
An Exogenous Factor Aware Resource
Prediction Model for Auto-Scaling in Cloud

MSc Research Project
Cloud Computing

Priyesh Shah
Student ID: x18207731

School of Computing
National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Priyesh Shah
Student ID: x18207731
Programme: Cloud Computing
Year: 2020
Module: MSc Research Project
Supervisor: Sean Heeney
Submission Due Date: 17/08/2020
Project Title: An Exogenous Factor Aware Resource Prediction Model for Auto-

Scaling in Cloud
Word Count: 6993
Page Count: 21

I hereby certify that the information contained in this (my submission) is information per-
taining to research I conducted for this project. All information other than my own contribution
will be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required
to use the Referencing Standard specified in the report template. To use other author’s written
or electronic work is illegal (plagiarism) and may result in disciplinary action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to each project
(including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for your own refer-
ence and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

An Exogenous Factor Aware Resource Prediction
Model for Auto-Scaling in Cloud

Priyesh Shah
x18207731

Abstract
Auto-scaling is required to handle fluctuating demand in the cloud environment. It

helps to add or remove resources based on pre-defined policies without human interven-
tion. Proactive auto-scaling solutions are better than reactive ones to handle fluctuating
demand but they mostly use system information and exogenous factors influencing user
demand are not considered. In this paper, an exogenous factor aware resource prediction
model is presented that works in the Analysis phase of the MAPE control loop. It takes
into account exogenous factors to predict the user demand and its corresponding resource
requirement. Historical weather and taxi booking data and weather forecast data are used
for the analysis of this experiment. Taxi bookings for historical dates having weather con-
ditions i.e. rain similar to the forecast are analyzed to predict the user demand and thereby
calculate the resources required. Results show that rain has a notable impact on taxi book-
ing as the number of taxis booked on days having rain is 49% to 61% more and the re-
sources required are 25% to 50% more. Result validation shows that actual vs predicted
taxi booking deviation is -12% to 17.5% and the actual vs predicted resource deviation is
-17% to 17% which is not significant. The user demand and the resources required can be
used to plan an auto-scaling operation for the upcoming days.

1 Introduction
Cloud computing has changed the way organizations spend money on information systems by
replacing capital expenses with operational expenses thereby providing greater flexibility and
reduced costs. It enabled them to increase and decrease the computational resources as per their
need and pay for the resources they use. The National Institute of Standards and Technology
(NIST) rightly describes cloud computing as a technological model that is omnipresent, easy
to use, available on-demand and in abundance, measured as per the usage, and flexible. Rapid
Elasticity is one of the 5 essential characteristics of cloud computing identified by NIST (Mell
and Grance (2011)). Rapid Elasticity helps users to instantly change the number of resources
at the click of a button. Figure 1 shows rapid elasticity in a cloud environment and thus proves
the concept of auto-scaling

Estimating the resources required is difficult. Most companies estimate based on expect-
ations but over the years, companies have started considering other factors such as historical
demand, upcoming events, etc. However, the estimates often turn out to be incorrect resulting
in resource over-provisioning or under-provisioning. Over-provisioning can result in resource
wastage and unnecessary costs whereas under-provisioning can lead to performance degrad-
ation and unavailability of application (Aslanpour et al. (2017)). Dynamically adjusting the

1

Figure 1: Auto-Scaling Concept (Buyya et al. (2018))

resources is a cumbersome activity as the demand can change frequently. Thus auto-scaling
plays a pivotal role in resource management in cloud computing. It allows scaling up and down
the resources automatically without any human intervention based on predefined policies. It
helps to match the demand and the supply, optimize cost and resource utilization (Smith et al.
(2018)) and improve system availability and performance.

Most of the auto-scaling solutions that exist are based on the MAPE control loop which
stands for Monitoring, Analysis, Planning, and Execution (Ghobaei-Arani et al. (2018)). Per-
formance metrics used for auto-scaling are monitored in the monitoring phase. The data of the
metrics are analyzed in the analysis phase along with workload and resource prediction. The
timing when the auto-scaling should be done is determined in the planning phase and the actual
execution of auto-scaling is done in the execution phase.

Auto-scaling is mainly categorized into horizontal and vertical scaling. Horizontal scaling
means adding or removing additional resources whereas vertical scaling means increasing or
decreasing the computational capability of a resource in the system. Auto-scaling solutions
can be broadly classified into threshold-based, control and queuing theory-based, time-series
based, and reinforcement learning-based auto-scalers (Bauer et al. (2019.1)). Auto-scaling is
further divided into reactive and proactive. Reactive auto-scaling means adjusting the num-
ber of resources due to an event or an incident in the system. This can be the degradation of
response time, breach of threshold values of system parameters, etc. Proactive auto-scaling
means identifying or predicting an event or an incident before-hand and adjusting the resources
accordingly. Some auto-scalers analyze past workload, resource usage, access logs, social me-
dia activity, etc. and adjust the resources accordingly. Making a resource operational takes up
to 30 minutes (Smith et al. (2018)). As the reactive auto-scalers react to an anomaly or an event
in the system, the possibility of degradation of performance and service level agreement (SLA)
violations increases (Iqbal et al. (2018)). The proactive auto-scalers scale the resources based

2

on the analysis and prediction. However, most of these auto-scaling solutions do not take into
account the external factors that can influence the user demand. As suggested (Buyya et al.
(2018)), there is a need to find more sophisticated solutions for auto-scaling.

Research Question: Can auto-scaling be planned early based on the number of required
resources predicted by analyzing the impact of exogenous factors on user demand?

Through this research, an attempt is made to build a model to predict the number of re-
sources required by analyzing the impact of exogenous factors on user demand. For this pro-
ject, the weather forecast, historical weather, and taxi booking data are used. The objective of
the model is to predict the user demand by analyzing historical and forecast data and thereby
calculating the resources that will be required to fulfill the demand. The model developed as
part of this project works in the analysis phase of the MAPE loop. It is an independent model
that can be integrated with another auto-scaler having planning and execution capabilities.

This paper is divided into various sections. Section 2 discusses auto-scaling taxonomy, re-
lated work, and challenges. Section 3 talks about the rationale behind choosing the topic and
the process of developing and assessing the model. Section 4 highlights the tools and techno-
logies used, the architecture, and the flowchart. Section 5 mentions the implementation of the
model and section 6 describes the evaluation results and its interpretations, result validation,
and discussion. Finally, section 7 discusses the conclusion and the future work of the project.

2 Related Work
This section discusses some of the related work in auto-scaling. Section 2.1 talks about the
auto-scaling taxonomy and sections 2.2 and 2.3 discuss some of the recent researches done
for proactive and hybrid auto-scaling mechanisms. Only reactive auto-scalers have not been
discussed as the auto-scaling mechanism implemented in this research project is proactive.
Section 2.4 talks about the challenges in auto-scaling and section 2.5 is the conclusion.

2.1 Auto-Scaling: The Taxonomy
Chenhao et al. (2018) have performed a detailed analysis of the recently developed auto-scaling
solutions. The researchers have identified the important properties that should be considered
while designing an auto-scaling solution. The aspects to be considered while designing auto-
scaling mechanisms are displayed in figure 2 and also discussed below:

1. Application Architecture: The application architecture that the auto-scaler will handle
plays an important role. The architecture can be single-tier, multi-tier, or SOA.

2. Session Stickness: Sticky sessions can be a problem as the stateful nature of the web ap-
plication forces the user to connect to the same server repeatedly which can be a problem
in case of scaling of resources. Hence it should be carefully considered.

3. Adaptivity: The ability of an application to adapt to the fluctuation in workload, optimize
the system performance and resource utilization play a crucial role.

3

Figure 2: Auto-Scaling: The Taxonomy

4. Scaling Indicators: The performance metrics can be low-level metrics observed at hardware-
level like CPU and memory utilization, network throughput, etc., high-level metrics ob-
served at application-level such as request and response time, etc., or hybrid.

5. Resource Estimation: Estimating the resources required is important to maintain system
performance. This can be rule-based, fuzzy, or based on application profiling, analytical
modeling, machine learning, or hybrid.

6. Oscillation Mitigation: Appropriate provisioning of resources is necessary to avoid over
or under-provisioning of resources and also prevents the provisioning or de-provisioning
of resources repeatedly.

7. Scaling Timing: Reactive auto-scaling works as a corrective action to an event or an
incident in the system whereas proactive auto-scaling works proactively based on math-
ematical evidence to avoid any unwanted event or incident.

8. Scaling Methods: Vertical scaling means increasing the computing capacity of the exist-
ing resources whereas horizontal scaling means adding additional resources to increase
the overall computing capacity.

2.2 Auto-Scaling: Proactive Solutions
Wei et al. (2019) present an auto-scaling model that features a renting plan that considers two
keys aspects for self-adaptation, namely, resource pricing and resource type. It is based on
Reinforcement Q Learning. It does not require all the information before-hand and dynam-
ically adjusts the resources based on whatever information is available and previous learning.
The greedy method and random actions are integrated to generate an ε greedy algorithm. The

4

experiment was performed using MATLAB and Empirically-Based and Threshold-Based Ad-
justment algorithms were used for comparison. The results show that the model is unable to
match the demand and the supply initially but over a period, with learning from previous de-
cisions, the model fulfills the demand with an adequate supply of resources and the proposed
model surpasses the performance of the other two algorithms. However, the model fails to ful-
fill the demand in the initial days resulting in performance issues.

Smith et al. (2018) have proposed a preemptive auto-scaling solution based on exogenous
factors like social media feeds. The researchers aim to improve the latency and the availability
of the system while reducing the operational cost to deal with unexpected changes in demand.
Specific keywords corresponding to real-world events like traffic conditions, accidents, etc. that
can have an impact on the LUAS tram service are monitored on Twitter. It helps in predicting
the surge in demand and scale operations proactively. The experiment was performed on AWS
using a static website. Dummy tweets were generated on Twitter which was monitored for
specific keywords on Twitter feeds. The results show that with an increase in the number of
tweets containing the specific keywords, the auto-scaling mechanism is triggered and a server
is made operational in 10 minutes. It helps in handling a sudden rise in web traffic and improve
the latency and availability of the system. However, the system purely works based on social
media hashtags and can give false-positive results as the buzz on social media may not neces-
sarily be a result of a real-world event.

Fe et al. (2017) present a auto-scaling solution that considers the system parameters and
the frequency of user requests to evaluate the system throughput, response time, and cost. It
uses the Stochastic Petri Nets modeling technique to study the mean response time, type and
cost of the virtual machine (VM), their count and job handling capacity, request rate, etc. The
experiment was performed on a private cloud using AWS EC2 API using different server con-
figurations. The incoming requests were fired at different intervals and 30 rounds of testing
were conducted for each request arrival frequency. The output depicts that t2.micro has a min-
imum cost but the response time is very bad and t2.small is also similar. Also, a large number of
these servers are required to meet the SLA hence increasing the overall cost. Single t2.medium
and t2.large can handle a large number of requests, reduce the response time, and meet the SLA
thus reducing the overall cost. However, the requests are fired sequentially after a particular
time interval which is not an ideal scenario hence the results may not be the same when imple-
mented in real-world applications.

Rizvi and Ramesh (2019) present an auto-scaling framework based on the MAPE loop to
dynamically change resources using Fuzzy-Q reinforcement learning. System characteristics
like response time and workload are monitored repeatedly. The planning phase uses the Fuzzy-
Q method and the analysis phase uses Chebyshev’s Inequality principle. It takes the values
predicted in the analysis phase and the request rate as input and generates an output which is
the decision on the scaling action to be performed. The experiment was performed using the
CloudSim toolkit and MATLAB. Real-world traces from NASA are used for the experiment. It
is compared with other existing techniques such as LRM. The results depict that the prediction
accuracy of Chebyshev’s Inequality is better than LRM and helps in reducing the SLA viola-
tions and cost by closely matching the supply with the demand. However, the researchers have
not taken into consideration the heterogeneity of resources which may have an impact on the
prediction results and the overall result may change.

5

2.2.1 Prediction Based Proactive Solutions

Iqbal et al. (2018) present an unsupervised prediction-based proactive auto-scaling model that
determines the workload dynamically scales accordingly. It analyzes a large amount of his-
torical access log of an application to group URIs based on attributes and identifies the access
ratio. This data is used to predict the workload for each URI pattern. Neural Networks are used
for analysis and prediction. The experiment was conducted using real-world workloads having
different request rates like increasing and decreasing linearly, periodic, and random requests.
The results indicate that when the amount of access log available for analysis is less, the results
are inaccurate and as the size of the access log increases, the accuracy of the workload predic-
tion model increases. However, it requires a huge amount of data to be stored and analyzed
repeatedly thus causing high system overhead.

Sahni and Vidyarthi (2016) have proposed a self-adaptive heterogeneity-aware auto-scaling
framework to improve resource utilization and minimize costs. The objective is to identify
when and how resources should be provisioned to prevent the degradation of Quality of Service
(QoS) when there is a change in workload. It does resource profiling and analyzes the historical
workload to evaluate the best suitable set of resources. This decision is based on the smallest
set of heterogeneous resources having a minimum cost that can meet the QoS. The experiment
was conducted in MATLAB using real-world workloads. It is evaluated against ECA-based,
Queuing based, and Control theory-based approaches. The results show that the proposed
algorithm improves resource utilization by 8% to 25% and the cost reduces by 6% to 23% and
it has the least QoS violations. However, significant resource profiling is required to be done
as a huge variety of resources are available on any cloud service provider (CSP).

2.3 Auto-Scaling: Hybrid Solutions
Pereira et al. (2019) present a hybrid auto-scaling solution where CPU utilization is the per-
formance metric. The objective is to achieve better QoS. It triggers when the threshold values
are breached and applies five different forecasting models. The monitoring module monitors
the CPU usage at predefined intervals and writes to a text file. The auto-scaling module trans-
forms the data in a time series and analyses the historical CPU utilization to forecast the usage.
It uses the prediction models to predict the usage and the best model is chosen to decide on
the scaling operation. The experiment was performed using Apache JMeter to generate a sim-
ulation workload. The results indicate that the proposed approach enhanced system throughput
by 5.5% to 11.9%. However, it requires continuous monitoring of resources and writing large
amounts of data to files which increases the system overhead.

Moghaddam et al. (2019) present an unsupervised hybrid auto-scaling mechanism that de-
tects system anomalies and identifies the cause using the Isolation Trees algorithm. It uses
Neural Networks for self-learning. Vertical auto-scaling is triggered when an anomaly is de-
tected for a particular server which does not impact other resources in the system. Horizontal
auto-scaling is done when an anomaly that is affecting the entire system is detected. The sys-
tem information is gathered and analyzed and the auto-scaling method is triggered when an
anomaly is predicted. The experiment was performed using CloudSim. The results show that
the system triggers the scaling operation as soon as the anomaly is predicted thus ensuring there
is no impact on the system performance and no violation occurs. This results in a 20% drop in
memory usage which further boosts the system. However, this mechanism requires training the

6

models and updating them at regular intervals on a large amount of system information thus
causing system overhead periodically.

Aslanpour et al. (2017) have proposed a super professional executor (Suprex) model based
on the MAPE loop to improve the effectiveness of the execution phase. Resource utilization and
response times are monitored for analysis and to plan the scaling operation. During downscal-
ing, the resource is put in quarantine for the remaining billing duration before de-provisioning.
For upscaling, it checks resources in quarantine before instantiating a new resource thus reusing
resources and reducing cost. The experiment was performed using CloudSim. The model is
evaluated against the default and professional executors. The results show quarantining and
reusing resources reduces the time and cost to make a resource operational. However, the con-
figuration of the resource is not considered while reusing it so it may prove to be insufficient.

J.V. and Dharma (2018) have proposed a hybrid auto-scaling framework based on the Time
Series analysis, Continuous-Time Markov Model (CTMM), and Queuing Model. It calculates
the request rate, response time, resource utilization, etc. to accurately predict the resource re-
quirement and avoid resource wastage. The CTMM maintains a balance between the workload
and resources allocated. The experiment was performed locally and on AWS using the actual
AWS EC2 historical workload traces. The proposed model was evaluated against Queuing Net-
work Model, Threshold-based auto-scaling, RightScale, Autonomic Resource Scaling, vScale,
etc. It achieved resource utilization of 94% against the target of 95%. The resource utiliza-
tion has improved by 10% to 16% whereas the response time has improved by 2.5% to 3%
compared to other models. However, the pattern of the EC2 workload traces used for the ex-
periment may not be as diverse as in an actual application so the results may vary.

Bauer et al. (2019) present the Chamulteon framework for horizontal auto-scaling of ser-
vices. It is an extension of previously designed framework Chameleon (Bauer et al. (2019.1)).
It predicts the request arrival rate of the services and triggers the auto-scaler accordingly. It
has a cost-aware component Fox and a dynamic request arrival rate forecasting component
Telescope. Scaling is done when the request arrival rate breaches the set limits. The experi-
ment was performed using real-world traces. It was compared against Reactive, Hist, Reg, and
Adapt models. Results show that Chamulteon has a minimum deviation of 8.9% amongst all.
However, it over-provisions the resources for better performance thus increasing cost.

2.4 Auto-Scaling: The Challenges
Chenhao et al. (2018) have highlighted the challenges in designing an auto-scaling solution.
The researchers have bifurcated the challenges based on their characteristics as under:

1. Monitoring Phase: Identifying the right performance metrics and monitoring intervals is
challenging. Monitoring too much can lead to system overhead and monitoring too less
can reduce the efficiency of the solution.

2. Analysis Phase: Analyzing the data and predicting the workload, incident, or resources
is challenging as wrong predictions can lead to false-positive results. This can result in
resource wastage and unnecessary costs or performance issues.

3. Planning Phase: Deciding the timing of scaling is another challenge. Scaling to soon
can again lead to resource wastage and unnecessary costs whereas scaling too late can
result in performance issues.

7

Researchers
[Ref.]

Scaling
Method

Scaling
Timing

Approach Evaluation Metrics

Wei et al. (2019) Horizontal Proactive Reinforcement Q Based
Learning Model

Resource Type &
Pricing

Smith et al.
(2018)

Horizontal Proactive Threshold Based Pree-
mptive Approach

Social Media Feeds

Fe et al. (2017) Horizontal Proactive Stochastic Petri Nets
Model

System Throughput,
Response Time

Rizvi and
Ramesh (2019)

Horizontal Proactive Fuzzy Q Based Learning
Approach

Response Time,
Workload

Iqbal et al.
(2018)

Horizontal Proactive Dynamic Workload Pre-
diction Model

URI Patterns

Sahni and Vidy-
arthi (2016)

Horizontal Proactive Heterogeneity Aware
Adaptive Framework

Resource Profiling,
Historical Workload

Pereira et al.
(2019)

Horizontal Hybrid Threshold and Time
Series Approach

CPU Utilization

Moghaddam
et al. (2019)

Horizontal Hybrid Anomaly Based Cause
Aware Framework

CPU & Memory
Utilization

Aslanpour et al.
(2017)

Horizontal Hybrid Cost Aware Super Pro-
fessional Executor

Resource Utilization
& Response Time

J.V. and Dharma
(2018)

Horizontal Hybrid Hybrid Auto-Scaler Resource Utilization
& Response Time

Bauer et al.
(2019)

Horizontal Hybrid Coordinated Chamul-
teon Framework

Request Arrival Rate

Developed
Model

Horizontal Proactive Exogenous Factor Aware
Prediction Model

Exogenous Factors
(Weather)

Table 1: Auto-Scaling: Comparative Analysis

4. Execution Phase: Every CSP has a unique architecture and hence the auto-scalers need
to be designed specifically for CSPs. Designing a generic auto-scaler compatible across
the CSPs is a strenuous task.

2.5 Conclusion
The related work indicates that auto-scaling is an area of interest and a significant amount
of work is done in this field. Key aspects to be considered while designing any auto-scaling
solution are discussed along with the challenges involved. Table 1 summarizes the related
work. The evaluation metrics used in the proactive and hybrid solutions are typically confined
to system parameters, application-related historical data, and resource type, and pricing. This
indicates that there is a need to widen the scope and consider exogenous factors as they can
significantly impact the user demand. Exogenous factors like change in weather conditions
may lead to a rise or fall in demand. This can lead to resources being under-provisioned or over-
provisioned and these circumstances have their disadvantages. Hence, this research attempts
to analyze the impact of exogenous factors such as weather on user demand like taxi bookings
using weather forecasts and historical weather and taxi booking data. Through this analysis,
the resources required will be estimated.

8

3 Methodology
The related work discussed above indicates that Smith et al. (2018) have considered an ex-
ternal factor but there is a need to include other exogenous factors that can impact the user
demand (Buyya et al. (2018)). Through this research, an attempt is made to analyze the im-
pact of external factors on user demand. The exogenous factor considered is the weather and
user demand is the taxi bookings. Figure 3 shows the various components of the MAPE loop
on which most auto-scaling solutions are developed. The developed model is based on the
Analysis phase of the MAPE loop. It works as an analyzer which can be integrated with an
auto-scaling mechanism capable of planning and executing the auto-scaling operation or this
model can be enhanced in the future to incorporate the planning and execution capabilities.

Figure 3: MAPE Control Loop (Ghobaei-Arani et al. (2018))

3.1 Process Flow
The process flow of the model is depicted in figure 4. The historical weather and taxi booking
data are downloaded and the weather forecast data is fetched from the OpenWeatherMap API
and stored in the MongoDB database. The historical taxi booking data is aggregated to evaluate
the number of bookings for each date. The user demand is predicted using the weather forecast
and the historical weather and taxi booking data. Based on the predicted value, the resources
required are calculated and the result is stored in a CSV file.

Figure 4: Process Flow

9

3.2 Tools & Technologies
Python, Apache Spark, MongoDB, and PySpark and PyMongo libraries have been used for de-
veloping the project. The decision to use Python programming language, MongoDB database,
and Spark is because of the huge size of the data and Python’s connectivity with MongoDB and
Spark. The project was initially developed and evaluated in a local setup and then evaluated
on AWS. A VM with Ubuntu18.04 OS was installed on Oracle VirtualBox on a laptop. All
the above-mentioned applications were then installed on the VM. Once the development was
completed and the initial evaluation was done, the source code was modified to run the project
on AWS. Two AWS EC2 m5.xlarge instances with Ubuntu 18.04 OS are deployed. MongoDB
was installed on one instance to use it as a database server. Java, Python, Spark, and the re-
quired libraries were installed on the other instance to use it as an application server. Microsoft
PowerBI is used for the visualization of the output.

3.3 Data Sources
The data used for this project are collected from multiple sources. For the integrity of the re-
search, trustworthy, authentic, and free data sources are chosen. Due to resource and monetary
constraints, data for 2019 is only considered. The data sources of this project are:

1. Historical Taxi Booking Data: The historical taxi booking data is taken from the New
York Taxi and Limousine Commission website (TLC (2020)). It is available for free and
contains taxi trips details. It does not contain any sensitive user data.

2. Historical Weather Data: The historical weather data is taken from the National Oceanic
and Atmospheric Administration (NOAA) website (NOAA (2020)). It is available for
free and contains details such as hourly, daily, and monthly weather data. Weather data
of the New York Central Park weather station is taken.

3. Weather Forecast: OpenWeatherMap API (OpenWeatherMap (2020)) is chosen to fetch
the weather forecast data as it is a popular weather service and some of its services are
free. It offers a variety of forecast services. For this project, the daily summary is chosen.

3.4 Assessment
To evaluate the model, two experiments are carried out to ascertain the consistency of the
results. The objective is to identify the impact of external factors such as weather on user
demand like taxi bookings and calculate the resources required. Also, the week of the day
(weekday/weekend) is factored in while analyzing the data for better accuracy. Results are
validated against the predicted vs actual taxi bookings and resources required to identify the
accuracy of the model and the deviation between the actual vs predicted values.

4 Design Specification
This section discusses the technical specification and the architecture of the model. Section 4.1
talks about the system specification and the rationale behind selecting the tools and technolo-
gies. Section 4.2 showcases the detailed architecture and the flowchart of the system.

10

4.1 System Specification
The performance of an RDBMS system degrades as the amount of data increases hence it is
not suitable for data analytics. Apache Hadoop was introduced to process big data as its per-
formance was better than RDBMS, but it is still slow (Yu and Sarwat (2019)). Hence Apache
Spark was developed as its speed of processing a very large dataset is better than Hadoop as
it comprises in-memory computing. It supports Resilient Distributed Datasets (RDD) which is
an abstraction layer for distributed parallel computing (Le Quoc et al. (2019)) and is immutable
and fault-tolerant. Python is a popular language amongst the data science community because
of the variety of libraries it provides such as NumPy, Pandas, etc. and it is a structured language
having simple syntax. PySpark is developed on top of Spark (Le Quoc et al. (2019)) allowing
Python scripts to be executed using Spark runtime. It provides a way to connect Spark from
Python using the Spark API. The performance and read/write operations of MongoDB in hand-
ling large data are better than other databases (Kang et al. (2016)). Also, Python can be easily
connected to MongoDB using the connector. Hence Python, Spark, and MongoDB are chosen
to implement this project.

The project was initially developed on a local setup. Oracle VirtualBox was installed on a
laptop running Windows OS and having Intel i5 8th Gen Processor (4 cores and 8 virtual CPUs).
Ubuntu 18.04 OS was installed in the VM and 8GB RAM and 100GB storage was allocated
to it. Python, Java, Spark, MongoDB, and PyMongo, PySpark, and other required libraries
were installed on the VM. Once the development was completed and the initial evaluation was
done, the source code was modified to execute on AWS. Two AWS EC2 m5.xlarge instances
with Ubuntu 18.04 OS were deployed. Both these instances had 4 virtual CPUs, 16GB RAM,
and 16GB Elastic Block Storage (EBS). MongoDB was installed on one of the EC2 instances
and Java, Python, Spark, and PySpark, PyMongo, and other required libraries were installed on
another EC2 instance. Microsoft PowerBI is used for the visualization of the output.

4.2 Architecture & Flowchart
The core modules of the model are Historical Taxi Booking Aggregator, User Demand Pre-
dictor, and the Resource Calculator. Historical weather and taxi booking data are imported
from the CSV files and the weather forecast is fetched using the OpenWeatherMap API and
stored in the database. The Historical Taxi Booking Aggregator module aggregates the total
taxi bookings for each date. This module prevents aggregation repeatedly while predicting taxi
bookings for the forecast days. The User Demand Predictor module is the most important. It
extracts the dates from the historical weather data having weather conditions, mainly, rain, sim-
ilar to the forecast day. This is followed by extracting the taxi bookings for each historical date.
The average taxi booking for the forecast day is evaluated by calculating the average of taxi
bookings for historical dates. This process is repeated for all forecast days. Finally, the number
of resources required is calculated for each forecast day. Figure 5 shows the architecture of
the system and figure 6 shows the flowchart. Steps 1, 2, and 4 in the architecture should be
executed only when new data is to be uploaded. Flowchart contains details of every operation
performed by the model. Actions performed by the model are mentioned below:

1. Import the historical taxi bookings data (CSV files) to MongoDB.

2. Import the historical weather data (CSV files) to MongoDB.

3. Fetch the weather forecast using the OpenWeatherMap API and store it in MongoDB.

11

Figure 5: System Architecture

Figure 6: Flowchart

4. Aggregate the taxi bookings for each historical date and store in MongoDB.

12

5. Predict the user demand for forecast days by evaluating the taxi bookings for historical
dates having weather conditions similar to the forecast. Save output in a CSV file.

6. The CSV file generated in the previous step is used to calculate the number of resources
required to fulfill the demand. Save output in a CSV file.

5 Implementation
The implementation of the auto-scaling model is discussed in this section. The ETL process
involved and its corresponding algorithms are mentioned in section 5.1. The analysis part and
its corresponding algorithms are mentioned in section 5.2.

5.1 ETL Process
Data from various sources is gathered in the form of CSV files or JSON response from a REST-
ful API. This data is cleaned to remove unwanted columns, transformed into required formats,
and then stored in MongoDB. Below algorithms highlight the data processing activities:

1. Algorithm 1 imports historical taxi booking data from CSV files. It parses the CSV file
in batches of 100,000 records as each file contains millions of records. All unwanted
columns are dropped to reduce the size of the data. It is then converted to JSON format
before saving it to a collection in MongoDB.

Algorithm 1: Historical Taxi Booking Data
Input: CSV File: Historical Taxi Booking Data CSV File

1 Open Historical Taxi Booking Data CSV File
// Read CSV file in batches of 100,000 records in each iteration

2 for row in csv data do
3 Drop unwanted columns
4 Convert data to JSON format
5 Save data in MongoDB collection historical taxi data
6 end

2. Algorithm 2 imports historical weather data from CSV file. All unwanted columns are
dropped to reduce the size of the data. The data is filtered to get a daily weather summary.
It is converted to JSON format before saving it to a collection in MongoDB.

Algorithm 2: Historical Weather Data
Input: CSV File: Historical Weather Data CSV File

1 Open Historical Weather Data CSV File
2 Drop unwanted columns
3 csv data← csv data. f ilter(TY PE = SOD) // Get Daily Weather Summary data

4 Convert data to JSON format
5 Save data in MongoDB collection historical weather data

3. Algorithm 3 fetches the weather forecast for New York. It requires latitude, longitude,
and secret key to call the OpenWeatherMap API. The response is parsed and transformed.
It is converted to JSON format before saving it to a collection in MongoDB.

13

Algorithm 3: Fetch Weather Forecast
Input: api key, base url, latitude, longitude

1 Form complete URL and request the OpenWeatherMap API
2 Get the response and convert it to JSON format
3 Extract the daily summary data from the response
4 for i in daily list do
5 date← cast(unix datetime) // Convert unix timestamp to date format

6 Save data in MongoDB collection weather forecast data
7 end

5.2 Analysis
This is the most critical part of the project. The data is analyzed to predict the user demand and
eventually the number of resources required to fulfill the demand. The output of the predicted
user demand and the calculated resources required is saved in CSV files for further use.

1. Algorithm 4 evaluates the number of bookings for each historical date. The timestamp
of the booking is converted to date format before aggregating and the results are finally
stored in the MongoDB collection.

Algorithm 4: Historical Taxi Booking Aggregator
Input: historical taxi data: Historical taxi bookings data

1 Load historical taxi data // Load data from MongoDB to PySpark

2 ht date f ormatted← cast(t pep pickup datetime) // Cast timestamp to date

3 aggregated historical taxi data← groupBy(ht date f ormatted) // Aggregate the

taxi bookings for each historical date

4 Save data in MongoDB collection aggregated historical taxi data

2. Algorithm 5 predicts the taxi bookings for the forecast days based on the weather fore-
cast, historical weather aggregated taxi bookings data. For better prediction, the day of
the week (weekday/weekend) is considered. A range is taken for the rain to get historical
dates having weather conditions similar to the forecast. The taxi booking is predicted by
taking an average of the taxi bookings for the historical dates.

3. Algorithm 6 calculates the number of resources required to fulfill the predicted user de-
mand. Ocone et al. (2019) had evaluated the number of requests an AWS a1.medium
server can handle by using a WordPress site. As per the results, it can handle 30 requests
per minute without any failed requests, which meant a 100% success ratio. Hence it is
taken as the base to calculate the resources required.

14

Algorithm 5: User Demand Predictor
Input : historical weather data, aggregated historical taxi data, forecast data
Output: predicted user demand data: Predicted taxi bookings for forecast days

1 Load historical weather data, aggregated historical taxi data, forecast data // Load

data from MongoDB to PySpark

2 for forecast day in forecast data do
3 f orecast day o f week← cast(f orecast day.weekday()) // Get day of week

4 Convert forecast rain to inches // To match historical weather data units

5 f orecast rain upper limit← (f orecast rain+(f orecast rain∗0.15))
6 f orecast rain lower limit← (f orecast rain− (f orecast rain∗0.15))
7 historical weather data. f ilter(f orecast rain upper limit, f orecast rain lower limit)
8 if historical weather data.count > 0 then
9 historical weather data.withColumn(day o f week) // Add day of week

10 join data← historical weather data. join(aggregated historical taxi data)
11 if join data.count > 0 then
12 if f orecast day o f week < 5 then
13 join data. f ilter(day o f week < 5)
14 else
15 join data. f ilter(day o f week >= 5)
16 end
17 if join data.count > 0 then
18 predicted demand← math.ceil(join data.groupBy().avg(count))
19 result list.append(f orecast date, f orecast rain, predicted demand)
20 end
21 end
22 end
23 end
24 Write result list to CSV file

Algorithm 6: Resource Calculator
Input : CSV File: User Demand Predictor CSV Output File
Output: CSV File: Resource Calculator CSV Output File

1 Open User Demand Predictor CSV Output File
2 for row in csv data do
3 Extract forecast date, forecast rain, predicted demand from row
4 resources required← math.ceil(predicted demand/(30∗60∗24))
5 result list.append(f orecast date, f orecast rain, predicted demand,resources required)
6 end
7 Write result list to CSV file

6 Evaluation
This evaluation of the auto-scaling model is discussed in this section. Initially, the evaluation
was done in the local set up on a VM and then on AWS. Section 6.1 discusses the evaluation
results and its interpretation, section 6.2 highlights the validation of the result, and section 6.3
talks about the detailed findings and the shortfalls of the project.

15

6.1 Results & Interpretations
The experiments were performed locally as well as on AWS using authentic, free, and publicly
available historical weather and taxi bookings, and weather forecast data for New York City.
The rain parameter from the historical weather and forecast data is used for evaluation as it can
have a notable impact on user demand. Similarly, the day of the week (weekday/weekend) has
also been considered to improve the accuracy of user demand prediction and resource calcu-
lation. For weekday forecast, only historical weekdays having similar weather conditions are
considered and the same logic applies to weekends. 30 requests/minute is taken as the base
to calculate the request handling capacity of a server as it has been evaluated by Ocone et al.
(2019) through an experiment and documented in an academic research paper. Accordingly,
a server can handle 43,200 requests in a day successfully without any error. So, the required
resources are calculated by dividing the predicted taxi bookings by 43,200.

(a) Experiment 1 (b) Experiment 2

Figure 7: Experiment Results

(a) Experiment 1 (b) Experiment 2

Figure 8: Rain Forecast Graph

Figure 7 shows the results of the 2 experiments performed on AWS. Figure 7a is of the
first experiment whereas figure 7b is of the second experiment. Figures 8, 9, and 10 show the
graphical representation of the results. Figures 8a and 8b show the forecast rain, figures 9a and
9b show the predicted taxi bookings, and figures 10a and 10b show the calculated resources
required for the two experiments. As seen, it consists of the forecast date, the forecast rain in

16

(a) Experiment 1 (b) Experiment 2

Figure 9: Predicted Taxi Bookings Graph

(a) Experiment 1 (b) Experiment 2

Figure 10: Calculated Resources Required Graph

inches, predicted taxi bookings count, and the number of resources required. It can be said that
the number of taxis booked is related to rainfall. On days when there is no rainfall, there is
a decline in the number of taxis booked. The demand for taxis is high when there is rainfall.
However, taxi bookings do not increase with an increase in the amount of rain. The number of
resources required to fulfill the predicted taxi bookings also varies. On days with no rainfall,
the resources required are less compared to the resources required on days having rainfall. A
similar pattern is observed on weekdays as well as weekends. The predicted taxi bookings on
days having rain increases in the range of 49% to 61% as compared to days without rain and
the corresponding resource requirement on days having rain also increase 25% to 50% as com-
pared to days without rain.

17

6.2 Result Validation
The results obtained above are validated here. As the taxi booking data for 2020 is not available,
data from 2019 is used. Dates from 2019 having different amounts of rain are picked and the
taxi booking prediction is done for these dates and its corresponding resource requirement is
calculated. This is validated against the actual taxi bookings for the respective dates and the
resources that would have been required are calculated using the actual taxi booking number.
This is shown in figure 11. As seen, the actual vs predicted taxi booking deviation is in the
range of -12% to 17.5% and the actual vs predicted resource deviation is in the range of -17%
to 17%. Mostly, the deviation is not significant and the value of the predicted resources required
either match or exceeds the value of actual resources required value.

Figure 11: Result Validation

6.3 Discussion
Two experiments were performed for different weather forecast dates and it can be observed
that the results are similar. The predicted taxi bookings are higher for days having rainfall and
lower on days without rainfall. So, the corresponding resource requirement is also higher on
days having rainfall and lowed on days without rainfall. This is true for weekdays as well as
weekends. Thus it can be said that rain does have an impact on the taxi demand. This calcula-
tion of resources required can be used to plan the auto-scaling operation for future dates.

However, the OpenWeatherMap API used for this project offers only a few free services
like daily weather forecast summary but does not provide a detailed hourly forecast. Hence, in
this research, the taxi booking prediction and the resource calculation is done for an entire day.
However, taxi bookings may be higher at the time of rainfall and lower at other times of the day.
Due to resource and cost constraints, data for 2019 is only considered as the taxi booking data
for 2019 only had over 90 million records. The results may vary when the taxi booking data
for a longer duration is used. While fetching historical dates having similar weather conditions,
dates from the entire year are fetched. When data of a longer duration is used, the historical
dates can be filtered based on months for better accuracy.

7 Conclusion and Future Work
Auto-scaling facilitates rapid elasticity in the cloud environment by enabling businesses to
scale up and down the resources automatically based on pre-defined policies thereby avoid-
ing resource wastage and unnecessary costs. However, the auto-scaling policies are largely
reactive with some proactive solutions being developed recently. Proactive solutions are better

18

equipped than reactive ones to avoid performance issues but they generally do not consider ex-
ternal factors. Through this research, an attempt is made to consider external factors that may
have an impact and come up with predictions about the user demand and subsequently determ-
ine the resources required. This model works in the analysis phase of the MAPE control loop
and takes into account historical weather and taxi bookings, and weather forecast data. The
taxi bookings on days with rain rose between 49% to 61% and the corresponding resource re-
quirement increased 25% to 50%. The result validation shows that the actual vs predicted taxi
booking deviation is between -12% to 17.5% and the actual vs predicted resource deviation
is -17% to 17% which is not significant. The user demand prediction and the corresponding
resource requirement can be useful in planning the auto-scaling operation for upcoming days.
This predicted-based proactive auto-scaling model will help in handling fluctuation in user de-
mand due to exogenous factors. It can be integrated with an auto-scaler that plans and executes
the auto-scaling operation based on this analysis.

In the future, the exact time of rain during the day can be considered to predict the user
demand more accurately. This will improve the resource utilization further by calculating the
resources required during different hours of the day and allocating resources accordingly. The
data used for analysis can be extended to cover 10 years or more. Due to this, historical dates
from the same month can be used for analysis which will improve the precision of the predic-
tion. Also, different weather conditions such as wind speed, snowfall, temperature, etc can be
considered which will refine the prediction. Also, this model can be enhanced in the future to
incorporate planning and execution capabilities.

Acknowledgement
I would like to express my sincere gratitude to my mentor Prof. Sean Heeney for going the
extra mile and guiding me throughout this project. It wouldn’t have been possible without his
constant support and motivation. I would also like to thank the Department of Cloud Computing
and the Norma Smurfit Library at the National College of Ireland for enhancing our knowledge
and making the necessary resources available. Lastly, I would like to express my heartfelt
gratitude to my family for having faith in me and persuading me to do my Masters.

References
Aslanpour, M. S., Ghobaei-Arani, M. and Toosi, A. N. (2017). Auto-scaling web applications

in clouds: A cost-aware approach, Journal of Network and Computer Applications 95: 26 –
41. JCR Impact Factor: 3.991.
URL: http://www.sciencedirect.com/science/article/pii/S1084804517302448

Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A. and Kounev, S. (2019.1). Chameleon: A
hybrid, proactive auto-scaling mechanism on a level-playing field, IEEE Transactions on
Parallel and Distributed Systems 30(4): 800–813. JCR Impact Factor: 3.971.
URL: https://doi.org/10.1109/TPDS.2018.2870389

Bauer, A., Lesch, V., Versluis, L., Ilyushkin, A., Herbst, N. and Kounev, S. (2019). Chamul-
teon: Coordinated auto-scaling of micro-services, 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), (Dallas, TX, USA), pp. 2015–2025. CORE

19

Ranking: B.
URL: https://doi.org/10.1109/ICDCS.2019.00199

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe, E.,
Javadi, B., Vaquero, L. M., Netto, M. A. S. and et al. (2018). A manifesto for future gen-
eration cloud computing: Research directions for the next decade, ACM Computing Surveys
51(5): 1–38. JCR Impact Factor: 5.550.
URL: https://doi.org/10.1145/3241737

Chenhao, Q., Calheiros, R. N. and Buyya, R. (2018). Auto-scaling web applications in clouds:
A taxonomy and survey., ACM Computing Surveys 51(4): 1 – 33. JCR Impact Factor: 5.550.
URL: https://dl.acm.org/doi/10.1145/3148149

Fe, I., Matos, R., Dantas, J., Melo, C. and Maciel, P. (2017). Stochastic model of performance
and cost for auto-scaling planning in public cloud, 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), (Banff, AB, Canada), pp. 2081–2086. CORE
Ranking: B.
URL: https://doi.org/10.1109/SMC.2017.8122926

Ghobaei-Arani, M., Jabbehdari, S. and Pourmina, M. A. (2018). An autonomic resource pro-
visioning approach for service-based cloud applications: A hybrid approach, Future Gener-
ation Computer Systems 78: 191 – 210. JCR Impact Factor: 4.639.
URL: https://doi.org/10.1016/j.future.2017.02.022

Iqbal, W., Erradi, A. and Mahmood, A. (2018). Dynamic workload patterns prediction for
proactive auto-scaling of web applications, Journal of Network and Computer Applications
124: 94 – 107. JCR Impact Factor: 3.991.
URL: http://www.sciencedirect.com/science/article/pii/S1084804518303102

J.V., B. B. and Dharma, D. (2018). Has: Hybrid auto-scaler for resource scaling in cloud
environment, Journal of Parallel and Distributed Computing 120: 1 – 15. JCR Impact Factor:
1.185.
URL: https://doi.org/10.1016/j.jpdc.2018.04.016

Kang, Y.-S., Park, I.-H. and Youm, S. (2016). Performance prediction of a mongodb-based
traceability system in smart factory supply chains, Sensors 16(12): 2126. JCR Impact Factor:
2.475.
URL: http://dx.doi.org/10.3390/s16122126

Le Quoc, D., Gregor, F., Singh, J. and Fetzer, C. (2019). Sgx-pyspark: Secure distributed
data analytics, The World Wide Web Conference, WWW ’19, Association for Computing
Machinery, New York, NY, USA, p. 3564–3563. CORE Ranking: A*.
URL: https://doi.org/10.1145/3308558.3314129

Mell, P. and Grance, T. (2011). Special Publication 800-145 The NIST Definition of Cloud
Computing Recommendations of the National Institute of Standards and Technology.
URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Moghaddam, S. K., Buyya, R. and Ramamohanarao, K. (2019). ACAS: An anomaly-based
cause aware auto-scaling framework for clouds, Journal of Parallel and Distributed Com-
puting 126: 107 – 120. JCR Impact Factor: 1.185.
URL: http://www.sciencedirect.com/science/article/pii/S0743731518309080

20

NOAA, N. (2020). Local climatological data (lcd) — data tools — climate data online (cdo)
— national climatic data center (ncdc).
URL: https://www.ncdc.noaa.gov/cdo-web/datatools/lcd

Ocone, L., Rak, M. and Villano, U. (2019). Benchmark-based cost analysis of auto scaling web
applications in the cloud, 2019 IEEE 28th International Conference on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE), (Napoli, Italy), pp. 98–103.
CORE Ranking: B.
URL: https://doi.org/10.1109/WETICE.2019.00027

OpenWeatherMap (2020). One call api: Weather data for any geographical coordinate - open-
weathermap.
URL: https://openweathermap.org/api/one-call-api

Pereira, P., Araujo, J. and Maciel, P. (2019). A hybrid mechanism of horizontal auto-scaling
based on thresholds and time series, 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC), (Bari, Italy), pp. 2065–2070. CORE Ranking: B.
URL: https://doi.org/10.1109/SMC.2019.8914522

Rizvi, N. and Ramesh, D. (2019). FBQ-LA: Fuzzy based Q-learning approach for elastic
workloads in cloud environment., Journal of Intelligent & Fuzzy Systems 36(3): 2715 –
2728. JCR Impact Factor: 1.426.
URL: https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-
systems/ifs18828

Sahni, J. and Vidyarthi, D. P. (2016). Heterogeneity-aware adaptive auto-scaling heuristic for
improved qos and resource usage in cloud environments, Computing 99(4): 351–381. JCR
Impact Factor: 1.654.
URL: https://doi.org/10.1007/s00607-016-0530-9

Smith, P., González-Vélez, H. and Caton, S. (2018). Social auto-scaling, 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing (PDP),
(Cambridge, UK), pp. 186–195. CORE Ranking: C.
URL: https://doi.org/10.1109/PDP2018.2018.00033

TLC, N. (2020). About tlc - tlc.
URL: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Wei, Y., Kudenko, D., Liu, S., Pan, L., Wu, L. and Meng, X. (2019). A reinforcement learning
based auto-scaling approach for saas providers in dynamic cloud environment, Mathematical
Problems in Engineering 2019: 1–11. JCR Impact Factor: 1.145.
URL: https://doi.org/10.1155/2019/5080647

Yu, J. and Sarwat, M. (2019). Geospatial data management in Apache Spark: A tutorial, 2019
IEEE 35th International Conference on Data Engineering (ICDE), (Macao), pp. 2060–2063.
CORE Ranking: A*.
URL: https://doi.org/10.1109/ICDE.2019.00239

21

	Introduction
	Related Work
	Auto-Scaling: The Taxonomy
	Auto-Scaling: Proactive Solutions
	Prediction Based Proactive Solutions

	Auto-Scaling: Hybrid Solutions
	Auto-Scaling: The Challenges
	Conclusion

	Methodology
	Process Flow
	Tools & Technologies
	Data Sources
	Assessment

	Design Specification
	System Specification
	Architecture & Flowchart

	Implementation
	ETL Process
	Analysis

	Evaluation
	Results & Interpretations
	Result Validation
	Discussion

	Conclusion and Future Work

