
Configuration Manual for implementing
Dynamic Resource Algorithm and ARIMA

Time-Series Analysis

MSc Research Project

Cloud Computing

Saifali Sayyed
Student ID: x18178294

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Saifali Sayyed

Student ID: x18178294

Programme: MSc in Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Prof. Vikas Sahni

Submission Due Date: 17/08/2020

Project Title: Optimisation of Resource Allocation and Prediction Analysis
in Serverless Computing using Dynamic Resource Algorithm

Word Count: 1067

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual for implementing Dynamic
Resource Algorithm and ARIMA Time-Series Analysis

Saifali Sayyed
x18178294

16th August 2020

1 Introduction

For implementing this project Python and Bash programming languages have been lever-
aged. Libraries such as pandas, NumPy, stats model, ARIMA, and tools such as Pro-
metheus, Docker, Kubernetes, Jupyter Notebook, AWS CloudWatch, and OpenFaaS have
been used. This configuration manual will also help to execute the overall project step
by step.

2 Public Cloud Platform

As this project is deployed on the AWS EC2 virtual machine1. A core understanding of
the AWS Cloud Platform is needed for creating the AWS EC2 Instance. Below are the
configuration details for the AWS EC2 instance creation.

Table 1 : AWS EC2 Configuration Details
Steps Configurations Specifications
Step 1 Choose AMI Ubuntu Server

16.04 LTS
(HVM)

Step 2 Choose Instance
Type

t2.large (2
vCpus, 8GB
Memory)

Step 3 Instance Details Public VPC,
Administrator
IAM Role At-
tached

Step 4 Storage 8GB General
Purpose SSD

Step 5 Security Groups All Traffic

1https://docs.aws.amazon.com/efs/latest/ug/gs-step-one-create-ec2-resources.html

1

3 Required Languages

The proposed approach is implemented using Bash Script, Python 2.7 and Python 3.8
language. By default AWS EC2 Ubuntu 16.04 Instance will be having Bash, Python 2.7
and Python 3.8 version already installed. If you are using different Public Cloud Platform
or Python 3.8 is not installed you can install it by using below command.

See the following command :

$ sudo apt -get install python3

Next, pip and pip 3 software package manager has to be install which will require for
installing the Python Libraries. Use below command for installing pip and pip3.

Install Pip:

$ sudo apt install python -pip

Upgrade Pip:

$ pip install --upgrade pip

Install Pip3:

$ sudo apt install python3 -pip

4 Installation of Platforms and Tools

As this project has leveraged multiple tools and platforms. In this section, these tools
are installed in a logical sequence.

1. Install Docker and Start Service

Command for installing latest Docker version:

$ sudo apt -get install docker.io

Add root user to docker group:

$ sudo gpasswd -a root docker

Start Docker Service:

$ sudo systemctl enable --now docker

2

2. Install Kubectl

Confirm the Kubectl Installation:

$ snap install kubectl --classic

Confirm the Kubectl Installation:

$ kubectl version --client

3. Install Minikube

Before installing Minikube, the virtualization has to confirmed is it supported or
not on the underlying Ubuntu Machine. Use the below command for confirming
the virtualization, if no output is displayed that means virtualization is supported.

Confirm Virtualization using below command:

$ grep -E --color ’vmx|svm’ /proc/cpuinfo

Next, install the Minikube using direct download.2

Install Minikube:

$ curl -Lo minikube https :// storage.googleapis.com/

↪→ minikube/releases/latest/minikube -linux -amd64 \

&& chmod +x minikube

$ sudo mkdir -p /usr/local/bin/

$ sudo install minikube /usr/local/bin/

Figure 1: Minikube Installation

Minikube requires conntrack to be installed before starting the cluster. Use the
below command for it.

Install Conntrack:

$ sudo apt -get install conntrack

Once it is installed use the below command for starting the Minikube cluster first
time only once.

2https://kubernetes.io/docs/tasks/tools/install-minikube/install-minikube-using-a-package

3

Start Minikube Cluster:

$ minikube start --vm -driver=none

4. Install OpenFaaS-Cli

Install the OpenFaaS Cli using the curl command, this utility is already installed
in the AWS EC2 Ubuntu 16.04 machine.

Install OpenFaaS Cli:

$ curl -sL https :// cli.openfaas.com | sudo sh

5. Deploying OpenFaaS platform

Next, the OpenFaaS deployment has to be done. This will create an OpenFaaS
application stack.

Clone the Repository:

$ git clone https :// github.com/openfaas/faas -netes

Creation of OpenFaaS Namespaces:

$ kubectl apply -f https :// raw.githubusercontent.com/

↪→ openfaas/faas -netes/master/namespaces.yml

Figure 2: OpenFaaS Namespaces

Creating OpenFaaS API Gateway Password:

$ PASSWORD=password123

$ kubectl -n openfaas create secret generic basic -auth \

--from -literal=basic -auth -user=admin \

--from -literal=basic -auth -password="$PASSWORD"

Deployment of OpenFaaS Stack:

$ cd faas -netes && \

kubectl apply -f ./yaml

Login to OpenFaaS Gateway:

$ export OPENFAAS_URL=http ://127.0.0.1:31112

$ echo -n $PASSWORD | faas -cli login --password -stdin

4

Once, all the platforms and tools are installed, the OpenFaaS Dashboard can be
access now. For accessing the OpenFaaS Dashboard use the below url in Google
Chrome browser. Figure 3 depict the OpenFaaS Dashboard

http://public_ip_instance:31112/

Credentials for login:
username: admin
password: password123

Figure 3: OpenFaaS Dashboard

6. Create the Figlet Function:

The figlet function can be created using the OpenFaaS Dashboard.

Step 1: Deploy New Function
Step 2: Select Store
Step 3: Select Figlet
Step 4: Create Figlet Function

7. Install AWS-CLI

For sending the ARIMA predicted values to the AWS CloudWatch, AWS-CLI3 is
required which can be installed using below command.

Install AWS-CLI:

$ sudo apt install aws -cli

8. Jupyter Notebook

For executing the ARIMA time-series analysis code, jupyter notebook4 has to be
installed. Use below command for installing Jupyter Notebook.

3https://aws.amazon.com/cli/
4https://jupyter.org/

5

http://public_ip_instance:31112/

Install Jupyter Notebook:

$ pip install notebook

Start Jupyter Notebook:

$ jupyter notebook --allow -root

Figure 4: Start Jupyter Notebook

The figure 4, depicts the output after executing jupyter notebook command which
shows the URL and port to access the dashboard, here the port is 8888. Jupyter
Notebook Dashboard will not open using the AWS EC2 instance public-ip. For
accessing the jupyter dashboard, ssh-tunnel has to be created between our machine
and remote machine which is in our case is AWS EC2 Instance. Use the below
command to create it.

Creating SSH Tunnel:

$ ssh -i keyname.pem -L ourport:localhost :8888

↪→ ubuntu@publicip

Now use the below URL for accessing the jupyter dashboard in chrome browser.

localhost:8888

Figure 5 depicts the jupyter dashboard.

Figure 5: Jupyter Notebook Dashboard

6

localhost:8888

9. Install Parallel

The proposed approach is executed using the parallel ubuntu utility, in which two
commands can be executed paralelly5. Use the below command to install it.

Install Parallel:

$ sudo apt install parallel

10. Install AWS CloudWatch Agent on Ubuntu

For sending the ARIMA predictions value to AWS CloudWatch. AWS CloudWatch
Agent6 has to be installed. Use the below command to install it.

Download AWS CloudWatch Agent:

$ wget https ://s3.region.amazonaws.com/amazoncloudwatch -

↪→ agent -region/ubuntu/arm64/latest/amazon -cloudwatch

↪→ -agent.deb

Install AWS CloudWatch Agent:

$ sudo dpkg -i -E ./amazon -cloudwatch -agent.deb

11. Deploy Grafana Pod

In proposed approach, Prometheus is already integrated with the OpenFaaS API
Gateway. For retrieving the Prometheus metrics from the it and visualizing it on
the the Grafana Dashboard perform the below steps.

Deploy Grafana Pod in OpenFaaS namespace:

$ kubectl -n openfaas run \

--image=stefanprodan/faas -grafana :4.6.3 \

--port =3000 \

grafana

Expose Grafana NodePort:

$ kubectl -n openfaas expose pod grafana \

--type=NodePort \

--name=grafana

5https://www.gnu.org/software/parallel/
6https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-

agent-commandline.html

7

NodePort Address:

$ GRAFANA_PORT=$(kubectl -n openfaas get svc grafana -o

↪→ jsonpath="{.spec.ports [0]. nodePort}")

$ GRAFANA_URL=http :// IP_ADDRESS:$GRAFANA_PORT/dashboard/

↪→ db/openfaas

$ echo $GRAFANA_PORT

Above echo command will display the Grafana port and browse the below URL in
the chrome browser to access the Grafana Dashboard.

username: admin
password: admin

http://IP-ADDRESS:GRAFANA-PORT/dashboard/db/openfaas

5 Installing Required Libraries

In this section, the required Python Libraries are installed which are implemented in
proposed approach.

1. Install Pandas:

$ pip install pandas

Install Matplotlib:

$ python3 -m pip install -U matplotlib

If there are any error regarding upgrade the matplotlib, use the below command.

Upgrade Matplotlib:

$ python3 -m pip install upgrade matplotlib

Install Numpy:

$ pip install numpy

Install Statsmodel:

$ pip install statsmodels

Install IPyKernel:

$ python3 -m pip install ipykernel

8

http://IP-ADDRESS:GRAFANA-PORT/dashboard/db/openfaas

6 Evaluation Steps

6.1 Experiment 1

6.1.1 Evaluation of Dynamic Resource Algorithm

1. Using Default Docker Resource Allocation

Execute invoke.sh script and docker stats command for storing the monitoring met-
rics in docker1.txt file using Parallel utility.

Execute invoke script:

$ parallel -u ::: ’bash invoke.sh’ ’docker stats --all

↪→ --format "table {{. CPUPerc }}\t{{. MemUsage }}\t{{.

↪→ MemPerc }}\t{{. BlockIO }}\t{{. NetIO }}"

↪→ function_container_name >> docker1.txt’

Figure 6: Default Docker Resource Allocation

2. Using Dynamic Resource Algorithm

Execute collector script:

$ parallel -u ::: ’bash collector.sh’ ’docker stats --

↪→ all --format "table {{. CPUPerc }}\t{{. MemUsage }}\t

↪→ {{. MemPerc }}\t{{. BlockIO }}\t{{. NetIO }}"

↪→ function_container_name >> docker1.txt’

Figure 7: Dynamic Resource Algorithm Output

9

6.1.2 Evaluation of ARIMA Time-Series Model

1. Standard Time-Series Model

Start the jupyter notebook and navigate to jupyter directory. Open std-time-
forecasting.ipynb file and execute it using the header run button. Figure 8 depict
the standard time-series analysis model.

Figure 8: Standard Time-Series Model

2. ARIMA Time-Series Model

Start the jupyter notebook and navigate to jupyter directory. Open cpu-arima-
time-forecasting.ipynb, memory-arima-time-forecasting.ipynb and block-IO-arima-
time-forecasting.ipynb and execute it using the header run button. Figure 9 depict
the ARIMA time-series analysis model.

Figure 9: ARIMA Time-Series Model

6.2 Experiment 2

In this experiment, change the figlet function invoke count using the collector.sh script.
Open collector.sh script and navigate to line number 4. Change the invoke variable
count from 500 to 2000 and execute then execute the collector.sh script using the parallel
command specified in Experiment 1.

10

	Introduction
	Public Cloud Platform
	Required Languages
	Installation of Platforms and Tools
	Installing Required Libraries
	Evaluation Steps
	Experiment 1
	Evaluation of Dynamic Resource Algorithm
	Evaluation of ARIMA Time-Series Model

	Experiment 2

