offloading components of a mobile application and also scheduling the order in which
the offloading should be performed. Their approach depended on network availability
and used parallel execution to run tasks both locally and on the provisioned AWS EC2
instances. It was mainly targeted at mobile applications that had sequential component
dependency graphs. This is a limitation in their approach as it reduces the range of
applications which it can be applied to. Overall, significant results were achieved with
reduced power utilization for applications with lengthy runtimes.

In Benedetto et al. (2018), authors proposed a framework called MobiCOP which
mainly focused on reducing the execution time of resource intensive methods that run for
a long time as opposed to methods with short execution time. The framework comprised
of an offloading decision engine, public cloud execution environment and a communica-
tion handler. The decision engine focused on quality of service monitoring and profiling
of code which it used to make decisions on offloading tasks or not while the communica-
tion handler focused reducing power usage during poor network scenarios. Results from
the approach showed that for longer running tasks there was about 17 times increased
efficiency and about 25 times better power saving. The framework integrated AWS EC2
which might pose higher costs when compared to using serverless computing.

An environment friendly cloudlet based MCC approach was proposed by Gai et al.
(2016) which focused on saving energy and reducing latency when utilizing wireless com-
munications in unstable network conditions. The approach used dynamic partitioning
to make decisions based on changing context or environment (Dynamic partitioning is a
key part of our approach). Offloading was achieved by first sending requests to nearby
cloudlets which then search for a suitable cloud resource to offload the task to. This pro-
cess is limiting because it will not be suitable for applications that are latency sensitive
and will therefore have less applications. However, this is due to the focus on only en-
ergy savings which produced expected results from experiments. More recently, Lu et al.
(2020) also proposed an energy efficient framework for cloudlet based offloading in micro-
processors and mobile process architecture called Mildip. The framework functioned by
taking measurements of power utilization of CPU cores and its frequencies, and also the
required performance and power utilization for mobile applications which was then used
in performing analysis for energy efficiency. Simulations were used to carry out experi-

6

ments which showed that the approach offered about 77% of lower power utilization for
offloading tasks as compared to running the task locally. One limitation of this approach
is that the authors did not consider device context when making offloading decisions.

2.4 Comparison of Code Offloading Frameworks

In this section, we present comparisons between various code offloading frameworks and
approaches and this is displayed in Table 1 below.

Table 1: Comparison of code offloading frameworks.

Framework Goal
Offloading
Mechanism Partitioning

Context
Aware Heterogeneous

mCloud
(Zhou et al.; 2017)

Energy
& Performance

VM
migration Dynamic Yes Yes

Circa
(Lin et al.; 2015) Performance Code Static No No

MilDip
(Lu et al.; 2020) Energy Code Dynamic No No

Nawrocki et al. (2019)
Energy

& Performance Code Dynamic No No

Gai et al. (2016) Energy Code Dynamic Yes No

In conclusion of the related works section, basing on reviewed papers, we can see that
there are still identifiable issues that need to be solved. Most frameworks produce good
results but are limited in their approach and therefore can lead to minimal application.
In this research paper, we aim to apply a context aware heterogeneous approach to our
solution which will reduce offloading costs with serverless functions and remote mobile
clients as offloading options while also adding flexibility with remote configurations.

3 Methodology

In this section, we discuss the steps we aim to apply to achieve our research objectives.
As stated earlier, this research work aims to apply a context aware heterogeneous ap-
proach to the MCC paradigm through the use of dynamic partitioning. We aim to use
serverless computing functions and remote mobile clients as a our offloading resource op-
tions. Both options are chosen to improve on the drawbacks found in other mobile code
offloading frameworks in our related works section. We also apply realtime monitoring
events to know when task(s) have been completed by the external resources so the mobile
application can be updated accordingly. In order to decide whether a resource intensive
task should be offloaded or not, we use an offload decision engine which takes the current
device context to make offloading decisions.

3.1 Dynamic Partitioning

Application partitioning can either be static or dynamic. In static partitioning, the
decision to offload a task is made during development stage while in dynamic, the decision

7

is made during runtime. The dynamic approach has an advantage over static due to the
continuous change in the context of the SMD. This is why we apply the dynamic approach
and also it has been used by other related works such as Zhou et al. (2017). In order to
achieve dynamic partitioning, we use the Java Reflection API 2. Java Reflection can be
used to monitor classes, methods etc during runtime. With the application of this, we
can call our offloading decision engine to decide whether to offload a task or not. Before
we can offload tasks, we have to properly identify resource intensive tasks so correct
offloading decisions can be made. This is done during development stage through method
annotations. Resource intensive methods are annotated with a @PushRemote annotation.
Only methods with this annotation are considered for offloading. If no annotations are
found during runtime using Java Reflection, all tasks are performed locally on the SMD.

3.2 Offloading Decision Engine

The offloading decision engine is called during runtime to determine whether to offload
a task or not. It uses the SMD’s context during runtime to make this decision. The en-
gine has the following components NetworkProfiler, MemoryProfiler and BatteryProfiler.
The NetworkProfiler monitors the SMD for available network such as mobile networks
(2G/3G/4G) and WiFi. If a network is found, the NetworkProfiler also checks the signal
strength to determine if it is suitable for offloading task(s). The MemoryProfiler is used
to check available RAM on the SMD. This component is needed to know if the SMD
has enough memory to perform a task or not. Lastly, the BatteryProfiler monitors the
SMD’s battery level and also if the SMD is in a charging state. These three components
make up the engine and are the core of the offloading decision making process.

3.3 Offloading Resources

Heterogeneity in the MCC involves having multiple offloading options. Here, we use
serverless computing and remote mobile clients to execute offloaded tasks. We apply
serverless computing here to reduce costs that are attributed with using a public cloud
VM. This is one of the objectives of this research. Serverless computing involves writing
functions that perform specific tasks. In serverless computing, we do not have to bother
about server setup or maintenance. These are taken care of by the CSP and costing
is mainly done by amount of resources consumed through function calls. The second
offload resource option used are remote mobile clients. These mobile clients are other
SMDs that want to offer their idle resources to perform offloaded tasks. This is done
by installing an offloading client application on the SMD client. The client application
at intervals monitors the client SMD’s context to determine if it is suitable to perform
an offloaded task or not. If the client SMD has adequate resources, it can be chosen to
perform offloaded tasks. An approach like this usually involves incentivizing the owners
of the participating client devices but this is not being studied in this research and is
considered for future research work.

In order to get best results from the offloading options, we apply method replication.
This involves replicating profiled intensive methods on the different offloading resources.
This is used to ensure consistent results are gotten when compute tasks are offloaded. One
method that has been used by other related works is VM migration. The VM migration
involves transferring a VM with the computational task to another external resource to

2Java Reflection API: https://docs.oracle.com/javase/tutorial/reflect/index.html

8

https://docs.oracle.com/javase/tutorial/reflect/index.html

execute. As good as this approach is, it might be heavy on the users network and can
also introduce latency overheads before tasks can be executed externally, the VM has to
be migrated first and set up. With the method replication approach, functions already
exists with needed code and only need to be called. One possible issue that might be
associated with the method replication is code maintenance. Any code change must be
implemented across all resources.

Also, the default offload resource option in our approach is the serverless computing.
This is chosen because maintenance is being done by the CSPs and they are highly
scalable. This default option can be changed at anytime using remote configuration.
Remote configuration can be used to change variables in a mobile application without
the need to modify source code. This gives the application owner complete control over
what offload resource is chosen by their application thereby introducing flexibility.

3.4 Realtime Monitoring

In order for our approach to function optimally, we apply realtime monitoring to know
if offloaded task(s) have been completed by external resources to update the requesting
mobile application with results. This is important as some applications are latency sens-
itive and require results as soon as they are produced. In our approach, we do this by
sending results produced by remote resources to Firebase Cloud Firestore 3 which is a
NoSQL database that can be listened to in realtime. We make this work by creating a
unique document on Firestore for each task offloaded. The SMD which made the offload-
ing request then listens to this document for updates. As soon an update is received,
an update event is sent to the SMD which can then update itself with the appropriate
result.

3.5 Case Studies

For this research paper, we aim to apply two research case studies. We use an Optical
Character Recognition (OCR) application and an N-Queens application both built on the
android platform using Java. OCR involves reading and generating text from documents
such as images while N-Queens is a chess style of application but uses only the queens.
N-Queens involves placing N number of queens on a chessboard in such a way that the
available queens will not be able to take out each other. These applications are used
to determine performance of our approach and will be built on the Android platform
using Android Studio. Performance metrics being monitored and compared against local
execution are battery utilization, task completion time and performance. In order to
capture these metrics, an android profiler monitor is employed which captures resource
usage by the case applications.

4 Design Specification

Our overall system architecture is illustrated in figure 1. It shows a general flow of
how task offloading is performed. Our approach uses serverless computing (GCP Cloud
Functions) and remote mobile clients as code offloading resources. Firstly, we have our
SMD which wants to offload a compute task. The decision to offload a task or perform

3Firebase: https://firebase.google.com/docs/firestore

9

https://firebase.google.com/docs/firestore

a local execution is done by our offloading decision engine. The engine uses the SMD’s
current context to make this decision. Tasks can either be offloaded to the public cloud
through either cellular networks (2G/3G/4G) or WiFi network depending on which is
currently available. Lastly, depending on the default offloading option, the offloaded
task can either be performed on the cloud functions or available mobile clients. As
stated before, the default offloading option can be changed at anytime with a remote
configuration implemented and does not require source code modification.

Figure 1: Overview of System Architecture

4.1 System Components

Figure 2 illustrates the various components of our system. Our system can be broken down
into two major components which are the SMD and remote task execution. Offloading
requests are made by the mobile application on the SMD. After this request has been
made, we use Java Reflection during runtime to get the SMD’s current context and make
our offloading decision. The device context in our approach is currently made up of
a BatteryProfiler, NetworkProfiler and MemoryProfiler. We used these components to
determine if the SMD has enough resources to perform a compute intensive task or not.
This helps the decision engine to know if the task execution will happen locally or be
offloaded to available cloud resources.

4.2 Context-Aware Offloading Decision Engine

For our algorithm illustrated in Algorithm 1, the default offload choice is local execution.
This is chosen because there is a possibility that the SMD might not have network access
and will not be able to offload tasks to remote cloud resources. This default is also
maintained if the SMD has adequate resources to run the computational task. We use
the getRemoteConfig() method to get default context values from remote configuration. If
the SMD does not have adequate resources, then a check is done with the NetworkProfiler
to determine if network is available and also the strength of the network. Depending on
the strength of the available network, the OFFLOAD CHOICE can either be CLOUD
OR LOCAL execution.

10

Figure 2: Overview of System Components

5 Implementation

In this section, we discuss the implementation of our approach. The system is entirely
written using the Java SE 8 4. The mobile applications used for our case studies are built
for the Android platform using Java and Android Studio IDE. For our offloading resources,
we use GCP as our CSP for our serverless computing. The service used in GCP is called
Google Cloud Functions. For the remote mobile clients, we built a mobile application
also based on the Android platform which users (volunteers) willing to participate will
install on their devices. Both resources have replicated methods of tasks that can be
offloaded.

5.1 Method Annotation

In our system, we start by first identifying resource intensive methods that can poten-
tially be offloaded during development stage of the mobile application and annotate them
using Java annotations. This is done so that during runtime, using Java Reflection we
can know what method we plan to offload. We have created a custom Java annotation
class called PushRemote with retention policy of runtime. This is done using @Reten-
tion(RetentionPolicy.RUNTIME). This will ensure that any method annotated with the
@PushRemote annotation will remain accessible during runtime. The annotation use is
also restricted to only methods as we only plan to offload only methods. This is achieved
using @Target(ElementType.METHOD).

4Java SE 8: https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.

html

11

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html

Algorithm 1 Context-Aware Offloading Decision Algorithm

1: function makeOffloadDecision(context)
2: OFFLOAD CHOICE ← LOCAL
3: batteryProfiler ← new BatterProfiler(context)
4: memoryProfiler ← new MemoryProfiler(context)
5: networkProfiler ← new MemoryProfiler(context)
6: if (batteryProfiler.getBatteryLevel() >= getRemoteConfig(BATTERY) OR

batteryProfiler.phoneIsCharging()) AND memoryProfiler.getAvailableRAM() >=
getRemoteConfig(RAM) then

7: return LOCAL
8: end if
9: if networkProfiler.getNetworkIsConnected() == true then

10: if networkProfiler.getAvailableNetwork() == WIFI ORMOBILE then
11: switch (networkProfiler.getConnectionStatus())
12: case EXCELLENT:
13: case GOOD:
14: case MODERATE:
15: OFFLOAD CHOICE ← CLOUD
16: case POOR:
17: case UNKNOWN:
18: default:
19: OFFLOAD CHOICE ← LOCAL
20: end if
21: end if
22: return OFFLOAD CHOICE

5.2 Dynamic Partitioning

We perform dynamic partitioning using Java Reflection to monitor classes for annotated
methods that can be offloaded. When this method is discovered, we run our offloading
decision engine to determine where to perform the task. If the result gotten from the
engine is CLOUD, we reassign the ’pushRemote’ and ’offloadDecision’ variables with
necessary information to perform the task offload. As stated before, the engine uses the
device’s current context and this happens during runtime thereby making it a dynamic
approach. Step wise series of this approach is given below:

1. Initialize reflection class with device context

2. Pass context to decision engine

3. Get an array of all methods from class object

4. Check if @PushRemote annotation is present in class

5. If present, run decision engine to get offload choice

6. If offload decision is cloud, set pushRemote = true and offloadDecision = CLOUD
else, leave default option which is local execution

12

5.3 Offloading Decision Engine

As discussed before, before we can make use of this engine, we have to pass the SMD’s
context to it. This context is then used by our BatteryProfiler, NetworkProfiler and
MemoryProfiler in algorithm 1 to make adequate offloading decision. These three profilers
are discussed below:

• BatteryProfiler: This class contains two methods (getBatteryLevel() & phoneIsChar-
ging()) which we use to get the current battery level of the SMD and also if the
SMD is currently in a charging state. The phoneIsCharging() method returns a
boolean value of ’true’ if the phone is currently charging or has battery level of
100%. These two methods are called by algorithm 1.

• NetworkProfiler: This class determines the network availability of the SMD.
We first define using the SMD’s context if there is connectivity and if there is,
we run a function to define what type of network is available. Available network
connectivity is in two options which are WIFI and MOBILE. Depending on which
is available, we run a function that determines the strength of the network and then
assign a value that matches the strength. The available values for network strength
are EXCELLENT, GOOD, MODERATE, POOR AND UNKNOWN. This result
can be gotten by calling the getConnectionStatus() method the NetworkProfiler
exposes.

• MemoryProfiler: This class is basically used to get the current available RAM of
the SMD. It exposes a method called getAvailableRAM() which uses the device’s
context to return RAM that is currently not utilized.

After these classes have been initialized in the engine, the first thing we do is to check
if the SMD has available resources to run the compute task. We do this by checking
battery life and available memory. If the values from this check equal default values set
in our remote configuration, we run the task locally else, we check for network availability
to determine if we can offload the task to the cloud. Depending on network availability
and as shown in algorithm 1, if this result is EXCELLENT, GOOD OR MODERATE,
we can then offload to the cloud. If the network availability is POOR OR UNKNOWN,
then we have to remain with the default and run the task locally since offloading will not
be possible.

5.4 Remote Mobile Clients

Having remote clients as part of system is to apply heterogeneity to the system. We have
implemented this by building a separate mobile application with method replication of
methods that can be offloaded. When a user volunteers to offer their free resources, we
create a unique record for them on Firebase Cloud Firestore. The mobile application can
then listen in realtime to that record to know if it has been assigned a task to perform and
also what type of task it was assigned. After performing the task, it updates that same
record with result gotten so the requesting device can get it also in realtime. In order to
ensure participating devices have adequate resources to offer, the mobile application at
regular intervals sends device information such as battery, network status and available
memory to Firebase Cloud Firestore. This ensures that best unassigned device is selected
to perform a task.

13

5.5 Remote Configuration

This option was implemented to give the ability to change configurations in our system
without the need to modify source code. We store all remote configurations on Firebase
Remote Config 5 and these can be changed at anytime on the cloud platform and will
reflect on the mobile application. We implement this by using the remote config library
provided. In a scenario that there is no network availability, the library uses default
values hardcoded in the mobile application. In our system, we use remote config for
default values for battery life and available RAM in our decision engine. This makes
it easy for the developer to change depending on requirements. We also use it for our
offloading resource options. By default, our system is set to offload tasks to our serverless
functions and using remote config, we can change this to offload to available remote clients
depending on requirements.

6 Evaluation

In this section, we present analysis of results of various experiments carried out using
our approach. We also discuss findings and how they support the objectives of this
research work. For experiments carried out, we have built two android applications
which implement our approach. Also, we have set up various virtual android devices
with different context parameters (battery, network and RAM) in order to properly test
our context-aware decision making algorithm. Results are given below.

6.1 Experiment 1 / N-Queens Problem

The N-Queens Problem involves placing N number of queens on a chessboard in such a
way that no queen will be able to attack another. We were able to implement this problem
using the backtracking algorithm which is a recursive approach to finding a solution step
by step. For this experiment, we have set up three scenarios where the task will run
locally (i.e resources are available for local execution), run using serverless functions and
run using the remote mobile clients. To obtain results, we run each scenario five times and
get the average execution time. For N = {8, 16, 24, 32}, we achieved the following results
for the different scenarios illustrated in figure 3. Each number for N also represents the
chessboard size i.e N = 16 will represent a 16 x 16 chessboard with 16 queens.

From figure 3, we can observe that for N = {8, 16}, running the task locally seems
more efficient than offloading to cloud resources due to lesser execution time. This is in
the scenario that the SMD has adequate resources to run the task. Still looking at N =
{8, 16}, the difference in execution time for running the task using serverless functions
as compared to running locally is not too much. The serverless function has a slightly
higher execution time due to latency overhead. This is also displayed when running
tasks using the remote mobile clients. As the value of N begins to grow, we can observe
that running the task using serverless functions is more beneficial than running local or
using the remote mobile clients. This happens because the SMD has limited resources
and the serverless function can scale up to properly handle the increasing value for N .
Running the task using remote mobile clients has the highest execution time for all values
of N . This is due to the overhead of looking for a suitable client to run the task coupled
with the task execution and return of results gotten to the offloading device. This is

5Firebase Remote Config: https://firebase.google.com/docs/remote-config

14

https://firebase.google.com/docs/remote-config

Figure 3: Overall Execution Time for N = {8, 16, 24, 32}

the major reason why we chose executing offloaded tasks on serverless functions as our
default option.

6.2 Experiment 2 / Optical Character Recognition (OCR)

Here we present results from an OCR application with our approach implemented. For
this experiment, we use two images with different sizes (large and small). The large image
contains lots of text while the small one does not. We use the same scenarios identified
in section 6.1 above. Results are shown in figure 4. For the smaller image with less text,
local execution was faster followed by using the serverless function and remote clients.
The serverless execution has higher execution than local due to the overhead of uploading
the image before we can perform the OCR task on it. For the large image, we can see
that the serverless function has execution time of almost 10 seconds while local is almost
at 25 seconds. This is a huge difference considering the overhead attached to offloading
to serverless function. All task executions on the remote clients have higher execution
times. As discussed in section 6.1 above, it is due to overhead of looking for a suitable
device then performing the task and returning the results to the requesting device.

15

Figure 4: Overall Execution Time for OCR

6.3 Experiment 3 / Offloading Decision Based on Context

In this section, we set up different virtual android devices with different context paramet-
ers in order to determine if our context aware decision algorithm is functioning properly
i.e choosing the right offloading decision. For this experiment, the default battery level
is set at 90% and default RAM level is set at 1GB. This result is presented in the table
2 below.

Table 2: Offloading Decision Engine Test

Device Context Expected Decision Gotten Decision

#1

Battery - 100%
Network - GOOD

RAM - 1 GB LOCAL LOCAL

#2

Battery - 100%
Network - GOOD
RAM - 500 MB CLOUD CLOUD

#3

Battery - 80%
Network - GOOD

RAM - 1 GB CLOUD CLOUD

#4

Battery - 80%
Network - POOR

RAM - 1 GB LOCAL LOCAL

#5

Battery - 20%
Network - EXCELLENT

RAM - 600 MB CLOUD CLOUD

16

From table 2 above, we can see that our decision engine is functioning properly and
making correct offloading decisions based on changing device context.

6.4 Discussion

Results from our experiments have shown that our approach is functioning properly.
Our decision making algorithm makes the right offloading decision based on the SMD’s
changing context as shown in table 2. Results from experiment 6.1 and 6.2 have shown
that the SMD was able to handle low compute intensive task properly locally in a time
efficient manner thereby utilizing less resources. This is not the case when the task became
more intensive. Execution time became higher thereby consuming more resources of the
SMD such as battery life, CPU and RAM. When compared to running offloaded tasks
using the serverless functions, execution time was reduced when the task became more
intensive as shown in figures 3 and 4. This result was achieved even with the network
overhead associated with offloading the task and returning the results. As regards to
offloading with remote mobile clients, this option might not be the best for latency
sensitive applications. This is due to the overheads attached to it such as looking for an
appropriate device, assigning the task to the device and lastly waiting for the task to be
completed and result returned. Also, it is dependent on devices being available and have
adequate resources to perform offloaded tasks. With results obtained in general, we have
been able to achieve the objectives of this research paper.

Our results achieved have shown to be in line with results gotten from previous related
works and when comparing our approach to other related works, our approach is better
in the sense that we have applied remote configurations which can be used to change
parameters used in our offloading decision algorithm without the need to modify source
code. Also, most papers implemented their approach using cloud VMs while we apply
ours using serverless computing. When using cloud VMs, in most scenarios, the cost
is always higher when compared to using serverless computing. This cost difference is
shown in table 3 for some related works. For this comparison, we assume that each task
runs for 300 ms every five minutes for an hour. Total cost of execution will be cost of 12
executions in an hour x 300 ms x the unit cost.
**Note: UC = Unit Cost, TC = Total Cost

Table 3: Price Comparison for running task for 300 ms every 5 minutes / hour

Instance Billed at UC TC (300ms)

Our approach GCP Cloud Functions (2 GB) 100 ms $0.000002900 $0.01044

Zhou et al. (2017) AWS EC2 t2.medium (4 GB) 1 Hour $0.0464 $0.0464

Islam et al. (2020) AWS EC2 t3.xlarge (16 GB) 1 Hour $0.1664 $0.1664

From table 3 above, we can see that using cloud functions in our approach offered the
lowest cost when compared to instances used by other related works. With this result,
we can state that our approach is cost efficient and is one of the objectives we aimed to
achieve with this research paper. One limitation of using the serverless approach is the
problem of cold starting. Before functions can be executed, the execution environment
has to be set up which can then lead to additional execution time. This problem usually

17

occurs when a function is deployed and used for the first time. Subsequent function
invocations and steady load will make the impact of the cold start negligible.

This research paper has been able to contribute to the field of cloud computing by
exposing cloud services that can be implemented in mobile application development and
enhance the usage of the MCC. Cloud computing offers various services by different
CSPs. We have been able to implement three of such services being offered by GCP.
These services include Remote Config, Cloud Firestore Realtime database and Cloud
Functions (serverless). These services offer lots of advantages and we have shown how it
can be utilised in mobile cloud computing thus leading to a potential better acceptance
of the model.

7 Conclusion and Future Work

In this research paper, we aimed to determine if the dynamic partitioning of a mobile
application running compute intensive task(s) can be made to function more efficiently
by applying the code offloading model in a context aware HMC environment while also
reducing costs that might be incurred on users. Our objectives included performing a
study on the state of art, implementing a cost effective code offloading approach and
perform system evaluation. We were able to achieve all these by building an offloading
decision engine which used the SMDs context (i.e battery, network, memory) at runtime to
make adequate offloading decisions. We profiled intensive methods by annotating them
and was able to achieve offloading through method replication on our remote offload
resources. Our offload resources included GCP serverless cloud functions and remote
mobile clients which proved to be cheaper alternatives when compared to using cloud
VMs.

Also, we were able to add flexibility to our approach by using remote configurations
which we used to change system parameters without the need to modify source code.
We performed evaluations of our system and results proved that our decision making
algorithm provided adequate offloading decisions based on context and execution time
was significantly reduced (up to 66%) for heavy computational tasks when offloaded.

One limitation identified in this paper is the cold starting of the serverless functions.
This is due to the setting up of the execution environment when a function is being
deployed and run for the first time. This limitation becomes negligible when the functions
receive subsequent invocations and steady load. For a future work, we aim to propose
an adequate incentive mechanism for users who want to be part of the remote mobile
client system. If users are incentivized, there will be potential for increased participation
therefore increasing the number of devices available to perform offloaded tasks.

References

Akherfi, K., Gerndt, M. and Harroud, H. (2018). Mobile cloud computing for computation
offloading: Issues and challenges, Applied Computing and Informatics 14(1): 1 – 16.
doi: 10.1016/j.aci.2016.11.002.

Alonso-Monsalve, S., Garćıa-Carballeira, F. and Calderón, A. (2018). A heterogeneous
mobile cloud computing model for hybrid clouds, Future Generation Computer Systems
87: 651 – 666. doi: 10.1016/j.future.2018.04.005.

18

Benedetto, J., Valenzuela, G., Sanabria, P., Neyem, A., Navón, J. and Poellabauer, C.
(2018). Mobicop: A scalable and reliable mobile code offloading solution, Wireless
Communications and Mobile Computing 2018. doi: 10.1155/2018/8715294.

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe,
E., Javadi, B., Vaquero, L. M., Netto, M. A. S. and et al. (2018). A manifesto for future
generation cloud computing: Research directions for the next decade, ACM Comput.
Surv. 51(5). doi: 10.1145/3241737.

Chen, X., Chen, J., Liu, B., Ma, Y., Zhang, Y. and Zhong, H. (2019). Android-
off:offloading android application based on cost estimation, Journal of Systems and
Software 158: 110418. doi: 10.1016/j.jss.2019.110418.

Chen, X., Chen, S., Zeng, X., Zheng, X., Zhang, Y. and Rong, C. (2017). Framework for
context-aware computation offloading in mobile cloud computing., Journal of Cloud
Computing (2192-113X) 6(1): 1. doi: 10.1186/s13677-016-0071-y.

Flores, H., Hui, P., Nurmi, P., Lagerspetz, E., Tarkoma, S., Manner, J., Kostakos, V., Li,
Y. and Su, X. (2018). Evidence-aware mobile computational offloading, IEEE Trans-
actions on Mobile Computing 17(8): 1834–1850. doi: 10.1109/TMC.2017.2777491.

Gai, K., Qiu, M., Zhao, H., Tao, L. and Zong, Z. (2016). Dynamic energy-aware cloudlet-
based mobile cloud computing model for green computing, Journal of Network and
Computer Applications 59: 46 – 54. doi: 10.1016/j.jnca.2015.05.016.

Gu, F., Niu, J., Qi, Z. and Atiquzzaman, M. (2018). Partitioning and offload-
ing in smart mobile devices for mobile cloud computing: State of the art and fu-
ture directions, Journal of Network and Computer Applications 119: 83 – 96. doi:
10.1016/j.jnca.2018.06.009.

Islam, A., Kumar, A., Mohiuddin, K., Yasmin, S., Khaleel, M. and Hussain, M. (2020).
Efficient resourceful mobile cloud architecture (mrarsa) for resource demanding applic-
ations, Journal of Cloud Computing 9(1). doi: 10.1186/s13677-020-0155-6.

Lee, H. and Lee, J. (2018). Task offloading in heterogeneous mobile cloud comput-
ing: Modeling, analysis, and cloudlet deployment, IEEE Access 6: 14908–14925. doi:
10.1109/ACCESS.2018.2812144.

Lin, X., Jiang, J., Li, B. and Li, B. (2015). Circa: Offloading collaboratively in the
same vicinity with ibeacons, 2015 IEEE International Conference on Communica-
tions (ICC), London, UK, pp. 3751–3756. [Online]. Available: IEEE Xplore, ht-
tps://ieeexplore.ieee.org/document/7248908 [Accessed on: Mar. 23, 2020].

Lu, F., Gu, L., Yang, L., Shao, L. and Jin, H. (2020). Mildip: An energy efficient
code offloading framework in mobile cloudlets, Information Sciences 513: 84–97. doi:
10.1016/j.ins.2019.10.008.

Mahmoodi, S. E., Uma, R. N. and Subbalakshmi, K. P. (2019). Optimal joint scheduling
and cloud offloading for mobile applications, IEEE Transactions on Cloud Computing
7(2): 301–313. doi: 10.1109/TCC.2016.2560808.

19

Nawrocki, P., Sniezynski, B. and Slojewski, H. (2019). Adaptable mobile cloud comput-
ing environment with code transfer based on machine learning, Pervasive and Mobile
Computing 57: 49 – 63. doi: 10.1016/j.pmcj.2019.05.001.

Noor, T. H., Zeadally, S., Alfazi, A. and Sheng, Q. Z. (2018). Mobile cloud computing:
Challenges and future research directions, Journal of Network and Computer Applica-
tions 115: 70 – 85. doi: 10.1016/j.jnca.2018.04.018.

Xu, M., Qian, F., Zhu, M., Huang, F., Pushp, S. and Liu, X. (2020). Deepwear: Adaptive
local offloading for on-wearable deep learning, IEEE Transactions on Mobile Computing
19(2): 314–330. doi: 10.1109/TMC.2019.2893250.

Zhou, B. and Buyya, R. (2018). Augmentation techniques for mobile cloud computing:
A taxonomy, survey, and future directions., ACM Computing Surveys 51(1): 13:2 – 38.
doi: 10.1145/3152397.

Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N. and Buyya, R. (2017).
mcloud: A context-aware offloading framework for heterogeneous mobile cloud, IEEE
Transactions on Services Computing 10(5): 797–810. doi: 10.1109/TSC.2015.2511002.

Zhou, B., Srirama, S. N. and Buyya, R. (2019). An auction-based incentive mechanism
for heterogeneous mobile clouds, Journal of Systems and Software 152: 151 – 164. doi:
10.1016/j.jss.2019.03.003.

20

	Introduction
	Related Work
	Context Aware Offloading
	Heterogeneous Mobile Cloud Computing
	Code Offloading Frameworks
	Comparison of Code Offloading Frameworks

	Methodology
	Dynamic Partitioning
	Offloading Decision Engine
	Offloading Resources
	Realtime Monitoring
	Case Studies

	Design Specification
	System Components
	Context-Aware Offloading Decision Engine

	Implementation
	Method Annotation
	Dynamic Partitioning
	Offloading Decision Engine
	Remote Mobile Clients
	Remote Configuration

	Evaluation
	Experiment 1 / N-Queens Problem
	Experiment 2 / Optical Character Recognition (OCR)
	Experiment 3 / Offloading Decision Based on Context
	Discussion

	Conclusion and Future Work

