
Container Scheduling Using TOPSIS
Algorithm

MSc Research Project

Cloud Computing

Anurag Pravin Shriniwar
Student ID: x18198171

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahani

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Anurag Pravin Shriniwar

Student ID: x18198171

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Mr. Vikas Sahani

Submission Due Date: 17/08/2020

Project Title: Container Scheduling Using TOPSIS Algorithm

Word Count: 6035

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 15th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Container Scheduling Using TOPSIS Algorithm

Anurag Pravin Shriniwar
x18198171

Abstract

Containerisation of the application is on the rise and need for orchestration tools
is increasing along with it. Docker is de facto standard for containerisation but
orchestration tool is in developing stage with tools like Docker Swarm, SwarmKit
and Kubernetes in the market. Orchestration has many roles and responsibilities
but scheduling is one of the important tasks which shows the scope of improvement.
Orchestration tools are known to have problems in scheduling in a heterogeneous
environment. This paper implements a multi-criterion decision making algorithm
TOPSIS for container scheduling with Kubernetes. The implementation shows
the accuracy of node selection on par with Kubernetes scheduler along with the
feasibility of allocating user-defined importance to system parameters.

1 Introduction

Containerisation of application gives developers unique advantages than the traditional
architecture where developers have the flexibility of deployment, ease of setting up CI/CD
pipelines and added security that containerisation provides. This feature makes this
technology appealing. Use of container is common in the new development spectrum
and different products like LXC, Solaris containers, OpenViz have provided ways to
containerise the application. Although this area is packed with new products and features,
Docker is at the centre of attention. Docker is popular due to its ease of use, availability
of stable popular images on docker hub platform and support available for the platform
by both company and online by open-source platforms. All these features make it easy
to adopt at large scale as well as small scale enterprise.

Managing these containers on a large scale includes a wide variety of tasks. Orchestra-
tion tools are available for managing these container clusters. Kubernetes, Docker Swarm,
SwarmKit are orchestration tools that are popular currently. Swarm and SwarmKit are
introduced by docker itself and Kubernetes is developed by Google. All these tools are
open source. These tools perform the following task. Orchestration of containers was at
the peak according to the hype cycle of cloud computing by Gartner (2018)

1. Provisioning and deployment of pods and containers.

2. Migration of Containers to optimise node resources.

3. Monitoring and health check up of nodes as well as containers.

4. Scale up and down of cluster configuration.

1



Orchestration tools schedule the container by using scheduling strategies. These
strategies are known to be non optimised and there is scope for improvement in the
scheduling area of containers. These tools provide 3 scheduling strategies which are
Spread, Binpack and random. These strategies do not emphasise on the optimisation
of the overall resources. Spread strategy as the name suggests tries to spread the con-
tainers across the available nodes as much as possible whereas Binpack tries to pack the
containers in the least possible number of nodes. As an adaptation of containers and or-
chestration tools is increasing, enterprises find difficulty in using this strategy at a large
scale.

This project implements TOPSIS algorithm for scheduling strategy where it uses
following resource information from each node

1. Number of CPU cores available.

2. Percentage of CPU utilised.

3. Available virtual Memory.

4. Disk usage of node.

5. CPU Frequency.

User-defined weight is assigned to each resource type which will be used in the calcula-
tion of the best node. TOPSIS algorithm processes this information and gives Best node
among the available nodes. This node is used to schedule the containers. Implementation
of the algorithm is done using python language. Python library of Kubernetes is used to
call Kubernetes function to schedule pending containers from python code.

Further paper is divided into Literature review, Methodologies, Design, Implementa-
tion, Evaluation and conclusion along with future work related to the project.

2 Related Work

Existing strategies provided by current orchestration tools like Kubernetes, Docker swarm
and SwarmKit work well in specific conditions and shows mistakes in scheduling or poor
resource utilisation which leads to poor application performance due to lack of resources
one some nodes. This section reviews the current scheduling strategies along with a
review of work done by independent researchers in this field.

2.1 Overview of Orchestration Tools

Docker Swarm provides 3 scheduling strategies for container scheduling Spread, Binpack
and Random. Working of these scheduling strategies is simple as the name suggests where
Spread strategy tries to spread the total containers in maximum possible nodes whereas
Binpack strategy tries to consolidate the containers in the least number of nodes. As the
name suggests random strategy follows random allocation. Heap sort algorithm is used
for finding out the least or highest density of container nodes and according to selected
strategy container is placed on the specific node. Li et al. (2019)

Kubernetes, Docker Swarm and SwarmKit are 3 major container orchestration tools
available now. All of these tools are written in the GO language. GO is developed and

2



maintained by Google. Although the language is similar to C it performs well for memory
management. Docker Swarm and SwarmKit are developed by docker itself and show bet-
ter integration and ease of use for docker containers. Kubernetes is released by Google.
It can be used for the majority of Linux containers available in the industry including
docker container. This project uses Kubernetes for orchestration due to its edge over
other orchestration tools regarding the integration of custom scheduling algorithm. No
additional support is provided by Docker Swarm or SwarmKit for custom scheduling al-
gorithm. Kubernetes released a new feature of supporting a custom scheduling algorithm
with the latest Kubernetes release. A python library allows us to call Kubernetes APIs
and schedule containers with python code.12

Figure 1: Process flow of implementation Kubernetes Components (n.d.)

Kubernetes architecture diagram is given with figure 1. Architecture is divided into
two major parts Kubernetes control pane and Kubernetes node pane. Control pane is
made up of API-Server from which all the Kubernetes APIs are exposed, ETCD where
all the key-value data is stored, Kube-scheduler that schedules the new pending pods,
Kube and cloud control manager.

Node component is made up of Kubelet that ensures pods are running with containers,
Kube-proxy that maintains the pod network and some add on components like WebUI,
DNS management and resource monitoring.

2.2 Review of scheduling strategies and algorithms

Existing strategies provides no method to emphasize and have a majority stake in decision
of node selection based on a particular parameter. Researchers have published strategies
to utilise the importance of one particular parameter and schedule a container aimed
at optimising the usage of that particular resource. Cérin et al. (2017) has proposed
the algorithm to reduce SLA violations. SLAs are important for service provider and
violation of SLA leads to degradation of service and loss of revenue. The author proposes
the scheduling based on the SLA class of the user. Although the author uses their

1https://github.com/docker/swarmkit
2https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

3



algorithm to select a container to schedule among the multiple requests at a time and
uses Binpack strategy to schedule the container for economic purposes. Alahmad et al.
(2018). have focused on optimisation and improvement of availability of the application
via scheduling The algorithm calculates the availability of the system by using the mean
time to fail and repair data and places the container according to the calculation.

Vaucher et al. (2018) has focused on security improvements while scheduling con-
tainers. This algorithm uses Intel’s latest security feature SGX. SGX provides secure
hardware environment for the execution of programs and the author suggests to use this
feature and optimise the use of SGX while scheduling and thereby increasing the overall
security of the environment. Wu and Chen (2017) has proposed an ABP scheduler which
also focuses on saving SLA violations. The author suggests an algorithm to save network
traffic cost by using common Docker hub base images of containers as a buffer layer.
This layer enables faster scheduling time thereby avoiding SLA violation. Testing shows
a drastic reduction in allocation time with a reduction from 10 seconds to 2 seconds.

Bhimani et al. (2018) has published a report for IO-intensive applications. The
author has studied the performance of different IO-intensive applications under various
conditions. Guidelines were designed for a homogeneous and heterogeneous mixture
of application for operational optimisation. The author has developed a new docker
scheduling algorithm by using the previously developed guidelines. The author aims to
reduce total execution time and increase total resource utilisation by deciding the optimal
number of containers in a batch where several containers are executing concurrently.
The algorithm tries to balance the throughput of all running applications and testing
is done with different applications requiring different IO. When compared without the
algorithm execution time of applications shows improvements with the new algorithm
implementation.

Research is in place for better utilisation of overall resources after scheduling. heur-
istic and meta-heuristic algorithms are implemented for resource utilisation improve-
ment. Kaewkasi and Chuenmuneewong (2017) has proposed ant colony optimisation.
Ant-Colony algorithm is a meta-heuristic algorithm and the author has proposed to im-
plement it for scheduling strategy. results show promising results of 15% improvement in
utilisation compared to general Greedy algorithm. Many implementations are published
on similar grounds aimed at achieving better utilisation of resources is present. Menouer
et al. (2018) has implemented the PROMETHEE and Kung algorithm and Menouer and
Darmon (2019) has used TOPSIS algorithm in another publication. These mentioned
algorithms are well-known algorithms in the family of Multi-Criterion decision making
algorithm family.

Li and Fang (2017) states that a single algorithm that fits for every condition is not
feasible. There are mainly three scenarios in the orchestration area.

1. Some applications on the node are non containerised.

2. Resource utilisation of some containers is not balanced and has unbalanced resources
utilisation of one particular resource.

3. Requests are unbalanced between containers.

All these cases are not covered with one algorithm and the author suggests to use
multi-algorithm collaboration scheduling strategy (MCSS) to tackle the situation. The

4



author aims to increase the overall performance of the scheduled containers. This al-
gorithm uses probability and modified weighted scheduling algorithm to satisfy basic
needs such as cluster load balance. Trend Based resource balancing allocation algorithm
for multiple resource requirement conditions and Delay scheduling algorithm for solving
concurrency problems. Testing shows an increase in performance and improved cluster
load balancing.

Choi et al. (2016) has published a paper on similar grounds. The author states that
container scheduling is treated as Linux kernel process and they are allocated resources on
the same basis but is a fundamental difference between Linux kernel process and container.
Containers can be of Different SLAs, IO sensitive and some of them are real-time services.
The author has proposed a General Purpose Scheduling Framework (GSPF) for container
scheduling. This framework provides options for customised scheduling strategies and
options to optimise resource management. This framework is situated between container
and kernel to optimise resources and communicate with docker container as well. This
framework contains three separate modules which are monitor, scheduler and resource
allocator. GSPF also provides different APIs for each of its modules to get status of
container, resource stats and assign resources to specific containers which can be used
with a custom scheduler. The implementation shows 13% improvement in throughput of
applications.

Another strategy followed is to assign a node for the container by using Spread and
Binpack strategy and then migrate the containers according to prominent resource util-
isation or node resources availability. Li et al. (2019) suggest to identify prominent
resource utilisation and group them by resource usage called an RPBG method. con-
tainers are migrated to another node when the maximum limit of resource utilisation is
breached. Mao et al. (2017) has also proposed a method which is along the same line
of monitoring and migration technique. The author has called his algorithm as DRAPS
where resource bottlenecks are identified and migrated based on resource usage of the
container. Implementation showed about 42% increase in overall utilisation of the system
with this method.

2.3 Algorithms Under MCDM Category

Velasquez and Hester (2013) have presented a paper with detailed analysis, usage, lit-
erature review and advantage over each other of major Multi-Criterion Decision Making
algorithms. The author states that the development of MCDM algorithms is going on
for several decades and variations of each algorithm are published for usage in specific
real-world scenarios. Although algorithms are very complex and provide a meaningful
and logical framework for planning and decision making some algorithms are well suited
to some particular situations. The author states 11 major different MCDC algorithms
like ELECTRE, TOPSIS, PROMETHEE, Fuzzy set theory and case-based reasoning and
others. Many of these algorithms have different variations like ELECTRE has ELECTRE
I, II, TRI, IV and IS.

The author states that TOPSIS has an advantage where steps remain fixed irrespect-
ive of alternatives and several attributes where some algorithms vary based on input.
On the other hand algorithms like ELECTRE and Multi-Attribute utility theory takes
uncertainty and vagueness into account. Fuzzy set theory is utilised best under improper

5



and insufficient input and goal programming can give us infinite alternatives. TOPSIS
can be used effectively in areas like supply chain management, resource management,
engineering and manufacturing systems.

2.4 Review of TOPSIS Algorithm

TOPSIS is short for Technique for Order of Preference by Similarity to Ideal Solution.
Introduced in 1981, and the final refined version is published by Hwang et al. (1993).
This algorithm uses the theory of Euclidean distance for the positive and negative ideal
solution. Panda and Jagadev (2018) have surveyed the detailed analysis, application and
usage of this method. The author states that this method was used to calculate perform-
ance scores and for stock market analysis and prediction in the Istanbul Stock Market.
Supply chain management area uses TOPSIS for maintaining a balance between quality,
quantity and cost control and choosing the best partner for the association. Some clas-
sification and clustering problems are also solved using this method. A Variation of this
method, called D-TOPSIS, is used for resource selection in human resource department.

Although TOPSIS has been used extensively in different areas other than engineering,
this algorithm is also suitable for application in engineering technologies. This paper uses
TOPSIS for node selection criterion where alternatives are available nodes in the cluster,
and criteria are system parameters of nodes.

2.5 Comparison of Reviewed Techniques

Overall comparison of scheduling strategies is done with below table. It can be observed
that custom scheduling is implemented with various objectives such security, availability
and optimisation of overall resources.

No Scheduling Strategy Area of Impact Author

1 Algorithm Based on SLA
class of User

Reduce SLA violations Cérin et al. (2017)

2 Availability values of infra-
structure

Increase the Availability of
Application

Alahmad et al. (2018)

3 SGX aware scheduling Increase security of Applic-
ation

Vaucher et al. (2018)

4 Ant-Colony optimisation
strategy

Increase overall resource
utilisation

Kaewkasi and Chuen-
muneewong (2017)

5 General Purpose Scheduling
Framework (GSPF)

Optimise resources Choi et al. (2016)

6 Observe and migrate
method

Improve overall utilisation Mao et al. (2017)

7 PROMETHEE and KUNG
algorithm

Improve overall utilisation Menouer et al. (2018)

3 Methodology

TOPSIS is made up of 6 fixed steps irrespective of number of alternatives and criteria.
Algorithms needs 3 Different inputs i.e. Input decision matrix, Weight matrix, and Cost-

6



Benefit matrix. Input Matrix is Normalised and then weights are applied to normalised
matrix. Positive and Negative Ideal Solution are found out to calculated Positive and
Negative Euclidean distance. This distance is used to calculate closeness parameter based
on which alternates are ranked.

Detailed steps and mathematical formulae are given below.

• Step 1 - Normalise the Input Matrix

Input Matrix is created where A is alternates which are available nodes in the cluster
setup created and C is criterion for selection where criterion is system parameter
value such as CPU, RAM and storage utilisation.

Input Matrix:

C1 C2 . . . Cn X11 X12 . . . X1q A1
...

...
...

...
...

Xp1 Xp2 . . . Xpq An

(1)

Normalisation of Matrix:

Normalisation is done to remove the units of each values. each criterion value is in
different units where RAM is measured in MB or GB, Storage is measured in GB
or TB while CPU is just number. normalisation makes the matrix unit less so that
further processing can be done on the matrix.

[Gij]pq =
Xpq

(
∑p

i=1 X
2
pq)

1/2
(2)

• Stemp 2 - Weighted Normalised Matrix:

Weight matrix is an input matrix where values are weight of each criterion to be
considered in the calculation.

Wj =
[
W1 W2 . . . Wq

]
(3)

This input matrix is multiplied with normalised matrix calculated above to get
weighted normalised matrix.

[Zij]pq = Gij ∗Wj where i = 1...p, j = 1...q (4)

where Gij is normalised matrix calculated in previous step 2 and wj is weight of
criterion.

• Step 3 - Positive Ideal Solution and Negative Ideal Solution

Positive ideal and Negative ideal is calculated based on benefit and cost factor given
as input. If the Criterion is benefit factor then Max value of particular criterion is
PIS and when criterion is cost then min value of particular criterion column is PIS
and vice vars for NIS.

7



PositiveIdealSolution(PIS) :

{
max(Zij|C+)

min(Zij|C−)
(5)

where C+ is Benefit and C- is cost

NegativeIdealSolution(NIS) :

{
min(Zij|C+)

max(Zij|C−)
(6)

where C+ is Benefit and C- is cost

• Step 5 - Euclidean Distance from PIS and NIS

Positive and Negative Euclidean distance for each alternate is calculated based on
PIS and NIS value calculated in previous step.

P ∗
i = (

∑
Z2

ij − Z∗
j )1/2 where Z∗

j = PIS (7)

P−
i = (

∑
Z2

ij − Z−
j )1/2 where Z−

j = NIS (8)

• Step 6 - Closeness Parameter

Closeness parameter is ratio of Negative euclidean distance to total euclidean dis-
tance

P = P−
i /(P−

i + P ∗
i ) (9)

Alternates are ranked based on this closeness parameter where highest rank is given
to the maximum value of closeness parameter and vice vars.

3.1 Pseudo Code

4 Design Specification

Cloud implementation of the project is done using KOPS KOPS (n.d.). Kops helps in
creating, upgrading, destroying and managing the kubernetes cluster on various cloud
providers such as AWS, Google cloud and more. Kops is officially supported on AWS.
Architecture diagram of this implementation is given with fig 1.

Following key features of Kops makes it production grade kubernetes cluster:

1. KOPS create and destroys VPC from scratch

2. It supports multiple master nodes

8



Algorithm 1 Docker Scheduling

Input Input request for scheduling
Output Node is selected by algorithm and container is sched-

uled.

0: Getting the system information of each node.
0: for iteration = 1, 2, . . . , P do
0: for iteration = 1, 2, . . . , Q do
0: Get the values of Qth criterion for Pth hosts.
0: Prepare P x Q matrix.
0: end for
0: end for
0: Preparing the weight matrix by getting the values from user.
0: for iteration = 1, 2, . . . , Q do
0: Get weight of Qth criterion.
0: end for
0: Pass the Input and Decision matrix to TOPSIS algorithm python file.
0: Assign output ranking of function call to variable.
0: if User defined conditions then
0: Filter out host that does not satisfy conditions.
0: end if
0: Get highest ranking out of remaining host
0: Schedule a container on highest ranked host.

=0

3. Support for horizontal scaling

4. Integration with CloudFormation and Terraform

5. Support for multiple instance groups, public and private topology.

Kops automatically creates many AWS components is taken care by KOPS like Net-
working, VPC creation, creation of instance groups but some AWS pre-requisites are done
manually. IAM policy, User creation, SSH configuration, S3 bucket, DNS configuration
are the tasks that are done manually. Kops is also suggested in the book Cloud Native
DevOps with Kubernetes by Arundel and Domingus (2019) Following AWS services are
used for kubernetes implementation:

1. Simple Storage S3: This storage is used to store the state of the cluster. S3 bucket
with unique name is created in EU-WEST-1A region. Bucket name created for this
configuration is kops-state-anurag.

2. Route 53: Kops require DNS name under which all the configuration is created.
cluster is created and deleted under the specified DNS. Route 53 is used for hosting
the DNS name. Name servers provided by Route 53 are integrated with DNS name
provider.

3. IAM policy: Kops require full access to EC2 machines, S3 bucket, Route 53 and
VPC. IAM policy is set for the user accordingly.

9



Algorithm 2 TOPSIS Algorithm

Input Inputs passed by algorithm 1
Output A1 > A2 > . . . > An.

0: Assign input from Algorithm 1 to local matrix Xpq.
0: Calculation of Normalised matrix.
0: for iteration = 1, 2, . . . , P do
0: for iteration = 1, 2, . . . , Q do Normalise the Matrix.
0: end for
0: end for
0: Multiplying normalised matrix with respective weights.
0: for iteration = 1, 2, . . . , P do
0: for iteration = 1, 2, . . . , Q do
0: Gpq * Wq

0: end for
0: end for
0: We get normalised matrix Zpq.
0: Positive Ideal Solution calculation.
0: for iteration = 1, 2, . . . , P do
0: for iteration = 1, 2, . . . , Q do
0: Max of Zk.
0: end for
0: end for
0: Negative Ideal Solution calculation.
0: for iteration = 1, 2, . . . , P do
0: for iteration = 1, 2, . . . , Q do
0: Min of Zk.
0: end for
0: end for
0: Calculation of Euclidean best value
0: for iteration = 1, 2, . . . , i do
0: for iteration = 1, 2, . . . , j do
0: (

∑
Z2

ij − Z+
j )1/2

0: end for
0: end for
0: Calculation of Euclidean worst value
0: for iteration = 1, 2, . . . , i do
0: for iteration = 1, 2, . . . , j do
0: (

∑
Z2

ij − Z−
j )1/2

0: end for
0: end for

=0

10



Figure 2: Kops architecture created on AWS

4. EC2 Machines : Kops creates EC2 machine for hosting Kubernetes master and
worker node.

5. VPC: VPC creation is not a manual task, It is created through KOPS internal
scripts. User is free to make changes in VPC configuration according to requirement.
This implementation uses default VPC created by KOPS.

Algorithm is integrated with the kubernetes after implementation of cloud infrastruc-
ture. Architecture of algorithm implementation is divided into 3 main parts Input matrix
creation, TOPSIS algorithm and container scheduling. Architecture diagram of this in-
tegration is shown with figure 2.

Figure 3: Architecture Diagram of Algorithm Integration

Normal kube-scheduler works in following way and process flow diagram shown in in
figure 4:

11



1. etcd is used to save state of newly created pod but node is not assigned to pod.

2. Kube-Scheduler checks every pods in loop and finds out that pod is not assigned
any node.

3. Kube-Scheduler find best node for the pod.

4. Kube-Scheduler call API server and binds a node to a pod.

5. Kubelet schedules the particular pod on the specified node.

Implemented strategy changes and adds a step in between these steps:

1. Python code is written to loop through the pods and find out unbounded pods is
written.

2. TOPSIS algorithm to find out best node.

3. A call to API server to bind this node to pods is made.

Figure 4: Process flow of custom scheduler

5 Implementation

Implementation of the algorithm is done using python. Different light weight python
libraries are used for fast paced implementation. Kubernetes provides Kubernetes library
for python which is used for container scheduling. Following is list of libraries used in the
implementation.

12



1. Kubernetes: This is official kubernetes library for python for carrying out kuber-
netes commands with the help of python code.

2. PSUTIL: This library is used to collect system information from the available nodes.
psutil provides CPU, RAM, swap space, storage read and write latency, network
packets sent and received from the host. Preeth E N et al. (2015) used this utility
in evaluation of docker.

3. Paramiko: This utility is used for multiple SSH connection at the same time. It is
also used to execute script located at the remote machine, collect the information
and bring back the output to central location.

4. Numpy : Numpy is used for matrix calculation in algorithm implementation.

Figure 5: Process flow of implementation

Implementation is divided into two parts where one script is placed on every worker
node on the cluster (system parameters.py) and another script (custom scheduler.py) is
used to call this script from the local machine, perform TOPSIS algorithm, provide the
best alternative and schedule the pending containers on the node.

As this implementation is with AWS, AWS CLI is configured with the new user created
for this project. User is given Full administrative access with Programmatic access. This
access is required as python commands are used for AWS configurations.

KOPS is downloaded on local Linux machine and cluster is created with the desired
number of Master and Worker nodes. SSH is configured with public and private key
with all the EC2 machines. This SSH private key is used in the python code for remote
execution of the script on the EC2 machine. Process flow diagram of the implementation
process is shown with figure 5

Pods are configured and created to adopt the custom Kubernetes scheduler. As stated
in previous sections, Kubernetes provides a feature to accommodate custom scheduler.
Pods cluster is created with a replication controller. All the details of the replication
controller are written in YAML file. An extra tag of schedulerName: is added in the
YAML file with scheduler name for this feature. This same scheduler name is given in
python code written.

13



When pods are created with this replication controller YAML file, they stay pending
until custom scheduler python file is executed and once the file is executed, pending pods
are scheduled on a best available node.

Figure 6: Flow chart diagram of custom scheduler

The custom scheduler checks the available nodes in the cluster which includes both
master and client. It checks the state of all pods and gets the pending pods in the next
step. If there are pending pods then it gets the system information of all the available
client nodes and creates a matrix. Apply the TOPSIS algorithm and get the best node.
This node is used to schedule all the pending state pods. Flow chart of the custom
scheduler is given with figure 6.

6 Evaluation

Evaluation of the project is done on local implementation on the laptop. Kubeadm,
Kubelet and Kubectl are used for Kubernetes implementation on VirtualBox machine. 1
master node and 3 client nodes are set up for testing of this project. All these VM’s are
interconnected with each other with the same IP range so that master can control client
nodes with SSH commands. Creation of a heterogeneous environment is not possible on
a cloud platform where all the worker nodes are created with the same configuration.
Hence evaluation of the project is done on the local cluster setup. cluster is setup using
the following components.

1. Kubeadm : This ensures the bootstrapping of all the components in kubernetes
cluster.

14



2. Kubelet : It manages the components like starting and stopping of all pods and
kubelet runs on all the nodes of the cluster.

3. kubectl : Command line utility to manage kubernetes.

6.1 Scenario 1

Testing of the project in this scenario is done where the configuration of all worker nodes
is kept the same. The weight associated with characteristics is distributed equally and
stress testing tool is used to generate artificial load on the worker nodes. Virtual memory
is utilised by using stress testing tool STRESS-NG. 70% of the memory is utilised by the
tool, and then scheduling is checked with Kubernetes and custom scheduler. Stress-NG
was used by Ismail and Riasetiawan (2016) for testing CPU and Memory performance
in Xen data center. Following table 6.1 shows % of the memory utilised by the testing
tool and node selection of the custom algorithm and Kubernetes scheduler.

Test Case Kclient 1 Kclient 2 Kclient 3 Kubernetes Scheduler Custom Scheduler

1 0% 0% 70% Node 1 Node 1

2 70% 0% 70% Node 2 Node 2

3 70% 50% 70% Node 2 Node 2

4 70% 70% 0% Node 3 Node 3

Custom Kubernetes scheduler and existing Kubernetes scheduler shows the same node
selection when all the node configuration is the same. Selection of the node of both the
methods remains the same even after some nodes are put under load using stress-ng. The
node which is not fully utilised with the resources is selected for scheduling with both
custom and Kubernetes algorithm. This can be observed in case 3 where node 2 is less
utilised as compared to node 1 and 3 and Node 2 is selected for the scheduling. When
only one of the node is put under load test then best node out of other 2 is selected for
scheduling. Node selection for scheduling is the same for both the methods in this case
also.

6.2 Scenario 2

This evaluation is done with varying weight of characteristics. Random values of CPU
and RAM are assigned for client nodes in the configuration. Different test cases are
executed with the same configuration of the machines but different weight value. Impact
of the weight assigned to characteristics is evaluated in this testing. Configuration of the
cluster is given as follows Master Node: 2 CPU, 3GB Ram and 40GB storage , Client
Node 1: 2 CPU, 1.5 GB RAM, 35GB storage, Client Node 2: 1 CPU, 1.5 GB RAM,
30GB storage and Client Node 3: 1 CPU, 3 GB RAM, 30GB storage

All the system information is passed to TOPSIS algorithm and algorithm provides
the best node from the provided input. Stepwise calculations of TOPSIS algorithm for
one such case is given below.

When a pod is created with the help of replication controller and using YAML file
where scheduler name is given as custom scheduler, it remains in the pending state till

15



Figure 7: Step wise calculations of TOPSIS algorithm for test case 1

custom scheduler script is not executed. Figure 8 shows the creation of pod with YAML
file nginxrc.yaml and pod in the pending state. Age of the pod is shown as 23s.

Figure 8: Pods in Pending state after creation with Custom Scheduler

16



The custom scheduler receives the output of TOPSIS algorithm and it schedules the
pending pods on the respective node. Figure 9 shows the container scheduled on node
kclient. Internal IP is assigned to a pod and random name is generated for a pod. state
of the pod can be seen as Running in the figure.

Figure 9: Pods scheduled on alternative

Configuration of all the machines is kept same for the testing purpose and weight
assigned for each characteristics is changed for each test case. Following table 6.2 depicts
the weights for each test cases.

Test Case CPU RAM Total Storage Available Storage CPU Freq

1 20 20 20 20 20
2 30 20 15 15 15
3 35 40 10 10 5

Results of above 3 cases is as follows.

Test Case Custom Scheduler Kubernetes Scheduler

1 Node 1
Node 12 Node 2

3 Node 3

Case 1: Custom scheduler and inbuilt kubernetes scheduler selects the same node
for scheduling which is Node 1 when equal distribution of the weights is provided to
algorithm.

Case 2 & 3: Algorithm selects different node for scheduling when unequal distri-
bution of the weight is given as input. Node 3 with highest RAM is selected when 40%
weight is given for input and node 2 is selected when some percentage of weights assigned
to storage is increased to 15% from 10%.

7 Conclusion and Future Work

Docker shows seamless integration with orchestration tool Kubernetes and Kubernetes
has gained widespread popularity. Although Kubernetes is complete package compared
to other orchestration tools, there is a scope of improvement in the scheduling area. One
for all scheduling strategy is known to have caused problems in scheduling large scale
systems and does not take any inputs from the user as far as importance assigned to
specific characteristics is considered.

17



The implemented strategy shows same scheduling decisions as compared to Kuber-
netes scheduler when all characteristics are given equal importance but this strategy also
provides a way to change the importance of certain characteristics in the decision making
of node selection. If the unequal distribution of weight is assigned to a system para-
meter then implemented algorithm shows deviation from Kubernetes scheduler and this
deviation is according to user preference.

Future work of the project includes implementation on a large scale system with 2000
to 3000 pods on large scale cluster. 1) architectural changes to current implementation
so that system parameter will be collected by API calls rather than SSH connection
which takes higher time. 2) Implementation of multi-container scheduling considering
the resource requirement of each container in the queue. 3) Usage of different networking
parameters in the input matrix generation stage.

18



References

Alahmad, Y., Daradkeh, T. and Agarwal, A. (2018). Availability-aware container sched-
uler for application services in cloud, 2018 IEEE 37th International Performance Com-
puting and Communications Conference (IPCCC), Orlando, FL, USA, pp. 1–6. Core
Ranking:B.

Arundel, J. and Domingus, J. (2019). Cloud Native DevOps with Kubernetes: Building,
Deploying, and Scaling Modern Applications in the Cloud, O’Reilly Media.

Bhimani, J., Yang, Z., Mi, N., Yang, J., Xu, Q., Awasthi, M., Pandurangan, R. and Bal-
akrishnan, V. (2018). Docker container scheduler for i/o intensive applications running
on nvme ssds, IEEE Transactions on Multi-Scale Computing Systems 4(3): 313–326.

Choi, S., Myung, R., Choi, H., Chung, K., Gil, J. and Yu, H. (2016). Gpsf: general-
purpose scheduling framework for container based on cloud environment, 2016 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), IEEE, pp. 769–772.

Cérin, C., Menouer, T., Saad, W. and Abdallah, W. B. (2017). A new docker swarm
scheduling strategy, 2017 IEEE 7th International Symposium on Cloud and Service
Computing (SC2), Kanazawa, Japan, pp. 112–117.

Gartner (2018). Hype cycle for cloud computing, 2018.
URL: https://www.gartner.com/en/documents/3884671/hype-cycle-for-cloud-
computing-2018

Hwang, C.-L., Lai, Y.-J. and Liu, T.-Y. (1993). A new approach for multiple objective
decision making, Computers & operations research 20(8): 889–899.

Ismail, H. A. and Riasetiawan, M. (2016). Cpu and memory performance analysis
on dynamic and dedicated resource allocation using xenserver in data center en-
vironment, 2016 2nd International Conference on Science and Technology-Computer
(ICST), IEEE, pp. 17–22.

Kaewkasi, C. and Chuenmuneewong, K. (2017). Improvement of container scheduling for
docker using ant colony optimization, 2017 9th International Conference on Knowledge
and Smart Technology (KST), Chonburi, Thailand, pp. 254–259. Total Citations:31.

KOPS (n.d.).
URL: https://github.com/kubernetes/kops

Kubernetes Components (n.d.).
URL: https://kubernetes.io/docs/concepts/overview/components/

Li, H., Chen, N., Liang, B. and Liu, C. (2019). Rpbg: Intelligent orchestration strategy
of heterogeneous docker cluster based on graph theory, 2019 IEEE 23rd International
Conference on Computer Supported Cooperative Work in Design (CSCWD), Porto,
Portugal, pp. 488–493. Core Ranking:B.

19



Li, Q. and Fang, Y. (2017). Multi-algorithm collaboration scheduling strategy for docker
container, 2017 International Conference on Computer Systems, Electronics and Con-
trol (ICCSEC), IEEE, pp. 1367–1371.

Mao, Y., Oak, J., Pompili, A., Beer, D., Han, T. and Hu, P. (2017). Draps: Dynamic and
resource-aware placement scheme for docker containers in a heterogeneous cluster, 2017
IEEE 36th International Performance Computing and Communications Conference
(IPCCC), San Diego, CA, USA, pp. 1–8. Core Ranking:B.

Menouer, T., Cérin, C. and Leclercq, É. (2018). New multi-objectives scheduling
strategies in docker swarmkit, in J. Vaidya and J. Li (eds), Algorithms and Architec-
tures for Parallel Processing, Springer International Publishing, Cham, pp. 103–117.
Core Ranking: B.

Menouer, T. and Darmon, P. (2019). New scheduling strategy based on multi-criteria
decision algorithm, 2019 27th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), IEEE, Pavia, Italy, pp. 101–107. Core
Ranking:C.

Panda, M. and Jagadev, A. K. (2018). Topsis in multi-criteria decision making: A survey,
2018 2nd International Conference on Data Science and Business Analytics (ICDSBA),
IEEE, pp. 51–54.

Preeth E N, Mulerickal, F. J. P., Paul, B. and Sastri, Y. (2015). Evaluation of docker
containers based on hardware utilization, 2015 International Conference on Control
Communication Computing India (ICCC), pp. 697–700.

Vaucher, S., Pires, R., Felber, P., Pasin, M., Schiavoni, V. and Fetzer, C. (2018). Sgx-
aware container orchestration for heterogeneous clusters, 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, pp. 730–741.
Core Ranking: A.

Velasquez, M. and Hester, P. T. (2013). An analysis of multi-criteria decision making
methods, International journal of operations research 10(2): 56–66.

Wu, Y. and Chen, H. (2017). Abp scheduler: Speeding up service spread in docker
swarm, 2017 IEEE International Symposium on Parallel and Distributed Processing
with Applications and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC), IEEE, Guangzhou, China, pp. 691–698. Core
Ranking: B.

20


	Introduction
	Related Work
	Overview of Orchestration Tools
	Review of scheduling strategies and algorithms
	Algorithms Under MCDM Category
	Review of TOPSIS Algorithm
	Comparison of Reviewed Techniques

	Methodology
	Pseudo Code

	Design Specification
	Implementation
	Evaluation
	Scenario 1
	Scenario 2

	Conclusion and Future Work

