~

\" National
College
Ireland

Enhanced genetic algorithm to reduce
makespan of multiple jobs in map-reduce
application on serverless platform

MSc Research Project
MSc in cloud computing

Divya B. Thorat
Student 1D: X18191878

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland . National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Divya Thorat
Student ID: x18191878
Programme: Masters in cloud computing
Year: 2020
Module: MSc Research Project
Supervisor: vikas sahni
Submission Due Date: 17/08,/2020
Project Title: Enhanced genetic algorithm to reduce makespan of multiple
jobs in map-reduce application on serverless platform
Word Count: 6180
Page Count: [20]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature: Divya B. Thorat

Date: 23rd September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Enhanced genetic algorithm to reduce makespan of
multiple jobs in map-reduce application on serverless
platform

Divya Thorat
x18191878

Abstract

Nowadays, allocating proper tasks to the resources is an integral part of the
cloud environment. So the execution time is depending on the number of resources
allocated to the environment. So it necessary to choose the proper scheduling
algorithm for multiple applications. The serverless platform is the combination of
function as a service and back-end as service. This paper proposed a map-reduce
jobs with a genetic algorithm on a serverless platform. In this, we have used Lambda
function as a service and s3 bucket, Redis storage as back end as service. The
combination of fast and slow storage gives the fine-grained elasticity, and a genetic
algorithm minimizes the total execution time. In a serverless platform, The pricing
depends upon the number of times the function executed and the total execution
time required for operation. The genetic algorithm requires low execution time, so
it reduces the cost of the operation, and a combination of slow-fast storage gives
better performance along with efficiency. The evaluation carried out on a serverless
platform, comparison carried out between map-reduce application without genetic
algorithm and with a genetic algorithm, so result shows the map-reduce application
with a genetic algorithm requires less execution time and has higher performance.

1 Introduction

Nowadays, a data operation centers and storage operating centers are in more numbers
as compared to past days, and the data generated through these operation centers are in
huge numbers. It is challenging to manage massive data, so it is necessary to adapt the
management of resources and tasks in a productive manner. It enhances the efficiency
and performance of the operations. Management of the task is challenging in all the
cloud service model. In software as service and platform as service models, management
of resources and task scheduling are the most crucial factor as it manages how much
amount of resources needs to allocate for a particular job Buyya et al.| (2018).As currently
in a data center, most of the applications are running in parallel phase, so the utilization
of resources is decreased, so resource allocation must be in a proper manner to improve
the performance and efficiency of the system. So task scheduling plays a important
part in assigning the task to applications |Arunarani et al.| (2019)). Serverless domain for
cloud operator has the challenge such as the appropriate allocation of resources for each
service must be used to increase the total income while maintaining the user satisfaction
for the service along with service as function and service quality. So in function as a

service domain, this problem is taken into consideration, its solution is to minimize the
total time of implementation of the jobs and efficient provisioning of the resources, so
it reduces the latency issue. Minimizing the execution time of application requires to
choose the appropriate scheduling algorithm [Buyya et al. (2018]). Recently map-reduce
application plays a vital role in big data processing to process the massive amount of data.
Massive data processing with map-reduce applications requires high expenses. However,
if we implement the map-reduce jobs on a serverless platform, then there is no need to
maintain the servers, and the serverless platform is cheaper as compared to MapReduce
application on the Hadoop platform E]

In a task scheduling mechanism, the efficiency and system performance increased
by allocating proper tasks to processors, so it reduces the execution time |[Akbari et al.
(2017). The primary goal of task management is a load balancing, scalability, reliab-
ility, and dynamic allocation of the resources so that it reduces the problems of task
scheduling |Arunarani et al.| (2019)).

The static algorithm for scheduling classifies in heuristic and meta-heuristic meth-
ods. The heuristic approach is classified in lists, clusters and duplication methods. The
heuristic process could not produce permanent results for several problems as time com-
plexity of the scheduling increases; also, this method increases the computing cost.A
meta-heuristic method provides a high level of ergodicity with a flexible and straightfor-
ward architecture; also, it gives the solution for optimization issues Akbari et al.| (2017)).
The meta-heuristic method further categorizes into different methods.

Map-reduce application with the serverless platform processing the data without any
operational hassle, and there is no need to have the Hadoop knowledge. It reduces the
operational cost as there is no need to manage the servers, and the user has to pay only
for execution of function. In a serverless platform, operational cost depends on how many
times the function has been executed, so if running time is long, the operating cost is
also very high. The genetic algorithm’s execution time is low as compared to the other
algorithm; it best suited for MapReduce jobs on a serverless platform [l many of the
researchers have chosen genetic algorithm as it has low execution time |Arunarani et al.
(2019). This algorithm used to minimize the run-time and provides the optimal solution.
The genetic algorithm uses the operator, such as a selection, crossover, and mutation, for
getting the operation end requirement fulfilled [Sathya Sofia et al.| (2019)).

when using the map-reduce application, It is important to have the operations with
excellent performance while maintaining the application cost-efficient. So In the proposed
architecture, we have used the slow storage for cost reduction, fast storage for getting
high performance, and a genetic algorithm to minimizes the total completion time, so
total operation cost reduced along with better efficiency Pu| (Feb 2019).

1.1 Research Question:

”Can execution time of multiple jobs in map-reduce applications be reduce using enhanced
genetic algorithm as it requires less execution time and gives more correctness in the
solution?”

Lurl:https: //aws.amazon.com/blogs /compute/ ad-hoc-big-data-processing-made-simple-with-
serverless-mapreduce/
Zurl: https://aws.amazon.com/blogs/compute/ ad-hoc-big-data-processing-made-simple-with-

serverless-mapreduce/

2 Related Work

In this area we have performed a survey for choosing a scheduling algorithm for map-
reduce application, which platform is suitable to executing the application and how we can
achieve high performance along with reduction in cost of the operation. The subsection
represent the overview on task management in cloud computing ,subsection
represent the review on task scheduling with genetic algorithm, [2.3pverview on map-
reduce jobs on serverless platform and subsection represent Literature review analysis.

2.1 Overview of Task scheduling in Cloud computing

Nowadays, parallelism increased, so the utilization of the resources reduced, so we have
to do the job scheduling appropriately to improve the performance. |Arunarani et al.
(2019) paper makes research on job scheduling strategies and represents the performance
of cloud computing. The objective of the task management is scalability, task scheduling,
reliability, and dynamic resource allocation to nodes. Scheduling strategies classified as
Qos-based, Ant colony optimization, PSO based,fuzzy-based, and cost-based. To analyze
the performance of each scheduling type researcher refer the six different paper and
concluded that the Genetic algorithm(GA) and particle swarm optimization is the best
among them. |Asghari and Navimipour (2018)show different types of task scheduling
algorithms are available, its pros and cons; with the help of such research, The algorithm
most suitable can be found easily.

Cloud computing has an issue like taking the correct decision for assigning the task
to the resources is difficult, and it affects the completion time of the system, so the use
need to pay further cost for the same. To avoid such circumstances, one needs to assign
a proper task scheduling method for data-intensive and big data applications. most
of the independent tasks scheduled with the basic genetic algorithm. Although many
applications are complicated, they have subtasks to communicate internally. (Gawanmeh
et al.| (2018)have presented a paper where it can schedule the dependent task following
the user’s requirement with precise time and price. The proposed method gives excellent
performance than the standard algorithm. It is restricted to one vector and one vector.

To execute the task with low energy consumption is the main objective of a user in
cloud computing, so the cost of the operation reduced. Sathya Sofia et al.| (2019) proposed
a non-dominated dual-target sorting algorithm. To perform the dual objective, they
considered ten, fifteen tasks and subtask respectively for fifteen heterogeneous resources.
The design function as a goal and the design limitations are another function. For cloud
users, the total time of execution and operating costs are two key factors and we have to
take these as several design goals. The research method presented calculated the objective
role and the distance between the crowds. After performing the standard operation,
parent is selected using tournament method. The numerical results show total time of
performance and operating costs achieved using the multi-target optimisation methods.

2.2 Overview of task scheduling with genetic algorithm

As the resource competition increased in cloud computing, map-reduce jobs run without
any input data, so it may impact the processing of the data and causes the delay. Map-
reduce applications cluster efficiency decreases due to data locality. The best way to
improve the data location of the map application is to cache the input data into the

memory. But it is hard to decide when and what to pick up in cluster design. So Sun
et al.| (2016)) has Presented the scheduling planner to improve the data location. In the
presented paper, it finds outs the pending jobs, and then in the future, it Predicts the
task node so that it can preload the memory.

In a computation grid, it is necessary to utilize the resources properly, so it has to use
the appropriate scheduling methods. |[Rajeswari et al.| (2019)) proposed map-reducer model
with an algorithm of the non-dominated sorting in computation grid. They considered
the overall run time and flow time to minimize the use of resources. The author com-
pares NSGA-II with a ”"weighted multi-target genetic algorithm” using a bench marking
tool, which states that genetic algorithm is low in execution time in comparison to other
algorithms. |Zhang et al.| (2019) The researcher also uses the NSGA -II algorithm, but for
the initial population, it uses the heuristic two-stage allocation method and finds the best
solution. Jena and Mohanty| (2018)) used the genetic algorithm based on user conscious
task scheduling.In heterogeneous environments,Akbari et al.| (2017)) used a modified ver-
sion of genetic algorithm for task planning. [Zhang et al. (2019),Costa et al.| (2020) and
Luo et al.[(2020) use a genetic algorithm for job shop task assigning methods. Enes et al.
(2020) show what is the need of a serverless environment, it’s problems, and how it can
solve these problems.

2.3 Review on map-reduce application on serverless platform

Nowadays, in a serverless computing application, resource provisioning and scaling are
performed by a third-party vendor like AWS lambda, Azure functions, and google cloud
function. Wang et al.| (2018) have presented a paper where they represent the analysis
of the three primary FAAS cloud providers based on resource utilization, performance
isolation efficiency, and architecture. So they represent some highlights of the results,

e AWS lambda gives better scalability and lowers cold start latency over google cloud
function. However, lambda gives a lack of isolation among the instances that causes
a decrease in 1/0, networking, and cold start performance.

e Half of the time, Azure functions run on a virtual machine with a loss of perform-
ance.

e As the google cloud function has the accounting issue, it allows the user to use
function instance to achieve the computing resource small as a virtual machine to
keep the cost almost zero.

To analyze the large dataset, mostly the map-reduce programming model is us.
Nowadays, function as service primarily used as there is no need to manage the serv-
ers. Serverless computing allocates the resources dynamically, and pricing based on the
execution time. So, |Giménez-Alventosa et al.| (2019) have introduced the serverless ar-
chitecture for running the map-reduce application on AWS lambda using Amazon s3. In
this, it introduces the MARLA framework to execute the python-based map-reduce jobs
on Aws lambda service. This framework depends on the AWS services as when the data-
set uploaded to s3 service, and it invokes the coordinator lambda function. By dividing
the total size into many chunks coordinator function calculates the size of partition and
allocated these chunks to mappers. If the chunk size is not satisfied, then the coordinator
function checks some conditions such as if the chunk size is smallest than the minimum
block, if the chunk size larger than the safe memory size, and if the chunk size is bigger

4

than the maximum block size. In this, it also adds an extra mapper to process the residual
data. The mapping process produces a list of key/value pairs and these chunks assigned
to independent reducer lambda function. This MARLA architecture handles the failure
at three stages that are a failure on the coordinator, failure on the mapper function, and
failure on the reduce function.

The fine-grained elasticity of the serverless computing is useful for high resource util-
ization in an application like analytics workload. However, the resource limits make it
challenging as they have to move a large amount of data between two functions. So, |Pu
(Feb 2019)have presented the paper where they use the locus serverless analytics plat-
form. That combines slow storage, i.e., amazon s3, DynamoDB, and fast storage, i.e.,
elastic cache, radios. This combination gives excellent performance with cost efficiency.
By using this , customer can select the appropriate storage mechanism and parallelism for
applications such as map-reduce. Locus reduces the total cluster time by 59% represented
in total core-seconds, which is nearby to apache spark’s completion time by up to twice.
Locus equivalent to Apache spark in running time measured on cloud sort benchmark
even though it is using a small amount of fast storage. This paper concluded that Locus
is twice slower than the amazon redshift, but still, it is a good decision as it doesn’t
require any provisioning time. By expanding the pywren (data analytic engine) Locus
designed. This paper uses S3 as slow storage and Redis nodes on Amazone elasticache.

Malawski et al. (2020)Has presented a paper where they have implemented a pro-
totype execution workflow using AWS lambda, google cloud functions, and hyper flow
workflow engine. In this, they have mentioned what the main feature of AWS lambda
is, google cloud function and azure. Also, they showed what the maximum limit for
execution time, disk space, several functions, and parallel execution is. The prototype
execution workflow evaluated with montage application.

Liroz-Gistau et al. (2016)Has presented a paper where they have introduced interme-
diate reduce phase to solve the reduce data skew problem and process the data parallelly
more efficiently.

Marra et al.| (2020)Has presented a paper where they have shown how the debugging
approach work for big data application such as MapReduce application.

Ruiz et al.| (2016)Has presented paper a where they have used the formal model to
improve the performance and cost agreement in Hadoop environment. The process of
model is implemented using Timed process algebra BTC.

2.4 Analysis of Literature review:

In Table [If shows the analysis of the research papers. In this it shows the analysis of, on
which area the research should be , what is the necessity of task scheduling and selection
of task scheduling algorithm, Selection among the three FAAS cloud provider, mapreduce
job on serverless platform and better performance with low latency.

Selection of
criteria

Title of the Papers

Author

Importance of research

Area of research

“A framework and a per-
formance assessment for
serverless MapReduce on
AWS lambda”

Gimenez alvent-
0sa

map-reduce application im-
plemented on serverless but
it has performance and
latency issue.

The necessity of
task scheduling
and Selection of
a task schedul-
ing algorithm

“Task scheduling tech-

niques in cloud comput-

lng «

arunarani task

2019

research on job schedul-
ing strategies and represents
the performance of cloud
computing.

Selection among
the three FAAS
cloud provider

“scheduling algorithm
based on prefetching in
MapReduce clusters”

Sun, M(2016)

This paper find out the
pending jobs while schedul-
ing the task using a genetic
algorithm and predict the
future task.

MapReduce jobs
on serverless
platform

“Peeking behind the cur-
tains of serverless plat-
forms”

Wang, L.(2018)

presented a paper where
they represent the analysis
of the three primary FAAS
cloud providers based on re-
source utilization, perform-
ance isolation efficiency, and
architecture

Better perform-
ance with low
latency

“Shuffling, fast and slow:
Scalable analytics on
serverless infrastructure”

Pu, Q.
2019)

(Feb

presented the paper where
they use the locus serverless
analytics platform. That
combines slow storage, i.e.,
amazon s3, DynamoDB,
and fast storage, i.e., elastic
cache, radios. This com-
bination gives excellent per-
formance with cost effi-
ciency.

Table 1: Research Areas with Importance of research

3 Methodology

3.1 Steps:

With lambda, customers can run the code without any specific infrastructure, so that
many applications, such as massive data processing are stored on the S3 bucket. Lambda
service is the critical element of serverless infrastructure. The project consists of three
sections

1. Mapper
2. Coordinator
3. Reducer

In a project following s procedure has been followed to execute the map-reduce application
on serverless infrastructure.

1. The s3 bucket designed to store static and dynamic data and the Lambda Coordin-
ator function, created to connect the processing map phase to reduce stage.. To
fetch data from s3 to lambda function, we need to give some permission to the
IAM role. The TAM role permissions include S3 full access, Cloud watch full ac-
cess, 83 read-only access, VPC full access, elastic file system full access, lambda
role, lambda VPC access executive role, and cloud watch events full access. The S3
trigger event is created to trigger the lambda function when data is inserted into a
bucket. In this project, the coordinator function is used to distribute the data to
two mapper functions with some conditions according to the data size.

2. Mapper function is invoked from the coordinator function and find out the best
solution for the available problem with the help of a genetic algorithm. Each map-
per’s data is stored into Redis in-memory data storage to provide the excellent
grained elasticity.

3. Then the reducer function is invoked, and aggregated output is stored in another
s3 bucket. To provide security for the applications, process the data with VPC
by configuring the lambda function And creating the VPC endpoint for AWS S3
service.

Figure [1| shows the execution flow for the map-reduce application execution on serverless
platform.

3.2 Material and equipment:
3.2.1 AWS services:

IAM role: In a project, a role is an entity that you can create in your account and
has dedicated permission. With the help of a role, the user has representative access
with predefined permission to the credible entity without sharing long time access [} In
this project, as we need to access the different services such as s3, AWS lambda, etc., so

3url:https://docs.aws.amazon.com/IAM /latest /UserGuide /idroles.html

Input 53 Coordinator Mapper with
data | Bucket [| function " genetic
algorithm
Output Reducer function Intermediate
53 +— with genetic +—— data into elastic
bucket algorithm cache for data

Figure 1: Execution workflow of map-reduce jobs

we have created a role who’s name is lambdapermission with access to AmazonElast-
icCacheFullAccess, AmazonS3FullAccess, CloudWatchFullAccess, AmazonVPCFullAc-
cess, AWSLambdaVPCAccessExecutionRole, AWSLambdaRole, CloudWatchEventsFul-
1Access and AWSLambdaENIManagementAccess policies .

S3 bucket: it is an object storage service used by customers of all sizes and com-
panies for storing and protecting any amount of data for multiple applications. It gives
the 99.99999999999% of durability to store data for multiple application of companies [
Two s3 buckets are used in this project to store input and output data. Input buckets
name is AWS-lambda-triggerl, and one trigger event is created so that as soon as the
data is coming into an Input s3 bucket, it will invoke the coordinator lambda function
for execution. Data coming out of the redis function will store in to S3 bucket.

Aws cloud watch logs: it’s log is used to monitor, store, and access the log files
generated from EC2 instances, s3, Aws Lambda, and many other sources. It also enables
users to centralize the logs generated from many sources | In this project, when the
lambda function is executed, such as coordinator, mapper, and reducer, its output logs
are generated in cloud watch logs.

AWS Lambda: this service enables the user to run the code without provisioning
and monitoring the servers. We just have to pay for compute the time of the service. It
also provides continuous scaling whenever it will require E] In this project, lambda service
is used to create the coordinator, mapper, and reducer function. Coordinator function is
used to distribute the data across the mapper function, each mapper function is used to
find out the best output solution with the help of a genetic algorithm, and reducer function
is used to aggregate the output of the mapper function. Lambda function configured with
the role, s3 trigger, network configuration , security group, and during run time python
3.8 has been added.

AWS Redis in-memory data storage: Remote dictionary server is a key-value
open source storage devices for data storage and database use. ﬂ In this project, To

url:https://aws.amazon.com/s3/
url:https://docs.aws.amazon.com/AmazonCloud Watch /latest /logs/ WhatIsCloud WatchLogs.html
url:https://aws.amazon.com/lambda/

4
5
6
Turl:https: //aws.amazon.com /redis/

provide fast storage with good performance, Redis is used to store the intermediate data
generated by the mapper function.

3.2.2 Algorithm Used:

Genetic algorithm: The genetic algorithm is used to schedule tasks since less comple-
tion time is necessary. Prices in serverless computing are based on computational time
and we have used the genetic algorithm to reduce the total run-time. The genetic al-
gorithm consists of various operator types like selection, crossover, mutation and reverse.

3.2.3 Programming language:

The programming language used is Python 3.8 to create the functions. In this PyGAD
is an open-source python 3 libraries for implementing the genetic algorithm. PyGAD
provides assistance for distinct types of operators such as mutation, cross over, and parent
selection. It allows a distinct type of problem is optimized using the genetic algorithm
by the fitness function.

3.2.4 Sample Data:

The data used for mapping are country-based data in the United States. Thus the number
of times the country’s name in a comma-separated file has been performed. The mapping
function produces the key value pair by gathering the data and separates the required

and unused data. Then reducer adds the key value pair and gives the country name in
the CSV file.

4 Design Specification

Giménez-Alventosa et al. (2019) has proposed a python-based model that can work
with MapReduce on serverless platform, with the help of AWS lambda service. In this
architecture It stores the input data into s3 bucket , intermediate data generated from
mapper and output data generated from reducer are stored into the s3 bucket. This will
reduce operating costs but this architecture has latency problems, which is why we made
some changes to the MARLA Architecture to improve the system’s performance. Fig
shows the MARLA architecture which consists of the three component the coordinator,
mapper and reducer.

To improve the performance by keeping the architecture cost efficient we have modified
the MARLA architecture with locus system, in which it combine the slow storage with
cheap rate and fast storage with high rates and result in high performance, resource
efficient and cost efficient.

4.1 Algorithm used:

In serverless platform, pricing is depend on the number of times does the function execute
for required period of time. So, if the required period to execute the function is large then
the pricing in the serverless platform is obviously high. In this scenario task scheduling
plays vital role. We used genetic algorithms to plan the task and to find the best outcome.
Since the execution time for the genetic algorithm is low, the time needed to perform the
function is low and operation costs are low.

Input

bucket ARtput

bucket

- é@\l!l

|~

© @© 6 ®© 6

data arrive to coordinator Mapper Store mapped Reduce mapped
53 input buket phase phase data chunks data chunks

Figure 2: Architecture of Marla to support map reduce on aws lambda
\Giménez-Alventosa et al. (2019)

4.1.1 Genetic Algorithm:

The following process explains how a genetic algorithm works and the genetic algorithm
pseudo-code shown in 1.

1.

Genetic algorithm starts with the Initial population of related solutions to a prob-
lem.

Initial population is created with the help of chromosomes in randomly manner and
chromosomes are in the form of string or character.

In the next step, fitness of individual is calculated withing the population. So,
the result who satisfy the criteria is kept in population and the result who do not
satisfying the criteria is Removed from population.

In a next step genetic operators are used. Initial one is selection operator, In this
chromosomes who satisfies the fitness criteria are kept in a population and used for
mating.

To generate the new off-springs crossover and mutation genetic operators are carried
out on a selected parents.

In a crossover generator it swaps the chunks of data between two chromosomes
and finds the population’s diversity when small portion of population change is
introduced.

10

7. The overall procedure is repeated until the function meets the criteria; when best
solutions are found, the process ends and the best result comes back to the problem.

The below figurd] shows the pseudo of genetic algorithm.

Algorithm 1 Pseudo-code of Enhanced genetic algorithm
Input: mapreduce application

pop_size,

Mutation Probability,

request,

size of population,

file content;

Output: A task scheduling

call Initial Population;

repeat

call Selection operator;

call Crossover operator;

call Mutation operator;

call Inversion operator;

until size of population

4.2 Modified Architecture:

The Modified architecture consists of s3 bucket for input data, lambda function for map-
per, reducer and coordinator, Redis storage for storing the intermediate data generated
through mapper and another s3 bucket for storing the output generated through reducer.
below figure [3| shows the modified architecture.

The operation starts when there is input data in s3, so it invokes the coordinator
lambda function. The lambda coordinator function calculates data size by dividing total
data size into a number of user chunks. this data is stored in a allocated RAM, but if the
mapper don’t have the enough RAM then coordinator again recalculates the data size
for each mapper.

Initially it calculates the chunk size processed by mapper with the help of following
formula,

total size of data = x
number of mappers =y

datachunksize = © (1)
Y

After this it checks the whether the chunk size satisfies the bellow conditions.

1. when the chunk size is lower than the minimum block size defined by the customer.
So, the number of mapper size recalculated as,
x

y=1m (mmblocksize> + (2)

2. If the chunk size is larger than the safe memory size then chunk size is set to be as
safe memory size and again the number of mappers are calculated as below,
x

— int 1 3
y=m (safememorysz'ze) +)

11

Visual Paradigm Online Diagrams Express EditioMapper Reducer
Function function

g Z%
Input
data educer

Mapper
Mapper + Redq cer ¥
Fnﬁ —_—
RI™ [
A Output
ry Reducer storage
Coordjnator Mapper function
AWS
53 >
Reducer
Mapper function

Reducer
function with
genetic
algorithm
=ual Baradigm Online Diabea

Mapper

Intermediate

Output data
stored into S3

Data Coordinator
arrive function

Figure 3: Modified architecture of map reduce on aws lambda

xpress Edifion

Safe memory size is nothing but the proportion of memory dedicated to mapper
function.

3. If the chunk size larger than the max block size specified by the customer. So in
this scenario chunk size is set to max-block size and the number of mappers are set

to as,
T

(4)

=imt(——————
Y (maazblocksize
In above all equation while calculating the mapper size we have added one extra
mapper to process the residual data size: residualData = z

z =z — (y — 1).datachunksize (5)

In the worst case scenario the size of the residualdata is number of mappers -1 so
it avoids the mapper function to process chunk data plus the residual data. So, it
invokes the initial mapper lambda function. In this it uses the logarithmic method
to invoke the second mapper lambda function then the process continues. The data
is distributed using the coordinator function and assigned data to mapper function.
Then mapper function segregate the data using genetic algorithm and divide that
data into a chunk of data and store that intermediate data into Redis storage.
Lastly the intermediate data assigned to reducer and store the output data into s3
bucket.

12

5 Implementation

As we have seen AWS lambda provides the better scalability and has lower cold start delay
than other cloud service provider so we have chosen the lambda service as computation
engine for the project. To implement the genetic algorithm based MapReduce application
on serverless platform following configuration we have created with using amazon services.

e To access multiple services such as s3, cloud watch etc, created a role whose name
is lambdapermissions and assign a policies as mentioned in

e Created VPC (server_vpc) with 192.168.0.0/16 ipv4 CIDR block, public and private
subnet with 192.168.10.0/24 192.168.20.0/24, public and private route table namely
public_RT and private_RT. we did public subnet association to public route table
and private subnet association to private route table. Created internet gateway
(igw-08fede8e78a821f67) to access internet though public subnet, it allow the re-
sources in your Virtual private network to access the internet and NAT gateway (nat-
0d8h3828937c6afch) enables private subnet resources to access the internet.

e Created the security group(sg-0660833480f433c5f - securityforvpce) which act as vir-
tual firewall so it allows the incoming traffic and outgoing traffic. In this security

group it allows the traffic from anywhere to Redis and other services with the help
of HTTP, HTTPs, SSH, custom TCP, and All ICMP — Ipv4 protocol.

e Created s3 bucket(aws-triggerl) with all public access to store the incoming input
data and VPC endpoint toMake private connections with VPC and s3 without
internet access, by NAT, VPN or direct connection.

e Created the elastic cache for Redis with assigning the public, private subnet and
security group to it to store the intermediate data to Redis.

e Created lambda function(Redis) by assigning IAM role, VPC along with security
group also we have added s3 event trigger to lambda function so whenever the data
comes into bucket it triggers the lambda function.

In this paper, we have used Amazon s3 for storing the input and output data, AWS
Redis as middle storage and Lambda function as a compute engine. To run the map-
reduce jobs on the serverless platform, we have used python 3.8 as a runtime programming
language. In this, we have imported Boto3 to access S3 and Redis services, imported CSV
file for reading CSV files, import json for converting data structures to json strings, import
math function to use mathematical equation and Redis for cache memory functionality.
In this, when the data comes into the s3 bucket, the s3 event triggers happen for lambda
function execution. Initially, we have calculated the file size in Lambda and convert the
file content into utf-8 format. After that, we need to calculate the chunk file size to assign
the file size to mapper function equally, and it calculated by using,

filesize

(6)

But if the mapper has insufficient RAM, then the coordinator function recalculates the
chunk size calculated by considering the two conditions mentioned in the methodology
section. After this, assign the file size to a genetic algorithm as request along with
mutating probability ranges between 0.2 to 0.5 and pop_size = 5. Then population

chunksize = int
mappernumber

13

function performs along with these parameters; in this, it is started with the initial
population generated randomly, performs the function evaluation, then selects the fittest
individual as parents for next-generation and add some random non-fittest individual to
avoid the local maxima using the cross over and mutation operator. Depending upon the
pop_fitness value number of mapper decided. If the value of pop_fitness == 1, then one
mapper function used, if it is 2, then two mapper functions used, and its result stored in
Redis data storage. After that, one reducer function executed to sort out the data and
the result stored in the s3 bucket.

So whenever the lambda function executed its output generated, and we can check
it on cloud watch longs along with the cloud watch matrix. In a serverless platform,
Price based on the number of services invoked at the function lambda. In this project,
we have used s3 bucket, VPC, NAT gateway, Internet gateway, lambda, redis and cloud
watch. So due to pricing constraints at education level, we have used one lambda func-
tion with 820MB memory, amazon s3 service, the elastic cache for Redis, but at the
organization level, one can use separate lambda function for multiple mapper/reducer
and coordinator.

6 Evaluation

The MapReduce application with a genetic algorithm on a serverless platform reduces the
execution time than the MARLA system, and it is nearby of AWS EMR completion. The
combination of fast and slow storage, along with a genetic algorithm, helps to minimize
latency and improves efficiency and performance. The graph [4] shows the execution time
to process the different file sizes.

Time Vs file size

1200
1600
1400
1200
1000
800
600
400
200

EXECUTION TIME

1MB 2MB 3MB 4MB SMEBE
FILE SIZE

Figure 4: Time takes for file execution with genetic algorithm

14

6.1 Experiment 1: Map-reduce application without genetic al-
gorithm on serverless platform.

In map-reduce application without genetic algorithm on serverless platform, we have up-

loaded a comma-separated values file with a 1MB file size. To execute this file size lambda

function takes the 12484.60 ms. Figure [5| shows the output of map-reduce application
without genetic algorithm on serverless platform.

Code SHA-256 Request 1D

MIPnn+RIKAUC 2xROGKym T Trufo 1COMY4TCd15Ru+ydlU 86a45766-cd0a-4dbe-Bedb-2c76b32541d0

Duration Ailled duratio

12484.70 ms 12500 ms

Resources configured Max memory used

704 MB 96 MB

Log output

The section below shows the logging calls in your code, These correspond to a single row within the CloudWatch log group corresponding to this Lambda

function, Click here to view the CloudWatch log group.

START Regquestld: BEad5766-cdda-ddbe-Bedb-2c7Eb3254148 Version: SLATEST

FileSize = 9.9873042297363281 MB

chunk size to small (@ bytes), changing to 1824 bytes

numberMappers== =1023.0316957702637

chunk size to large (1224 bytas), changing to 462 bytes

END RequestId: BEad5766-cdda-ddbe-Sedb-2cT6b3154148

REPORT Reguestld: B6a457EE-cdda-ddbe-Bedb-2cT6b32541d8 Ouration: 12484.78 ms Billed Duration: 12500 ms Memory Size: 784
M8 Max Mamory Used: 56 MB

Figure 5: Executing 1 MB file size on serverless platform without genetic algorithm

6.2 Experiment 2: Map-reduce application with genetic algorithm
on serverless platform

Initially, we have started by executing the file size with 1MB to check the amount of
memory and time it takes to execute the file. We have uploaded a comma-separated
file in the s3 bucket, so trigger event happens at lambda handler function, and the file
executed. As a result, figure [6] shows 834.26ms time to execute the file, and the amount
of memory also used genetic algorithm shows how many mappers we need to invoke to
execute the file size. For 1MB file size, it invokes 1 mapper and takes the 3 generations
to find out the fitness of the population. In output data, we have got the sorted data.

We have uploaded a file size of 2MB in a comma-separated values file, invokes 3
mapper function, and takes 5 generations to find out the best fit solution. Total time to
execute this file size 4155 ms.

Now In this, we have uploaded the comma-separated values file size with 9 MB, and
the lambda function has 6 MB maximum payload size. It gives the error to execute the
file size. figure [7] shows error obtained while executing file greater than the maximum
payload size.

In map-reduce application on the serverless platform with the genetic algorithm, we
have executed a file size from KB to 5MB, and all file size data takes 3 seconds to perform
the execution. Lambda uses VPC resources, so this creates an initial cold start with the
elastic network interface (ENI). As in this project, we have implemented the coordinator,

15

Summary

Code SHA-256
XGT6920ij+5ikOSx|BED+DpeKrRWhhy6U2ZOKEQENVY=

Duration
834.26 ms

Resources configured
832 MB

Log output

Request ID
b37212fa-e244-4f55-8af1-f37b4ec3e880

Billed duration
900 ms

Max memory used
95 MB Init Duration: 411.08 ms

The section below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function. Click here to view the CloudWatch

log group.

START RequestId: b37212fa-e244-4f55-8af1-f37bdec3e880 Version: $LATEST
Filesize = 1.065908432006836 MB

chunk size to small (0 bytes), changing to 1024 bytes

chunk size to large (1024 bytes), changing to 46@ bytes

Generation @ CPU best fit: 3

Generation 5 CPU best fit: @

generation: 5 , fitness of Population: ©.32212254720000005

END RequestId: b37212fa-e244-4f55-8af1-f37bdec3esse

REPORT RequestId: b37212fa-e244-4f55-8af1-f37bdec3e880 Duration: 834.26 ms
Duration: 411.08 ms

Figure 6: Executing 1 MB file size on

® Execution result: failed (logs)

¥ Details

Code SHA-256
PInyqJUQz62zgPiu3iQLWBQMGF20Y63841W3vTSOAUMA=

Duration
11844.25 ms

Resources configured
128 MB

Log output

log group.

START RequestId: 6db343cd-d412-475b-808d-0fddf711e228 Version: $LATEST
FileSize = 8.67811107635498 MB

chunk size to small (4 bytes), changing to 1024 bytes

chunk size to large (1024 bytes), changing to 460 bytes

Generation @ CPU best fit: 4

Figure 7: Executing 9 MB file size on

Billed Duration: 900 ms Memory Size: 832 MB Max Memory Used: 95 MB Init

serverless platform with genetic algorithm

The area below shows the result returned by your function execution. Learn more about returning results from your function.

{
“errorMessage”: "Response payload size (9366618 bytes) exceeded maximum allowed payload size (6291556 bytes).",
“errorType": "Function.ResponseSizeTooLarge"

¥

Summary

Request ID
6db343cd-d412-475b-808d-0fddf711e228

Billed duration
11900 ms

Max memory used
128 MB Init Duration: 382.04 ms

The section below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function. Click here to view the CloudWatch

serverless platform with genetic algorithm

16

Duration Error count and success rate (%)
Milliseconds Count No unit

643 . 1 . 100

157 - +
06:15 06:30 06:45 07:00 06:15 06:30 06:45 07:00

@ Duration Minimum @ Duration Average @ Duration Maximum @ Errors @ Success rate (%)

Figure 8: Duration, success and error rate

Invocations Throttles

Count Count

1

0 -
06:15 08:30 06:45 07:00 0615 06:30 0645 0700

@ Throttles

Figure 9: Invocation and Throttles graph

mapper, and reducer inside the single function, so there is a minimum cold start delay at
the initial stage.

We have used cloud watch services to monitor duration, error count, throttle time,
and invocation time graph. The duration graph [§| describes at what time the coordinator
function starts to execute the file and total time take to complete the execution. The
green dot used to describe the maximum time it takes to execute the file. The error count
and success rate graph [8] describes what the success rate is; in this green dot represent
the 100% data executed without any data.

The invocation graph [0 describes the number of times the function invoked. In this
project s3 event is used to invoke lambda function, and according to file size, it invokes
the mapper function. In this case, it is 5. In AWS Lambda function has 1000 limits for
maximum concurrent operations, and we are not using any concurrent function, so it is
giving a zero throttle rate. figure [0 show the throttle graph.

Now working with Redis, In a project, we have used the cache.t2.micro node, which
has 1 vepu, so the threshold value is 90%, and it is under the threshold value.

The network bytes in and out shows that the data are entered and released by Redis.
Also, it shows that data goes in and out equally with 100% data utilization.

6.3 Discussion

We have executed file size from 1MB to 5MB on map-reduce application without a genetic
algorithm on the serverless platform and with a genetic algorithm. The comparison
based on execution time in both cases vs. file size. As shown in graph |[10] map-reduce
application with the genetic algorithm on a serverless platform requires less execution
time as compared to the map-reduce application without a genetic algorithm.

1MB file size requires 703.13 ms execution time in MapReduce application with a
genetic algorithm and 1271.01ms execution time in MapReduce application without the
genetic algorithm. In AWS, Nat gateway requires $0.045 per hour, s3 storage requires
$0.023 per GB, and Redis(cache.t2.micro) requires $0.017 per hour pricing. For 703.13

17

ms execution time, the total cost is $0.000038, and for 1217.01 ms, it’s cost is $0.000047.
So, in this application with a genetic algorithm reduces the cost by 11%. The MapRe-
duce application with a genetic algorithm reduces the execution time by 27% than the
MapReduce application without the genetic algorithm. Also, we have used a combination
of fast and slow storage in map-reduce application with a genetic algorithm, so it gives
higher performance with a reduction in cost.

Map reduce application on serverless with genetic algorithm VS map reduce
application on serverless without genetic algorithm

16000
14000
12000
10000
8000
6000
4000
2000

Execution time

1MB 2ZMB IMBE 4MB S5MB

File size
= mapreduce jobs on serverless without genetic algorithm

= mapreduce jobs on serverless with genetic algorithm

Figure 10: Comparison between map-reduce application with genetic algorithm vs. map-
reduce application without genetic algorithm on serverless platform

7 Conclusion and Future Work

In this paper, we have proposed the Map-reduce application with the genetic algorithm on
a serverless platform. This paper states that the makespan of the MapReduce application
reduced by using the enhanced genetic algorithm. The combination of fast storage(Elastic
cache for Redis) and slow storage(S3 standard storage) reduces the latency and improves
the performance of the operation. The MapReduce application with a genetic algorithm
reduces the execution time by 27% than the MapReduce application without a genetic
algorithm as it invokes the number of mappers according to the fitness of the population;
ultimately, it reduces the cost of the operation. AWS cache for Redis used for intermediate
storage provides a reduction in latency but increases the cost. Due to the limitation of
resources, this model presented for a small platform. Future work consists of enlarging the
MapReduce application with a genetic algorithm model to a big platform that consists of
creating clusters of lambda function and elastic cache in amazon elastic cloud compute
service and implementing it in another platform as well.

References

Akbari, M., Rashidi, H. and Alizadeh, S. H. (2017). An enhanced genetic algorithm with
new operators for task scheduling in heterogeneous computing systems, 61: 35-46.

18

journal impact factor : 2.819.
URL: http://www.sciencedirect.com/science/article/pii/S095219761730044 1

Arunarani, A., Manjula, D. and Sugumaran, V. (2019). Task scheduling techniques in
cloud computing: A literature survey, 91: 407-415. journal impact factor:4.639.
URL: http://www.sciencedirect.com/science/article/pii/S0167739X17321519

Asghari, S. and Navimipour, N. J. (2018). Nature inspired meta-heuristic algorithms
for solving the service composition problem in the cloud environments, 31(12): 1-1.
Publisher: John Wiley & Sons, Inc., journal impact factor : 1.717.
URAL: http://search.ebscohost.com/login. aspz?direct=trueAuth Type=ip,cookie,shibdb=a9hAN=1305(
liwescope=sitecustid=ncirlib

Buyya, R., Srirama, S. N.; Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe,
E., Javadi, B., Vaquero, L. M., Netto, M. A. S. and et al. (2018). A manifesto for future
generation cloud computing: Research directions for the next decade, ACM Comput.
Surv. 51(5). journal Impact Factor : 5.550.

URL: https://doi.org/10.1145/3241737

Costa, A., Cappadonna, F. V. and Fichera, S. (2020). Minimizing makespan in a flow shop
sequence dependent group scheduling problem with blocking constraint, 89: 103413.
URL: http://www.sciencedirect.com/science/article/pii/S0952197619303227

Enes, J., Expésito, R. R. and Tourino, J. (2020). Real-time resource scaling platform
for big data workloads on serverless environments, 105: 361-379. journal impact
factor:4.639.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X19310015

Gawanmeh, A., Parvin, S. and Alwadi, A. (2018). A genetic algorithmic method for
scheduling optimization in cloud computing services, 43(12): 6709-6718. Publisher:
Springer Nature, core ranking : C.
URAL: http://search.ebscohost.com/login. aspz?direct=true Auth Type=ip,cookie,shibdb=a9hAN=1529(
livescope=sitecustid=ncirlib

Giménez-Alventosa, V., Molté, G. and Caballer, M. (2019). A framework and a per-
formance assessment for serverless MapReduce on AWS lambda, 97: 259-274. journal
Impact Factor: 4.639.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X18325172

Jena, T. and Mohanty, J. R. (2018). GA-based customer-conscious resource allocation
and task scheduling in multi-cloud computing, 43(8): 4115-4130. Publisher: Springer
Nature, core ranking : C.
URAL: http://search.ebscohost.com/login. aspz?direct=true Auth Type=ip,cookie,shibdb=a9hAN=1305!
liwescope=sitecustid=ncirlib

Liroz-Gistau, M., Akbarinia, R., Agrawal, D. and Valduriez, P. (2016). FP-hadoop:
Efficient processing of skewed MapReduce jobs, 60: 69-84. journal Impact factor =
4.313.

URL: http://www.sciencedirect.com/science/article/pii/S0306437916300497

19

Luo, J., El Baz, D., Xue, R. and Hu, J. (2020). Solving the dynamic energy aware job
shop scheduling problem with the heterogeneous parallel genetic algorithm, 108: 119—
134.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X19314189

Malawski, M., Gajek, A., Zima, A., Balis, B. and Figiela, K. (2020). Serverless execution
of scientific workflows: Experiments with HyperFlow, AWS lambda and google cloud
functions, 110: 502-514. journal impact factor= 4.639.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X1730047X

Marra, M., Polito, G. and Gonzalez Boix, E. (2020). A debugging approach for live big
data applications, 194: 102460.
URL: http://www.sciencedirect.com/science/article/pii/S0167642320300708

Pu, Q. (Feb 2019). Shuffling, fast and slow: Scalable analytics on serverless infrastructure,
p- 15.
URL: https://www.useniz.org/system/files/nsdil 9-pu.pdf

Rajeswari, D., Prakash, M. and Suresh, J. (2019). Computational grid scheduling ar-
chitecture using MapReduce model-based non-dominated sorting genetic algorithm,
23(18): 8335-8347. Journal Impact Factor : 2.367.

URL: https://doi.org/10.1007/s00500-019-03946-z

Ruiz, M. C., Cazorla, D., Pérez, D. and Conejero, J. (2016). Formal performance evalu-
ation of the map/reduce framework within cloud computing, 72(8): 3136-3155.
URL: http://link.springer.com/10.1007/s11227-015-1553-2

Sathya Sofia, A., Emmanuel Nicholas, P. and Ganeshkumar, P. (2019). MCAMC:
minimizing the cost and makespan of cloud service using non-dominated sorting
genetic algorithm-1I, (10): 1. Publisher: Springer, journal impact factor : 0.295.
URAL: http://search.ebscohost.com/login.aspz?direct=trueAuth Type=ip,cookie,shibdb=edsgaoA N=ed.
liwescope=sitecustid=ncirlib

Sun, M., Zhuang, H., Li, C., Lu, K. and Zhou, X. (2016). Scheduling algorithm based on
prefetching in MapReduce clusters, 38: 1109-1118. Journal Impact Factor: 3.907.
URL: http://www.sciencedirect.com/science/article/pii/S15684 94615002665

Wang, L., Li, M., Zhang, Y., Ristenpart, T. and Swift, M. (2018). Peeking behind the
curtains of serverless platforms, p. 13.
URL: https://www.useniz.org/system/files/conference/atc18/atc18-wang-liang. pdf

Zhang, X., Liu, X., Li, W. and Zhang, X. (2019). Trade-off between energy consumption
and makespan in the mapreduce resource allocation problem, in X. Sun, Z. Pan and
E. Bertino (eds), Artificial Intelligence and Security, Lecture Notes in Computer Sci-
ence, Springer International Publishing, pp. 239-250.

URL: https://sci-hub.tw/10.1007/978-3-030-24265-7>1

20

	Introduction
	Research Question:

	Related Work
	Overview of Task scheduling in Cloud computing
	Overview of task scheduling with genetic algorithm
	Review on map-reduce application on serverless platform
	Analysis of Literature review:

	Methodology
	Steps:
	Material and equipment:
	AWS services:
	Algorithm Used:
	Programming language:
	Sample Data:

	Design Specification
	Algorithm used:
	Genetic Algorithm:

	Modified Architecture:

	Implementation
	Evaluation
	Experiment 1: Map-reduce application without genetic algorithm on serverless platform.
	Experiment 2: Map-reduce application with genetic algorithm on serverless platform
	Discussion

	Conclusion and Future Work

