
Scalable and Dynamic Offloading of Resource
Rich Mobile Application

MSc Research Project

Cloud Computing

Akash Srinivasan
Student ID: x19101279

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Akash Srinivasan

Student ID: x19101279

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 17/08/2020

Project Title: Scalable and Dynamic Offloading of Resource Rich Mobile Ap-
plication

Word Count: 7420

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Scalable and Dynamic Offloading of Resource Rich
Mobile Application

Akash Srinivasan
x19101279

Abstract

There has been a recent growth in the usage of smartphones and complex applic-
ations. The hardware specifications of these smartphones vary but the computing
complexity in real-time application such as image processing, face recognition, live
stream gaming keeps increasing. This results in a bottleneck on the CPU utilization
of the mobile device. To eradicate this, in this research proposal a framework has
been proposed that uses offloading technology and combines the edge device and
the cloud server for offloading. A novel algorithm known as resource provisioning
considers the network status of the device and decides on the offloading location.
An android application with Fibonacci series and image processing functionalities
is developed to evaluate the experiment. Based on the execution time in the three
environments as the parameter for evaluation, the results indicate that the exe-
cution time drastically reduces when performing offloading compared to the local
execution.

1 Introduction

In recent years, there has a tremendous increase in the usage of smartphones, tablets,
and so on. With the advancements in the hardware specifications of smartphones, high
number of computing-intensive mobile applications capable of performing many complex
tasks are being used. Real-time applications such as live gaming, video streaming, face
recognition, and so on utilize the CPU, battery power, RAM of the mobile device at a
much higher rate than the normal utilization rate. Such complex applications buffer in
rendering the application in the user interface because of the hardware limitation of the
mobile device as compared to the requirement of the mobile application.

Research has been done to eradicate this problem by offloading the computing-intensive
part of the application to the cloud server or to the edge device and produce the output
in the mobile device. Research works such as (Akherfi et al.; 2018) provides a survey on
various offloading mechanisms and offloading techniques that can be used. There have
been research works (Lin et al.; 2019; Wang et al.; 2019; Abbas et al.; 2017) focussing on
partitioning the application, allocating the tasks, and offloading them to the edge devices.
Research works such as (Flores et al.; 2018) have also focussed on performing applica-
tion partitioning and offloading to the cloud server. Yet, very little attention has been
given in integrating the cloud server and the edge device in a framework and performing
offloading based on the device parameters.

Research Question: Computing-intensive part of the application can be migrated to
a remote machine for processing but is there a way to integrate the edge device and the

1



cloud server in a framework for offloading based on the device parameters. The objective
of this research work is to integrate both the edge device and the cloud server in a single
framework and perform offloading based on the network parameter of the device. An
algorithm known as resource provisioning is proposed which takes into consideration the
network status of the device and based on which the offloading location is decided. A
laptop within the same network of the mobile device is used as the edge device and an
Amazon EC2 instance is used as the cloud server. Furthermore, to evaluate this research
work, an android application is built with Fibonacci series and image processing function-
alities, and the computing part of the application is executed on the local device, edge
device, and the cloud server. The evaluation is based on the execution time parameter
on all the three environments.

The rest of this paper is structured as follows. Section 2 details the related concepts
and background works in this area. Sections 3 provides the methodology of this research.
Section 4 describes the design specification used in this research. Section 5 details the
implementation factors in this research. Section 6 entails the evaluation of this research
work, and Section 7 provides the conclusion and the future work of this research.

2 Related Work

2.1 Cloud Server Based Offloading

In (Goudarzi et al.; 2017), they propose a fast hybrid multi-site computation offloading
methodology, which aims to find a feasible offloading solution. The proposed methodology
involves the usage of two algorithms which are the branch and bound algorithm and
the PSO algorithm. The proposed architecture involves three modules namely monitor,
modeler, and decision planner. The monitor collects real-time information about the
mobile phone regarding battery status, CPU utilization, and the transmission rate. The
individual units in the application are analyzed using a weighted relation graph and the
result is given as an input to the decision-making module, which uses the two algorithms
to find a feasible offloading solution.

The focus of the research is offloading to the cloud server and the algorithm helps
in finding a feasible solution in terms of application partitioning and offloading to the
respective cloud server. This offloading mechanism results in adding the transmitting
and receiving time to the total execution time. Performing edge offloading might reduce
this transceiving time and enhances security as well.

(Kwon et al.; 2016) research work focuses on performing offloading to cloud servers
based on the prediction analysis using the proposed algorithm. The proposed mechanism
predicts the energy consumption, memory state, and the CPU utilization of the indi-
vidual units in the application. The individual units are offloaded to the cloud server
and prediction analysis inputs are mapped to those units to predict the above-mentioned
parameters and based on the output obtained, the decision-making module decides on the
offloading of the application during the run-time. To experiment on the proposed mech-
anism, applications such as chess, face detection, and invaders are used, and promising
results are obtained.

The prediction analysis mechanism provides more clarity on what to offload but this
mechanism could involve offloading to edge devices as well to achieve even better results
in the execution time compared to the transceiving time involved in offloading to the
cloud server.

2



(Flores et al.; 2018) research work performs offloading on the cloud server based on
the offloading framework EMCO constructed using the rich datasets regarding the energy
consumption and CPU utilization. Based on the analysis performed by the analysis
module for the method, the offloading is decided. The toolkit produces two output for
local execution and cloud execution when compiling an application and the results from
the cloud execution is cached and the results are instantly sent when the same application
is offloaded. The AutoScaler module in the toolkit enables the cloud resources to be scaled
dynamically based on the requirements of the offloading application.

The granularity of the offloading takes place at the application level and not the
method or thread level. This incurs additional time for the application to be compiled in
the cloud server. Since the research also focuses on the execution time, the edge server
could also be used with the cloud server for smaller transceiving time and better security.

2.2 Edge Devices Based Offloading

In (Saha et al.; 2016), they propose a method to offload the resource-intensive mobile
application to the devices called donors connected in the cloudlet using an algorithm
that takes into consideration the available battery, the availability of the donor device
in the network. The algorithm considers a donor device based on the condition that
the donor device must have more than 40 battery and signal strength of -80db. Also,
the modules in the resource-intensive application are broken down into smaller modules
based and structures into a directed graph based on the dependency level of the modules.
These modules are offloaded to the various donors available and the results are fetched
back.

This research works well for big integer and prime number calculation application,
but real-time applications such as augmented reality and video games will lag because of
the dependency in executing the parent module before executing the child module in the
donor devices. Since the donor devices are also mobile devices, a more feasible solution
would be to offload to the cloud servers, rather than performing the offloading methods
in the donor mobile device due to the resource constrain.

(Elgendy et al.; 2019) research work focuses on performing offloading from mobile
units to mobile edge computing servers with additional security measures while perform-
ing offloading to the edge servers over a wireless medium. An algorithm is developed
which obtains the real-time statistics of the mobile unit and performs the offloading.
The statistics regarding the mobile device are obtained in a tuple containing information
regarding the battery, the number of CPU cycles required data size, and the completion
deadline. Apart from this, the AES cryptographic technique is used on the data that
is transmitted wirelessly. To test this proposed mechanism, a face detection applica-
tion is developed and tested and the experimented shows a promising result in terms of
offloading and security.

For larger applications such as live streaming and video games, it is difficult to employ
this security mechanism. Also, the offloading should extend to cloud servers and the same
security mechanism could be deployed in cloud server offloading.

(Wu et al.; 2018) paper performs the mobile code offloading in edge servers by modi-
fying the unikernal and using a new run-time in the edge servers and measures the
parameters such as execution time, performance, and the energy consumption of the ap-
plication and compares them with the traditional virtual machine and container-based
code offloading. Unlike traditional unikernal which is specialized for one application at a

3



time, the proposed rich unikernal will be able to accommodate multiple applications dur-
ing the run time. Traditional android libraries are integrated within the OS used. This
benefits in reduced overhead boot times and compilation time for multiple applications.

Using the ThinkAir framework used for offloading, applications such as Chess game,
face detection, VirusScan, and Linpack benchmarking are executed using offloading in
traditional VM and using rich unikernal and the parameters such as execution time, per-
formance, and the energy consumption are compared and promising results are obtained.
This could be further enhanced if cloud server offloading could be integrated.

(Alelaiwi; 2019) research work focuses on performing offloading based on the response
time obtained from the deep learning model to the fog nodes containing edge devices. The
presented architecture includes fog access points and fog access point controller. Inter
fog communication is achieved by the usage of the evolved packet data gateway which
further connects with the AAA module (Authentication, Authorization, and Accounting
server) to maintain security integrity. Using the prediction time obtained from the deep
learning model, the node with the shortest response time is selected for offloading. The
greedy layer-wise training is provided to the model to predict the future response time
which is based on the input such as capability, memory, and bandwidth of the requests
provided to the model.

Simulation-based results are obtained using MATLAB with the datasets obtained
using the queueing theory. The proposed model is not illustrated with a real-time ap-
plication and the research does not explain the location of the implementation of this
architecture.

(Tao et al.; 2017) research focuses on performing offloading to the mobile edge com-
puting server based on the energy requirements and the CPU utilization of the individual
mobile devices. When offloading for an application is to be performed, the energy re-
quirements for executing the method or the application in the mobile device and the
CPU utilization on the mobile device are known. Based on the status of the mobile
device regarding the battery consumption and the CPU cycles required, the offloading is
decided, and the required capacity is allotted in the edge computing server. Determining
the requirements in the mobile device of the application is a crucial factor in this research
for delegating and executing the task. The experiment in this research is performed by
determining the capacity of the mobile device, the operation is executed, and the capacity
of the edge computing server to allocate resources for multiple mobile devices.

This research work does not provide an algorithm for problem formulation and com-
puting the offloading. No real-time applications were used for this experiment. For a
highly computing-intensive application such as augmented reality and face detection, de-
termining the resources required might not be a feasible solution as the requirements
might change dynamically. Also offloading to cloud might be a more feasible solution to
highly perform resource-intensive methods or applications.

2.3 Cloud Servers and Edge Devices Based Offloading

(Zhao et al.; 2019), they perform offloading to Small Base Stations (SBS) directly and to
Mobile Edge Computing servers (MEC) through wi-fi access points based on the traffic
predictions. A multi-Long Short Term Memory Model (mLSTM) traffic predictor was
constructed and it is used to predict the traffic of the data flow in SBS. The data that is
used for offloading is cached so that when the same offloading is performed second time,
the cached data can be instantly retrieved. The traffic predictor is used to predict the

4



traffic flow in the SBS and based on the data cached, offloading priority can be predicted.
Offloading of data with low priority takes place in the MEC through wi-fi access point
and high priority offloading methods takes place in the SBS.

To evaluate the proposed methodology, dataset of usage detail records of a cellular
company from china is used. The traffic prediction and the task delegation for offloading
is tested using this dataset. Real-time applications have not been tested using this meth-
odology. Involving cloud offloading might be a feasible solution to offload highly resource
intensive applications.

(Jungum et al.; 2020) paper focuses on performing application partition for code
offloading using Analytic Hierarchy Process (AHP) and TOPSIS technique. For a highly
resource-intensive application, the partitioning of the application and the task delegation
is based on the weightage obtained for the following parameters such as bandwidth,
performance, availability, and security. AHP technique is used to predict the weightage
of the following parameters and the TOPSIS technique is used to rank the parameters
based on the weightage. Based on the following output, partitioning and task delegation
takes place.

This research paper does not provide an algorithm for the proposed method and does
not perform cloud or edge offloading with real-time applications. Moreover, the predic-
tions should also consider additional parameters such as the feasible network conditions
for cloud and edge offloading and provide a more feasible partitioning strategy.

(Zhou et al.; 2017) paper performs code offloading on the cloud server, edge devices,
mobile ad-hoc devices using various mediums such as wi-fi, wi-fi direct, Bluetooth, and
mobile data based on the status of the mobile device and the availability of the resources.
The context monitor module profiles the program for methods to be offloaded, the net-
work profiler scans the network and checks for the resources available, and the device
profiler checks the statistics of the device in terms of the CPU utilization and the energy
consumption. Based on the output of the context monitor, the algorithm in the decision
engine decides on the offloading location. This research work is compared with the ex-
isting offloading technique ThinkAir based on the execution time, CPU utilization, and
energy consumption.

This research performs offloading based on the annotations for the methods denoted
by the developers. This leaves the overhead on the developers to predict the methods to
be offloaded while building the application.

2.4 NFC and Bluetooth Offloading

(Chatzopoulos et al.; 2020) research work focuses on performing offloading of methods
based on NFC communication protocol. To eradicate the unidirectional communication
in NFC based transmission, Host-Based card emulation is used for bidirectional commu-
nication. With this usage, no tapping is required to perform offloading with multiple data
transfer. The method to be offloaded is sent to the offloadee device and the result is sent
back using this mechanism. The proposed framework is tested with applications such as
NQueens, RSA, face detection, and data transfer. This provides security for the methods
being offloaded and faster transmission of data but leaves the overhead for the devices to
be very near compared to Bluetooth and wi-fi. Also, the offloadee device is required to
be equipped with Host-Based card emulation for bidirectional communication.

(Lin et al.; 2020) research work focuses on performing offloading to other mobile
devices based on the proposed framework known as Circa. The proposed framework

5



uses the iBeacon technology in the iOS platform that leverages Bluetooth technology
with added features such as long-distance transmission and fasters transmission of data.
The mobile device that offloads the method, detects the neighboring mobile device with
iBeacon framework which falls under the vicinity of the offloading mobile device. To
ensure the detected mobile device is a reliable connector, the history of the duration of
the mobile device being in the vicinity of the offloading device is considered with the
battery status of the device. The proposed algorithm is framed in such a way where
if the device is trusted to be a reliable connector, the method is offloaded only to that
device and if not, the same method is offloaded to other mobile devices as well which are
detected in the same vicinity.

The proposed framework only works on the iOS platform. Despite offloading, the
processing device is also a mobile device with limited resources so the benefits of of-
floading would be extremely low as we also consider the transmitting and the receiving
time. Furthermore, it would not be a feasible solution to offload highly complex mobile
applications.

2.5 Survey Papers

(Flores et al.; 2014) research performs a survey on the existing offloading techniques with
the cloud, compares them with task delegation. The research experiments by creating
five applications such as Fibonacci series, NQueens, matrix multiplication, quicksort, and
bubble sort and performs offloading across different amazon EC2 instances to check the
execution time. The offloading in those applications is based on annotations which are
dynamically called during the run time. Apart from this, experiment on stenography
is also performed with task delegation and push notifications and it is compared with
annotation-based cloud offloading. Various research works based on cloud offloading and
techniques used for offloading using the API provided by the cloud vendors and protocols
that could be used for offloading are analyzed.

The research work performs a survey and conducts an experiment based on the cloud
offloading focusing on the execution time, but the research did not explore edge offloading
and its potential benefits compared to the cloud offloading.

(Nguyen and Dressler; 2020) research work provides a detailed survey on mobile cloud
computing regarding the application partitioning, profiling the device dynamically, the
existing offloading algorithms, remote procedure calls(RPC) used for offloading to cloud
servers, usage of various types of resources for offloading and the challenges about mobile
cloud computing. The existing works in the device profiling domain such as obtaining
the battery and the CPU status of the mobile device, available network, and bandwidth
conditions, analyzing the application for static and dynamic offloading, providing these
inputs to the decision engine for offloading decision is explained. Furthermore, the ex-
isting algorithms used in the decision engine such as fuzzy control, Bayesian networks,
learning agents, game theory, deep learning, and other such algorithms are explained.
From the research point of view, this research survey will greatly benefit researchers
researching mobile cloud computing.

(Gu et al.; 2018) paper provides a survey on the existing offloading mechanisms
and explains the research works in these domains. Various offloading techniques and
offloading infrastructure such as cloud servers, edge devices, mobile ad-hoc networks, fog
computing are explained with its respective research works. The application profiling
such as collecting the statistics of the running application dynamically and the level of

6



granularity in which the application can be offloaded are explained with its respective
research works. Furthermore, the traditional frameworks that are used in offloading such
as MAUI, CloneCloud, ThinkAir, are explained.

Apart from this, real-time applications that have benefited in the past research works
using offloading such as face recognition, chess game, video encoding, speech recognition,
and the challenges about mobile cloud computing are explained.

From the conducted literature review, performing offloading in the previous research
works have been classified into various categories. There have been surveyed papers that
elaborate on the various techniques that can be adopted for offloading. Research works
conducted perform offloading either to the edge devices or to the cloud server. Offloading
has been performed using NFC and Bluetooth to the neighboring devices in the network.
If the offloading is performed using the edge devices and the cloud servers, annotation-
based programming is required to identify the potential candidate for offloading.

The proposed framework uses the state-of-the-art technique in offloading by taking
advantage of both the Edge devices and the Cloud servers and using network profilers to
check for the offloading feasibility and decides on the location of the execution.

3 Methodology

The various research methods that have been adopted in this research work are presented
here. Offloading performed in this research work involves offloading to the edge device
and offloading to the cloud server. The procedure for performing the offloading in both
locations is explained. The evaluation methodology used to evaluate this research work
is briefed.

3.1 Application used for the research procedure

To validate the research proposal Android mobile application is developed for generating
the Fibonacci series and performing image processing. Application is provisioned with
the resource provisioning algorithm. Based on the network connectivity of the mobile
device, offloading decisions are made as prescribed in the algorithm. If the decision is
made for performing local execution, the Fibonacci series is generated locally for the
input number provided.

For the image processing part of the application, 13 images of 5 classifications which
are obtained from kaggle1 are stored locally. The trained model that is used to classify the
images is obtained from github2. This trained model uses the convolution neural network
algorithm. One among the thirteen is chosen for processing and when the classify image
button is clicked, the onClick function checks for the network status of the device and
the data is sent to the edge device or to the cloud server for offloading. 13 images that
are used for image processing are stored in the edge device and the cloud server and the
processed data is sent back to the mobile device in the JSON format and the results are
displayed. Volley API is used for handling the network requests.

1https://www.kaggle.com/hsp6498/waste-dataset
2https://github.com/vasantvohra/TrashNet

7



3.2 IP addresses of the machines

In figure 1, the red box denotes the URL of the localhost connection for edge devices.
The condition checks for the availability of the wifi network and if the condition is true,
offloading to edge device takes place. The yellow box specifies the IP address of the cloud
server. In the IF condition, if the edge device is not available, then offloading to the cloud
server takes place through wifi.

Figure 1: Specifying the IP address for the edge device using wifi connection

In figure 2, the yellow box specifies the IP address of the cloud server. The else part
of the condition checks for the availability of the mobile network. If the condition is true,
then offloading to the cloud server will take place. Upon both the conditions being false,
local execution of the tasks will take place.

Figure 2: Specifying the IP address of the cloud server for mobile network

3.3 Offloading to the Edge Device in the network

To perform offloading to the edge device, a jupyter notebook in anaconda navigator is
used. The tool is installed on a laptop that is connected to the same wifi network as
the mobile phone. Flask application is built in the jupyter notebook using python for
compiling the Fibonacci series and image processing. When the scripts are compiled, a
localhost connection is created and waits for the application installed in the mobile device
to send an input to the python scripts using the localhost connection. The input entered
in the mobile application is sent to the edge device in a JSON format.

Once the input reaches the edge device, the python script compiles the code for the
Fibonacci series or image processing and sends the string output to the client device
connected using the localhost. To manage the network requests, volley API is used

8



for sending and receiving of the data. By offloading the input to the edge device, the
computation performed on the edge device with the computational capacity of the edge
device, and the results are sent to the mobile device. This procedure provides faster
processing of data, the transceiving time of the data is also smaller due to the reduced
distance compared to cloud offloading. Security of the data transmission is also enhanced
as the data is offloaded to the nearby edge device using the localhost.

Figure 3: Establishment of a localhost connection

The overall execution time of this model is sending the input to the edge device +
executing the program in the edge device + sending the results back to the mobile device.

3.4 Offloading to the Cloud Server

Offloading to the cloud server takes place when the mobile contains the mobile data
network. Python Machine Learning model is exposed as Rest Service using Flask.Flask
is a lightweight WSGI web application framework. It is designed to make getting started
quick and easy, with the ability to scale up to complex applications.We deploy our model
in EC2 instance as Flask Application. Since Flask framework is not production ready,
we use Gunicorn. The Gunicorn ”Green Unicorn” is a Python Web Server Gateway
Interface HTTP server. It is a pre-fork worker model, ported from Ruby’s Unicorn
project. The Gunicorn server is broadly compatible with a number of web frameworks,
simply implemented, light on server resources and fairly fast. This makes the application
more stable.

Applications hosted in the public domain should be more secure and stable to avoid
unnecessary DDOS attacks. NGINX is a free, open-source, high-performance HTTP
server and reverse proxy, as well as an IMAP/POP3 proxy server. NGINX is known for
its high performance, stability, rich feature set, simple configuration, and low resource
consumption. We use NGINX HTTP server in front of Gunicorn to make our cloud
device more secure and stable. Using the same technique in edge offloading, volley API
is initially used to establish the connection and the data to be offloaded is sent in the
JSON format. In the same way, the results are fetched back. When cloud offloading takes
place, the total execution time is the time taken for the data to be transferred + time
taken for the data to be executed + time taken for the data to be retrieved.

Mobile Device —– NGINX −−−−Gunicorn−−− Flask
Execution of Gunicorn is created as a service for smooth deployment of Flask applic-

ation in cloud.

9



3.5 Evaluation methodology

The application is deployed on the mobile device. To evaluate the application, execution
time is considered as the parameter. Since the resource provisioning algorithm decides
on the offloading location based on the network status of the device, the application
is tested in different network status on the mobile device. Three different workloads
on the Fibonacci series and three different images on the image processing part of the
application are used for testing. These workloads are deployed on the edge device and
the cloud server and execution time of these workloads are considered. Apart from this,
the local execution time of these workloads on the mobile device is also considered for
evaluation, and based upon the results obtained the conclusion is drawn.

4 Design Specification

4.1 Resource Provisioning Algorithm

Various profilers are used in the device for achieving an optimal offloading. In this
research, the program profiler and network profiler are used to obtain the context for
offloading. The program profiler identifies the potential candidate to be offloaded and
the network profiler checks the status of the network connectivity. Based on the current
network status of the device, the location for offloading is chosen. IF loops and nested
IF loops are used in the conditions of the algorithm. If the device contains a mobile
data network, then cloud availability is checked and automatically cloud execution takes
place. If mobile data or cloud server is not available, then local execution takes place. If
the device is connected to the wifi network and a potential edge device is available, auto-
matically edge offloading takes place. If the edge device is not available, cloud execution
will be chosen and if both are not available, local execution takes place.

4.2 Workflow of the algorithm

4.3 Architecture diagram of the framework

4.4 Context Monitor

Context monitor contains the program profiler and the network profiler. The program
profiler identifies the candidate that needs to be offloaded. In the Fibonacci series part
of the application, the input given to generate the Fibonacci series is the candidate to
be offloaded. In the image processing part of the application, the image selected is the
candidate to be offloaded. These candidates are identified by the program profiler. The
network profiler checks the network status of the device. The output from the context
monitor is provided as the input to the decision engine.

4.5 Decision Engine

The decision engine contains the resource provisioning algorithm. Based on the output
provided from the context monitor, the decision engine performs the algorithm. Resource
provisioning algorithm is framed in such a way where offloading takes place in cloud
servers when only the mobile data network is available, and offloading takes place in edge
device if the mobile device is connected only to the wifi network. If the edge device is

10



Figure 4: Workflow of the algorithm - Activity Diagram

Figure 5: Architecture diagram of the framework - Component Diagram

11



not available or busy, then offloading takes place in the cloud server through the wifi
connection. If the mobile is not connected to both the networks, then local execution
takes place.The offloading location and the candidate for offloading are chosen by the
decision engine. The details are sent to the task manager for offloading.

4.6 Task Manager

From the output generated from the decision engine, the tasks manager wraps the Fibon-
acci input number or the image to be classified in a JSON format. On the server-side,
to compile the Fibonacci series or the image processing, python scripts are programmed
on the jupyter notebook in anaconda navigator tool. Once the input is received on the
server-side, the task manager unwraps them and provides them as the input to the py-
thon scripts. It then performs the execution and provides the result. These results are
sent in the JSON format to the mobile device.

4.7 Communication Module

The communication module is responsible for establishing the connection between the
client-side and the server-side. For edge offloading, the mobile device and the edge device
should be on the same network. Using localhost, the connection is established. For both
edge offloading and the cloud server offloading, volley API is used that sends and retrieves
the data in JSON format.

5 Implementation

5.1 Algorithm

Algorithm 1: Resource Provisioning Algorithm

Result: Getdecision(context)
1 programprofiler← methods ;
2 network profiler← resource profiles
3 Inspect network condition
4 if only cell network = available then
5 check cloud availability;
6 if cloud = available then
7 return decision(cloud execution);
8 else
9 return decision(local execution);

10 end
11 else if only WIFI = available then
12 check cloud, edge availability;
13 return decision(edgedevice execution);

14 else if edgedevice = busy then
15 return decision(cloud execution);
16 else
17 return decision(local execution);
18 end

12



The resource provisioning algorithm is embedded inside the application. The ap-
plication considers the current network status of the device and arrives at an offloading
decision. Offloading locations such as edge devices and cloud servers are considered when
deciding for offloading. The algorithm is activated once the button for generating the
Fibonacci series or the button for performing the image processing is clicked. Multiple
IF loops are checked and if offloading cannot take place based on the network status of
the device, local execution of the task takes place. This local execution cannot take place
in the image processing section of the application due to the complexity in computation.

5.2 Deployment diagram of the framework

Figure 6: Deployment Diagram
Image Generated From: https://www.lucidchart.com/

The deployment diagram depicts the execution environment of the research framework
including the software and the tools used for executing the application. The mobile
device is connected to the cloud server using the HTTP connection protocol and it is
connected to the edge device using the localhost connection. On the cloud side, the
Nginx web server is used as an execution environment and flask application built using
python is used to process the task. Gunicorn acts as the WSGI (Web Server Gateway
Interface) for forwarding the requests to the application. On the edge device side, the
flask application with Nginx web server is used as the component, and python scripts
are used to process the task forwarded to the edge device and produce the result in the
string format. Localhost connection using the IP address is used to connect to the edge
device if the mobile device and the edge device is connected in the same network. The IP
address of the edge device and the cloud server are posted as an URL in the algorithm
inside the application in android studio for the requests to be forwarded.

5.3 Specification of the experiment environment

The table specifies the specifications of the research environment. To test the proposed re-
search work, devices in three different environments i.e., the local device, the edge device,
and the cloud server are used with various workloads on both parts of the application
i.e., the Fibonacci series and the image processing part of the android application. The
local device used is a Samsung Galaxy S7 Edge mobile device. The edge device used is a

13



Specifications of the experiment environment
Specifications Samsung

Galaxy S7
Edge (Mobile
Device)

HP Laptop
(Edge Device)

Amazon
EC2 In-
stance (Cloud
Server)

CPU Octa-core (4*2.3
GHz)

Intel i7 8th Gen 1 vCPUs

RAM 4GB 8GB 1GB
Chipset Exynos 8890 - -
OS 8.0.0 Windows 10 Linux
Tool - Anaconda Nginx, Guni-

corn, Flask
Language - Python Python

HP laptop. Amazon EC2 instance is used as the cloud server. The specifications of the
environments are provided in the above table.

6 Evaluation

To evaluate this experiment, the application is tested with three different workloads for
the Fibonacci series and image processing. The execution takes place on the local device,
edge device, and the cloud server. Based on the execution time taken on the three
environments with three different workloads, the conclusion is drawn. Since the time
taken to execute each workload fluctuates constantly, three readings are taken and the
average of the three readings is considered as the final time consumption to execute the
workloads.

Workloads: The workload for the Fibonacci series is provided in an incremental model
i.e., for each experiment, the input provided to the Fibonacci series increases. For image
processing, from the three categories of images used in this experiment, one image from
each category is used in each experiment. Due to the computational complexity involved
in processing images, it cannot be performed locally. It requires processing either by
offloading to the cloud server or the edge device.

6.1 Experiment 1 / Fibonacci series workload as 3000 and glass
image workload for image processing

The results denote that compared to local execution, offloading to edge devices or the
cloud server drastically reduces the execution time.

Glass image is used for image processing in this experiment. There is not much of a
difference in the time taken between cloud execution and the edge execution. Compared
to edge execution, cloud execution takes lesser time for execution.

6.2 Experiment 2 / Fibonacci series workload as 4000 and paper
image workload for image processing

The obtained results indicate that the execution time when offloading is hugely reduced
when compared to local execution.

14



Figure 7: Time taken for 3000 Fibonacci series iterations in three environments

Figure 8: Time taken for Glass Image processing in the three environments

15



Figure 9: Time taken for 4000 Fibonacci series iterations in three environments

Paper image is used for image processing in this experiment. There is not much of a
difference in the time taken between cloud execution and the edge execution. Compared
to edge execution, cloud execution takes lesser time for execution.

Figure 10: Time taken for paper Image processing in the three environments

6.3 Experiment 3 / Fibonacci series workload as 5000 and trash
image workload for image processing

The time taken to execute this workload can be calculated in minutes when performing
local execution, but when offloaded, the execution takes place in less than ten seconds.

16



Figure 11: Time taken for 5000 Fibonacci series iterations in three environments

Here, the Trash image is used for image processing. The results depict that the time
taken to execute image processing in the edge device and the cloud server is approximately
the same.

Figure 12: Time taken for Trash Image processing in the three environments

6.4 Discussion

This experiment is performed with three different workloads in the three experiments on
both parts of the application. Based on the results obtained, it can be seen that the
time taken to execute these workloads drastically reduces when offloaded either to the
edge device or to the cloud server. Moreover, offloading to the edge device provides more

17



security as data is transceived within the network. The execution time when offloaded to
the edge device is also lower compared to the cloud server due to the vicinity of the edge
device from the proximity of the mobile device. Furthermore, the time taken to execute
the workload in the cloud server can be even more reduced if the EC2 instance of higher
hardware specification is used. Since free tier EC2 instance is used in this research, it
takes more time to execute than advanced EC2 instance.

The execution time is calculated based on the computation time taken for the workload
to be executed in both the edge device and the cloud server. But the results take more
time to be displayed in the user interface of the mobile device than the computation time
as the user interface needs to render a huge amount of result in the application mobile
screen. This rendering time taken for the user interface to display the huge results could
have been calculated, and also the CPU utilization and the battery consumption on three
different environments could have been considered in this research.

7 Conclusion

In this research work, the framework for offloading the computing-intensive part of the
android application is implemented. In this framework, the offloading location is decided
based on the current network status of the device. A laptop in the network is considered
as the edge device and Amazon EC2 instance is used as the cloud server. To evaluate this
experiment, an android application is built with the Fibonacci series and image processing
functionalities. The complex part of the application is offloaded to the edge device and
the cloud server based on the network status of the device. Apart from this, local device
execution of the Fibonacci series and image processing is also performed. The execution
time is considered as a parameter to evaluate.

The obtained results indicate that performing offloading significantly reduces the ex-
ecution time of the complex task as compared to the local execution. This also helps in
reduced CPU consumption and prolonged battery life in the mobile device. This research
framework is a comprehensive improvement in mobile task offloading considering the us-
age of the edge device, cloud server, and local execution based on the network status of
the device.

7.1 Future work

This research work will be further extended to the optimization of the results obtained
from the edge device and the cloud server. Apart from considering execution time as
the parameter, the CPU utilization and the battery consumption is also to be considered
as a parameter for evaluation in validating the result. Furthermore, dividing the task
and concurrently executing the tasks on multiple edge devices for faster processing while
offloading is also planned.

References

Abbas, N., Zhang, Y., Taherkordi, A. and Skeie, T. (2017). Mobile edge computing: A
survey, IEEE Internet of Things Journal 5(1): 450–465. JCR Impact Factor : 5.863
(2018).

18



Akherfi, K., Gerndt, M. and Harroud, H. (2018). Mobile cloud computing for computation
offloading: Issues and challenges, Applied Computing and Informatics 14(1): 1 – 16.
URL: http://www.sciencedirect.com/science/article/pii/S2210832716300400

Alelaiwi, A. (2019). An efficient method of computation offloading in an edge cloud
platform, Journal of Parallel and Distributed Computing 127: 58 – 64. JCR Impact
Factor : 1.815 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S0743731519300140

Chatzopoulos, D., Bermejo, C., Kosta, S. and Hui, P. (2020). Offloading computations
to mobile devices and cloudlets via an upgraded nfc communication protocol, IEEE
Transactions on Mobile Computing 19(3): 640–653. JCR Impact Factor : 4.098 (2018).

Elgendy, I. A., Zhang, W., Tian, Y.-C. and Li, K. (2019). Resource allocation and com-
putation offloading with data security for mobile edge computing, Future Generation
Computer Systems 100: 531 – 541. JCR Impact Factor : 4.639 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S0167739X18328346

Flores, H., Hui, P., Nurmi, P., Lagerspetz, E., Tarkoma, S., Manner, J., Kostakos, V.,
Li, Y. and Su, X. (2018). Evidence-aware mobile computational offloading, IEEE
Transactions on Mobile Computing 17(8): 1834–1850. JCR Impact Factor : 4.098
(2018).

Flores, H., Srirama, S. N. and Buyya, R. (2014). Computational offloading or data bind-
ing? bridging the cloud infrastructure to the proximity of the mobile user, 2014 2nd
IEEE International Conference on Mobile Cloud Computing, Services, and Engineer-
ing, Oxford, UK, pp. 10–18.

Goudarzi, M., Zamani, M. and Haghighat, A. T. (2017). A fast hybrid multi-site com-
putation offloading for mobile cloud computing, Journal of Network and Computer
Applications 80: 219 – 231. JCR Impact Factor : 3.991 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S1084804516303514

Gu, F., Niu, J., Qi, Z. and Atiquzzaman, M. (2018). Partitioning and offloading in smart
mobile devices for mobile cloud computing: State of the art and future directions,
Journal of Network and Computer Applications 119: 83 – 96. JCR Impact Factor :
3.991 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S1084804518302170

Jungum, N. V., Mohamudally, N. and Nissanke, N. (2020). Device selection decision
making using multi-criteria for offloading application mobile codes, 2020 6th Interna-
tional Conference on Advanced Computing and Communication Systems (ICACCS),
pp. 326–331. Core Ranking : B (2018).

Kwon, Y., Yi, H., Kwon, D., Yang, S., Cho, Y. and Paek, Y. (2016). Precise execution
offloading for applications with dynamic behavior in mobile cloud computing, Pervasive
and Mobile Computing 27: 58 – 74. JCR Impact Factor : 2.974 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S1574119215001856

Lin, L., Liao, X., Jin, H. and Li, P. (2019). Computation offloading toward edge comput-
ing, Proceedings of the IEEE 107(8): 1584–1607. JCR Impact Factor : 9.107 (2018).

19



Lin, X., Jiang, J., Li, C. H. Y., Li, B. and Li, B. (2020). Circa: collaborative code
offloading among multiple mobile devices, Wireless Networks 26(2): 823–841. JCR
Impact Factor : 1.981 (2018).

Nguyen, Q.-H. and Dressler, F. (2020). A smartphone perspective on computation of-
floading—a survey, Computer Communications 159: 133 – 154. JCR Impact Factor :
2.613 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S0140366419319401

Saha, S., Habib, M. A. and Razzaque, M. A. (2016). Compute intensive code offload-
ing in mobile device cloud, 2016 IEEE Region 10 Conference (TENCON), Singapore,
Singapore, pp. 436–440. Core Ranking : C (2018).

Tao, X., Ota, K., Dong, M., Qi, H. and Li, K. (2017). Performance guaranteed com-
putation offloading for mobile-edge cloud computing, IEEE Wireless Communications
Letters 6(6): 774–777. JCR Impact Factor : 3.096 (2018).

Wang, S., Zhao, Y., Xu, J., Yuan, J. and Hsu, C.-H. (2019). Edge server placement in
mobile edge computing, Journal of Parallel and Distributed Computing 127: 160 – 168.
JCR Impact Factor : 1.815 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S0743731518304398

Wu, S., Mei, C., Jin, H. and Wang, D. (2018). Android unikernel: Gearing mobile code
offloading towards edge computing, Future Generation Computer Systems 86: 694 –
703. JCR Impact Factor : 4.639 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S0167739X17329734

Zhao, X., Yang, K., Chen, Q., Peng, D., Jiang, H., Xu, X. and Shuang, X. (2019).
Deep learning based mobile data offloading in mobile edge computing systems, Future
Generation Computer Systems 99: 346 – 355. JCR Impact Factor : 4.639 (2018).
URL: http://www.sciencedirect.com/science/article/pii/S0167739X19304406

Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N. and Buyya, R. (2017). mcloud:
A context-aware offloading framework for heterogeneous mobile cloud, IEEE Transac-
tions on Services Computing 10(5): 797–810. JCR Impact Factor : 4.418 (2018).

20


	Introduction
	Related Work
	Cloud Server Based Offloading
	Edge Devices Based Offloading
	Cloud Servers and Edge Devices Based Offloading
	NFC and Bluetooth Offloading
	Survey Papers

	Methodology
	Application used for the research procedure
	IP addresses of the machines
	Offloading to the Edge Device in the network
	Offloading to the Cloud Server
	Evaluation methodology

	Design Specification
	Resource Provisioning Algorithm
	Workflow of the algorithm
	Architecture diagram of the framework
	Context Monitor
	Decision Engine
	Task Manager
	Communication Module

	Implementation
	Algorithm
	Deployment diagram of the framework
	Specification of the experiment environment

	Evaluation
	Experiment 1 / Fibonacci series workload as 3000 and glass image workload for image processing
	Experiment 2 / Fibonacci series workload as 4000 and paper image workload for image processing
	Experiment 3 / Fibonacci series workload as 5000 and trash image workload for image processing
	Discussion

	Conclusion
	Future work


