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Abstract

Resource Allocation in Serverless Computing is an essential factor when there
is a necessity for better application performance. But, to allocate the resources
dynamically based on the serverless application requirement is a tedious task. In
this proposed approach, OpenSource Serverless Platform has been leveraged named
OpenFaaS for creating the functions which are deployed on AWS EC2 Instance. In
this novel approach, Dynamic Allocation of Resources for serverless functions has
been implemented using the Dynamic Resource Algorithm. The algorithm analyzes
the past resource consumption and based on the thresholds configured for each re-
source, it allocates the resources to serverless functions. Moreover, the proposed
approach, predicts future resource utilization of serverless functions using the AR-
IMA time-series analysis model. Once, the resources are forecasted they are sent
to the AWS CloudWatch Dashboard. Next, the Dynamic Resource Algorithm is
evaluated with the Default Docker Resource Allocation Method. Whereas, ARIMA
time-series model is evaluated with the Standard time-series model. Lastly, their
results are explained and compared with each other and concluded which worked
best.

1 Introduction

Serverless computing has become an emerging technology and also called as Function-As-
A-Service(FaaS). It allows the developers to execute the code without provisioning any
compute services and only charge for the execution time the code has taken. Because
of its flexibility, most of the companies have accepted this paradigm and have started to
gain benefits from it. The market-size of serverless computing by 2021 will get increase to
7 Billion as stated by Google Trend. Public Cloud providers have started to provide these
services on their platform for their users. The well-known platforms of FaaS are AWS
Lambda on AWS, Google Cloud Functions on GCP, and Azure Functions on Microsoft
Azure Cloud. Castro et al. (2019).

As serverless computing platforms are provided by the Public Cloud Providers they
use a Shared Responsibility Model where the users are responsible for the code storage,
code security, and permissions. Whereas, the Cloud Providers are responsible for the
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underlying platforms and infrastructure1. Consequently, the users or customers do not
have the permissions to access or monitor the underlying resources on which their func-
tions are executed. This creates a problem when resources have to allocated as per the
requirement of the function.

1.1 Motivation and Background

From the user’s perspective, there are some challenges that have occurred while using the
public cloud serverless platform such as resource allocation and monitoring the underlying
platform. The current technique for allocating the resources to a serverless function
is, first, the memory size has to be allocated and proportion to that the CPU power
is assigned which is not efficient. This will put the lambda function out of resources
and eventually will affect the overall application. Malawski et al. (2017). However, the
serverless platform depends on the containerization technique, in which whenever the
function is executed or triggered by an event, it creates a container on which the function
code is executed. Savage (2018). So for monitoring the resources that are consumed by
the functions can be done by monitoring the underlying container itself. This technique
can help for allocating the resources to a container based on the function requirement and
its application nature. This heuristic approach can be carried out using the OpenSource
Serverless Platform such as OpenFaaS in which it allows us to monitor the underlying
function platform such as container and also provides us the authority to allocate the
resources to the container based on its usage. The proposed approach is implemented
for dynamically allocating the resources to container based on its previous usage and
predicting the future resource usage of a lambda function using the ARIMA time-series
analysis model.

1.2 Project Specification

The proposed approach solves the resource allocation and monitoring issues for the server-
less computing platform. Furthermore, the paper comprises the evaluation and imple-
mentation of resource optimization and allocation to lambda functions and predicting
future resources of a function using the ARIMA time-series analysis model. For dealing
with the resource allocation problem in a serverless platform, the below research question
is proposed.

1.2.1 Research Question

Current techniques for allocating the resources to lambda functions do not provide effi-
cient results, consequently affects the application performance. Resources such as CPU,
Memory, and BlockI/O runs out of resources if not managed properly.

Research Question 1: ”Can Resource Management in Serverless application be optim-
ised using novel Dynamic Resource Allocation Algorithm on different cloud platforms e.g
AWS and OpenStack?”

Research Question 2: ”Can future resources be predicted for a lambda function using
the ARIMA time-series analysis model?”

1.2.2 Research Objectives

The following objectives are addressed by the research question: Objective 1: First,
the implementation of retrieving the monitored metrics for the serverless functions are

1https://docs.aws.amazon.com/lambda/latest/dg/lambda-security.html
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performed. Objective 2: Next, Based on the gathered metrics, the analysis are performed
for implementing the dynamic resource allocation to the functions underlying container.
Objective 3: Once, the allocation is done for Cpu, Memory, and BlockI/O, then the
resource predictions are implemented using the time-series ARIMA model. Objective 4:
After the predictions, at last, both approaches which are Dynamic Resource Algorithm
and Time-Series ARIMA Model is evaluated.

1.2.3 Research Contribution

In the proposed research, multiple studies have been reviewed related to the research
question. Further, the implementation has been carried out of the proposed approach.
Lastly, the proposed approach is evaluated and results are compared and concluded which
works best. The structure of the research paper is as follows: In section 2, various
studies has been reviewed related to the proposed approach. Further, the subsections
in section 2 are in the logical format of the proposed approach. Next, in section 3, the
tools, and techniques that are leveraged in the proposed approach have been discussed.
Section 4, specifies the design specification. Whereas in Section 5, the proposed approach
implementation is carried out. In Section 6, the proposed approach is evaluated and
results are compared and has been specified which works best. Lastly, in Section 7,
demonstrates the conclusion and future work of the proposed work.

2 Related Work

Function-as-a-Service has become an essential platform for reducing the overall public
cloud cost billings and moreover for increasing the performance of an application. In
this section, multiple studies that are based on the research topic will be explained.
Furthermore, the critical analysis and the research gaps will also be specified if there are
any.

2.1 Benefits of using OpenSource Function-As-A-Service

Serverless lambda functions cause multiple benefits only when they are implemented ap-
propriately. As in this study Mohanty et al. (2018), the performance evaluation of mul-
tiple open-source serverless platforms namely Fission, Kubeless, OpenFaaS, and Open-
Whisk is presented. The document has also mentioned the drawbacks such as resource
allocation, size of the code, duration of the lambda function takes to executes, program-
ming languages, and vendor-lockin on a public cloud platform. The evaluation is based
on the response time and success ratio. After the evaluation, it was concluded that
OpenFaaS is the most flexible platform and Kubeless provides the best performance in
various scenarios. The important characteristic which is found is that the Fission can
be configured when there is a need for low latencies as it can keep the containers in the
warm state. The research gap which is found is that the other container orchestrator
tools are not explored for performing the evaluation test.

In this next study Kim et al. (2018), for better performance, the author has imple-
mented a GPU based serverless architecture that is integrated with the Docker NVIDIA
container. This study has used an Open Source serverless platform and integrated it with
the GPU environment so that the CPU intensive applications can work efficiently. This
paper shows the flexibility of serverless platforms. This is what has implemented in the
proposed approach. The study gap which is found in this study is that the author has
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not implemented it on the container orchestrator platform which would have turned in
better performance.

As far as public cloud serverless services are concerned, they have also been useful
where the underlying infrastructure monitoring is not considered. Giménez-Alventosa
et al. (2019) propose an approach where a map-reduce job is deployed on the AWS
Lambda functions. In this study, a mechanism is implemented to analyse the resource
allocation system of the AWS Lambda. As public cloud services were used in this study
there were some complications related to the programming languages as it does not
support all the languages. The arguments and claims are very well supported as they
have properly mentioned the configuration details in advance with the version details of
the platforms.

2.2 Tracking of Metrics and Management of Containers

In this section, monitoring and retrieving the metrics for docker containers is discussed.
It becomes an essential factor when the real-time metrics need to be considered for further
analyzing and allocation of the resources. Chang et al. (2017) provides us the research
study for monitoring and tracking the metrics for the same. This study proposes a
comprehensive platform for monitoring the containers and making further decisions based
on that. They have used the Heapster platform for accessing and collecting the metrics
for the containers. However, in our proposed approach, an automated way is implemented
using a bash script for collecting these metrics. The author has also used InfluxDB for
storing these metrics.

Here is another study Enes et al. (2018) which is based on collecting the time-series
monitored metrics. This study proposes a new approach for gathering the applications
monitored data rather than the whole instance metrics. Which is almost the same case
in our project, in which gathering the time-series monitored metrics of those containers
on which our functions are deployed. The research gap found in this study has not
explored more towards gathering the monitored metrics from the underlying Cgroups
instead of that another tool is used. Furthermore, related to this paper is that in our
proposed approach the gap which is present in this reviewed study is implemented by
retrieving the monitor data from the underlying host itself.

The next study propose Kubernetes architecture in which the author MackDioufa
et al. (2020) has implemented an architecture for achieving the fault-tolerance of an
application. The interesting thing to look here is that their solution has customized the
Kubernetes controller for getting the monitored metrics via API server from the deployed
cluster. This method of getting the metrics from the Kubernetes platform itself is the
best practice method. However, it does not provide full metrics other than CPU and
memory metrics. In which, in our project that is not the case.

The arguments and claims made in these documents are very well supported by genu-
ine references and can be easily reproduced as they have clearly mentioned the architec-
ture and configuration details as well.

2.3 Impact of Container Orchestration on Applications

In this section, the discussion on various studies based on the container orchestration is
presented. Carlos et al. (2018) proposes an approach, in which their aim is to optimize
the container orchestrator on which they have deployed a micro-service based application.
Additionally, they have also evaluated the performance of their approach with the Greedy
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and NSGA algorithm. After the evaluation, it is found that the proposed approach
increased the performance of an application and also for container orchestration. The
evaluation results are specified using the graph charts. The configuration details are
mentioned properly so that the reproduce can be easily done if required. Lastly, there is
not much to find the research gaps in the study but however, some areas should have
been explored more for an instance the greedy approach.

In this study, Acuña (2016) defines that with the help of Minikube it is easy to use
Kubernetes where a single node cluster has to deploy such as on a laptop or virtual
machine. It is an easy tool that can be used to get started with Kubernetes for deploying
any single node cluster application. In the proposed approach,the Minikube tool has
been leveraged for creating a single node cluster for deploying the OpenFaaS platform
and to execute the functions on top of it. In the next study, Gogouvitis et al. (2020)
proclaims that when they integrated their approach with the container orchestrator such
as Kubernetes they have found seamless computation in the results which increases the
performance of their approach. This overall approach was carried out with the Kubernetes
platform. In this next study Pereira Ferreira and Sinnott (2019), propose the evaluation
for the public cloud Kubernetes service. It is found that the selection of the Public Cloud
Kubernetes platform depends on the applications nature. For instance, if the application
is CPU intensive then AWS EKS will be the best choice, if its network-intensive then
the Google Kubernetes will be the better choice. Further, the underlying host machine
is more responsible when performance is concerned. That is the reason in our novel
approach the Open Source Kubernetes platform is leveraged so that the flexibility is
maintained for selecting the underlying host and configuration details which will help us
to dynamically allocate the resources to the container as per the requirement. The claims
and arguments are very well supported using authentic references.

2.4 Optimisation and Dynamic Allocation of Resources to Con-
tainers

Dynamic allocation of resources is an imperative technique on every computing service
be it as virtual instances or containers. In this subsection, Piotr and Soares (2018) states
the approach for allocating the docker containers onto the virtual machines based on
the values, priorities, application nature type, and resources required, which is almost
the same in our novel approach. However, the imperative factor to analyze here is the
reviewed study has not considered the resource metrics such as memory and network. This
is the research gap has found in this study, however, in our novel approach, this is not
the problem. After evaluating the performance with the Docker Scheduling Algorithm
itself, they found their approach has increased the overall performance of the system,
especially for the CPU heavy workloads.

In this paper Xinjie et al. (2017), the author has implemented the resource allocation
to containers and scaling of containers when particular thresholds met or more resources
are required. By implementing this, their imperative focus is to decrease the application
implementation cost. They have fairly achieved their aim. The arguments and claims
are very well supported using authentic references. Furthermore, this study has also
compared their algorithm with other models such as greedy and best-fit. Retrieving
the real-time metrics and based on that metrics the dynamic allocation decision is made.
Enes et al. (2020) propose the same approach for real-time big data applications but with
more advanced functionality such as real-time scaling as well. They have implemented
an approach where they are retrieving the monitored metrics for the docker container.
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When the time for scale-up comes, that means upgrading the resource size instead of
creating the new container the allocations are performed for the big-data applications.

2.5 Prediction performed using ARIMA model

As our proposed approach predicts the resources for the serverless functions it becomes
an essential task to analyze which model will best suit our environment. Dalmazo et al.
(2017) propose an approach where they are predicting the network resources for an ap-
plication to work seamlessly. The technique which they have used is the ARIMA model
for predicting the network resources. Whereas, in our proposed approach, prediction of
all the resources is considered which are required for a containerized application to work
efficiently.

El Mezouari and Najib (2019) propose the predictions for the soil moisture and ir-
rigation culture to provide the results in a proper way. In this approach, they have
implemented a Hadoop based architecture in which the real-time metrics are gathered of
the soil conditions and irrigation resources consumed. Furthermore, they are predicting
the data using multiple prediction algorithms such as XG-Boost, Random Forest, and
ARIMA. After the evaluation, they found that all these models provided precise results.
But the ARIMA model provided the best results for the soil conditions.

The underlying host becomes an essential factor when the performance of an applic-
ation has to be calculated. This next study Yi et al. (2013) propose an approach where
they are evaluating the performance for the AWS EC2 and Azure compute service based
on the requests received and processes that running. Furthermore, they are also pre-
dicting the running instances that will be placed in the future on the underlying cloud
platform hosts. The prediction is done by using the ARIMA model which best suits the
requirements on their approach.

Table 1 : Comparison of Reviewed Studies
Reviewed Studies Aim Dynamic Alloca-

tion
Time-Series Pre-
diction

Piotr and Soares
(2018)

Dynamic Placement of Con-
tainers

Yes No

Xinjie et al. (2017) Resource Allocation and
Scaling based on threshold

Yes No

Enes et al. (2020) Resource Allocation for Big
Data Apps

Yes No

Dalmazo et al. (2017) Predicting the Network Re-
source

Yes Yes

Yi et al. (2013) Prediction of Virtual Ma-
chines

No Yes

Proposed Approach Dynamic Resource Alloca-
tion and Predicting Future
Resources

Yes Yes

2.6 Conclusion

Many studies have been reviewed in this section related to our proposed approach. Mul-
tiple studies are there in which there are some research gaps which is found. These
gaps are filled using our proposed approach using the dynamic resource algorithm and
implementing the resource prediction using the ARIMA time-series analysis model.
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3 Methodology

In this section, the research methodology of the proposed approach is explained from
start to end. It contains the phase from selecting and implementing all the pre-requisites
which are needed for the project to work until the final results of the data prediction.

3.1 Tools and techniques used in the proposed approach

Docker: Ahmed and Pierre (2019) has stated Docker as a light-weight Opensource
platform for executing and encapsulating an application. This approach also leverages
the Docker API calls for retrieving the real-time monitoring metrics with the help of
docker stats command.
Kubernetes: It is a container management platform. Wu et al. (2019) states that
Kubernetes also balances the loads between the containers in a very efficient manner.
Apart from that it also restarts and brings back to life if any container fails.
OpenFaaS: Palade et al. (2019) demonstrates OpenFaaS as an opensource serverless
platform on which users can build and invoke their functions. This study describes the
two fundamental modules of OpenFaaS which are functions and handler. OpenFaaS API
Gateway is responsible for scaling and collecting the metrics which are directly sent to
Prometheus monitoring tool. Sukhija and Bautista (2019) manifests Prometheus as an
open-source monitoring tool in which time-series monitored data are stored. Jupyter
Notebook: Ueno and Imai (2020) proclaims that Jupyter Notebook is a web application
that executes the code. It helps users to write code step by step in a notebook file. In the
proposed approach, Jupyter Notebook is leveraged for executing the ARIMA prediction
python code. ARIMA is a model that is responsible for predicting the time-series data.
Next, the ARIMA predictions are forwarded to the AWS CloudWatch.

3.2 Proposed Approach Overall Structure

Step1: In this step, the collector module comes into account for collecting the resources
metrics that are consumed by OpenFaaS function container on first execution.
Step2: Next, the controller module analyzes these metrics, and based on the consumed
metrics it performs the calculations and allocates the resources to the function. The
thresholds are configured based on resource utilization in percent and MBs. Such as, if
CPU utilization is greater or less than 50 percent then based on that it will allocate the
required CPU-shares to the OpenFaaS functions. Next, the memory allocation is based
on the MBs utilized. Such as, if memory utilization is less or equal to threshold values
set, then based on that the memory resource is calculated and allocated to the functions.
For blockio, it depends on the block I/O utilized in megabytes.
Step3: Further, is the optimiser module which will again execute the function after the
optimised resource values are allocated. This will show us the unused resources now after
the optimised resource allocation process has been done.
Step 4: Last module is the prediction module, which will predict the resource utilization
of the serverless function using the ARIMA time-series analysis model.
Step 5: These values are sent to the AWS CloudWatch monitoring tool as expected
future resources using the AWS CloudWatch Agent.
Figure 1 provides more in-depth details of the proposed approach.
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Figure 1: Proposed Approach Flowchart
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4 Design Specification

The below figure 2 depicts the proposed approach architecture diagram. The components
of this architecture are explained below.

Figure 2: Proposed Approach Architecture

4.1 Data Collection of Monitored Containers

In this section, the process of run-time metrics resources of OpenFaaS functions are
collected using the Docker API command named as docker stats. Further, these metrics
are collected to a file named docker-metrics in which the data is again filtered and rounded
up to the integer value. The resources consumed by the functions are stored as a total
percent used. Further, these values are passed as an argument to the controller module
and based on these values further analyzing is performed which is explained in the next
section 4.2

4.2 Analyzing the Collected Data

Once the resource arguments are received by the controller module, they are sent to
perform optimization analysis. First, the controller optimizes the CPU-shares of an
OpenFaaS function. If the passed arguments that is the CPU percentage are more than
50 percent then the CPU controller will allocate 1030 of CPU-shares to the function which
corresponds to the 1 CPU core. However, if the CPU percentage is less than 50 percent
than it will allocate 512 CPU-shares that correspond to the half CPU core. Once CPU
resource optimization is done, next comes the memory usage. If the memory utilization
is less than or equal to thresholds configured in the memory segment of the controller
than allocate the memory based on the memory limits specified in the controller. Next,
the block I/O section is considered, for optimising the block I/O resource. Based on
the blocks consumed by the OpenFaaS functions and the thresholds set for blocks the
blockio-weight is allocated to the function container.

9



4.3 Dynamically Allocating the Optimised Resources

This section illustrates the dynamic allocation of the optimised values which are analyzed
in the above section 4.2. The optimised values are stored in a python variable and using
the docker update Docker API command the optimised resources are allocated to the
OpenFaaS functions. Next, once these resources are allocated to the container, then the
next phase comprises of the optimized module which is responsible for again invoking the
function and analyzing how much resource are now unused and how much is the resource
utilization in percent and MB. Next, the prediction phase comes into picture where the
collector is responsible again for fetching up the monitored data and generating a CSV
files for each resource, which is discussed in next section 4.4

4.4 Resource Prediction using ARIMA

In this section, the prediction for future resource consumption is predicted using the
ARIMA model. For executing the ARIMA model, the Jupyter notebook is implemented
in which Python 3 language is used. Further, the CSV files which are generated by
the collector module is configured in the Jupyter notebook for each resource. The CSV
file contains the time-series analysis data which are in comma-separated and resource
utilized in percentage. The library which are used for predicting the values are tsa plots,
pandas, and ARIMA. After forecasting the predicted resources they are sent to the AWS
CloudWatch Dashboard as an expected future resource for serverless functions.

5 Implementation

This section will explain the actual implementation of the proposed approach.

5.1 Creation of OpenFaaS Function and Collecting the Resource
Metrics

In this section, the process of creating an OpenFaaS function and collecting the resource
metrics for the specific function is explained. The OpenFaaS figlet function is created with
the help of the OpenFaaS CLI commands. As soon as the figlet function on the OpenFaaS
is created, it creates a docker container with the help of the Kubernetes Minikube tool.
Next, the Minikube creates the container under a namespace called as openfaas-fn where
all the OpenFaaS functions are created. This figlet function is responsible for converting
the normal text into an ASCII character.

Further, for generating some load on the underlying figlet container, this function is
invoked 500 times and meanwhile, monitoring and gathering of the resource metrics are
also performed. Once these metrics are gathered from the docker stats Docker API call,
it is stored in a file for performing further analysis. These stored metrics are then fetched
from the collector.sh script which is a bash script. The collector.sh script will filter out the
unnecessary symbols and characters which are attached to resources values, for example,
a percent sign and units, and will round up to the single integer value and will store these
values in a resource variable. Once these values are stored in a bash variable then they are
passed as an argument to the controller.py file which is a python file. Furthermore, for
retrieving the information regarding the OpenFaaS function, such as execution duration,
invoked count, and scaling of the replica can be seen on the Grafana Dashboard which
can be seen in Configuration Manual.
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5.2 Optimising the Figlet Function Resources Using Controller

As soon as the controller.py receives the arguments from the collector script. It uses
these resource values for optimizing the resource allocation and will also analyze how
much resources were used and unused. Next, the resource optimization and allocation
are performed based on the CPU percent utilized, Memory and BlockI/O in MBs. Once
these values are allocated after the Dynamic Resource approach it displays us the new
resource utilization with the used and unused resource for the figlet function.

The CPU-share is calculated based on the past utilization consumed by the figlet
function container. The memory allocation is performed based on the thresholds and
mathematical calculation performed using the past memory metrics. Next, the block-
weights allocation comes into account where the block I/O resource is allocated based on
the block I/O consumed by the figlet function container.

5.3 Resource Prediction and Monitoring it on AWS Cloud-
Watch

In this section, the prediction for CPU, memory, and blockI/O process using the ARIMA
time-series method has been explained. The prediction for CPU, memory, and blockI/O
is thoroughly implemented. The prediction is performed on the figlet function container
resource usage. These resource values are fetched from the metrics file which was created
by the collector file. The collector.sh script is then responsible for converting the resource
consumption values into a time-series data format for configuring the CSV in the Jupyter
notebook.

The Jupyter notebook is installed using the pip3 module on the AWS EC2 ubuntu
16.04 instance. Jupyter Notebook uses python 3 language for executing the ARIMA
time-series code. Next, the CSV files which are generated from the collector is checked
manually for finding any corrupted or unnecessary values which will affect the prediction
results.

Further, the parameter variables for p,d,q are selected based on the auto-correlation
and partial-correlation plots. These plots will show the correlation between past values
and also the lag values correlations. Next, the AIC (Akaike Information Criteria) stat-
istical model is leveraged for analyzing the righteousness fit and the clarity of the model.
Low AIC represents the better model, hence high represents a complex model. Further,
the forecast method is implemented for forecasting the resource values and then they are
evaluated with the past values which will show the prediction results and its differences.
Once the evaluation is performed between the past and future values, then the most
appropriate values are sent to the AWS CloudWatch Dashboard that will represent the
future expected resource utilization values.

6 Evaluation

In this section, the evaluation for Dynamic Resource Algorithm(DRA) and ARIMA model
has been conducted. Both of these models are validated and lastly, the results of both of
them are analyzed.
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6.1 Experiment 1: Evaluation for Proposed Approach

In experiment 1, there are two subsections in which section 6.1.1 will evaluate the per-
formance of the Dynamic Resource Allocation Algorithm, and section 6.1.2 will evaluate
the time-series ARIMA model. Whereas, in Experiment 2, the function invoke count is
increased to 2000 for evaluating the DR Algorithm.

(a) Default Docker Resource
Allocation

(b) Using Dynamic Resource Algorithm for re-
source allocation

Figure 3: Process of Evaluation

6.1.1 Dynamic Resource Allocation Evaluation

In this section, the evaluation for the Dynamic Resource Algorithm (proposed approach)
is performed with default Docker Resource allocation. Two scenarios are implemented
and compared in the evaluation. In the First scenario, the Docker Default Resource
allocation is used. Whereas, in the second scenario the DR algorithm is used for the
OpenFaaS functions container for dynamic resource allocation. Furthermore, the results
are shown and compared of both of these scenarios and analyzed which worked best. In
the first scenario, the OpenFaaS function was invoked 500 times using a bash script. The
default Docker Resource allocation for the figlet function container was the same as the
resource size as the host machine. Now, in the second scenario, the resource allocation
was performed by the proposed approach which is the DR algorithm. In this, the resource
allocation was done dynamically and based on its usage. So that no resource should be
underutilized. First, the Cpu resource is evaluated with default docker resource allocation
and with the proposed approach.

In figure 4, two graphs are shown, in which CPU-Shares allocated and CPU-Shares
consumed on Y-axis, and the X-axis represents the dates. Figure 4a represents default
docker allocator resource allocation. As the 4a represents there is a lot of CPU-Shares has
been wasted especially on 06 and 09 August. But when figure 4b is considered which rep-
resents the CPU-Shares allocation using the Dynamic Resource Algorithm, it shows the
tremendous difference in the CPU-Shares allocated. Figure 4b also represents when CPU-
Shares consumed was less than 512, the proposed approach allocated 512 CPU-Shares so
that the CPU-Shares should not be underutilized. So our proposed approach performed
better CPU optimization as compared to the Default Docker Resource allocation.

Next for memory, the figure 5 represents memory allocated and consumed in MB on
Y-axis whereas the dates on X-axis. In figure 5a, the default memory allocated to the
figlet function container was 8000MB which is 8GB. The memory consumed by the figlet
container was very less as compared to memory allocated. Figlet container was using 7
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(a) CPU-Shares Allocation by default
Docker Resource allocation

(b) CPU-Shares Allocation using Dy-
namic Resource Algorithm

Figure 4: Evaluation for CPU Resource

to 15 MB maximum for processing the functions. This proves that most of the memory
such as 7993 MB is wasted by the figlet container. But, when the allocation was done by
the dynamic resource algorithm which is shown is the figure 5b, the memory allocation
was done dynamically as per its usage. For instance, on 02 August, figlet container took
8 MB of memory for processing the request, so the total memory which was allocated to
the container was only 12 MB. So the calculation goes like, 8 MB was utilized previously
and when buffer has to be add then 50% of the utilized memory, that is 50/100*8=4, this
4 value is added in 8 MB as 4MB as buffer value. So the total comes to 12 MB which is
allocated to the memory. So when we compare the difference between the default docker
resource allocation and dynamic resource algorithm (proposed approach), our approach
provides better memory allocation for figlet container which saves a lot of memory for
the host machine and other containers as well.

(a) Memory Allocation by default
Docker Resource allocation

(b) Memory Allocation using Dynamic
Resource Algorithm

Figure 5: Evaluation for Memory Resource

Furthermore, for the BlockI/O bandwidth, figure 6 represents the BlockI/O evalu-
ation. The Y-axis represents the BlockI/O relative weight and X-axis the dates. In figure
6a, 1000 Block-Weight is the default allocation done by the docker daemon 2. The block-
weight which was used by the figlet container was around 120 to 160 which is 30 to 60
in megabytes. Most of the block-weight was got wasted. But when the dynamic resource
allocation was performed on the Block-Weight, which is represented in the figure 6b it
showed immense results. The calculations which was done for allocating the block-weight

2https://docs.docker.com/engine/reference/commandline/update/
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were if the BlockI/O is more than 30 MB then attached the 15% of the block-weight of
the host to the container. There were more thresholds configured for BlockI/O which can
be seen in figure 1. For example, on 01 August, 30 MB BlockI/O was consumed which is
120 in block-weight. Such as 30/256*1024=120, so 30 block-weight is added as the buffer
value and 15% of the block-weight of the host machine is allocated to the figlet container
by the Dynamic Resource Algorithm. Here, 256 KiB is the block size of the AWS EBS
and 1024 as the volume throughput3. As the figure 6b represents, it performed very well
block-weight allocation as compared to the default docker allocation.

(a) Block-Weight Allocation by de-
fault Docker Resource allocation

(b) Block-Weight Allocation using Dy-
namic Resource Algorithm

Figure 6: Evaluation for BlockI/O

6.1.2 Time-Series ARIMA model evaluation

• Standard Time-Series Prediction

In this section, two scenarios are implemented, in the first scenario the time-series
prediction is performed using the standard time-series model, whereas, in the second
model the prediction is performed using the ARIMA time-series model. Lastly, their
results are compared with each other and analyzed which worked best.

In the first scenario, Cpu, Memory, and Block I/O resources are included. This model
is executed on the Jupyter Notebook by leveraging Python 3 libraries. For standard data
prediction, the past ten days of resource utilization are chosen. The dataset is in the data
frame format. Next, the statistical values are calculated for each resource type using the
describe() function. Dataset and Statistical Analysis can be seen in figure 7.

The mean value depicts the daily average resource consumption value for each resource
type and standard deviation shows the variability between the values. These values can
be further used for more in-depth analysis.

Next, the standard time-series prediction is performed by shifting the past historical
data to t+1. Where t depicts the past data and then it will pass the current day data
to future value with +1. These predictions with the past data is as the best mirroring of
the future data which can be seen in figure 8.

As shown in figure 8, the past value is predicted as the future value which is not
the best prediction results. Further, the mean squared error is calculated for the current
dataset. In which NumPy and mean squared error libraries are used. After calculating the
mean squared error for the CPU the values were 10.6458, next for memory the error was

3https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
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(a) Standard Time-Series Dataset (b) Statistical Analysis

Figure 7: Standard Time-Series Analysis

Figure 8: Standard Time-Series Prediction

9.8262, and for BlockI/O it was 11.2200. These values are calculated based on average
calculated for each resource type and its squared is calculated for displaying the mean
squared error. However, in the ARIMA time-series model, this is not the case.

• ARIMA Time-Series Prediction

In the second scenario, the prediction for each resource is implemented separately.
In this, Auto-correlation plots provides the correlation between the datasets and also
show if there are some lag in the values. Whereas, in Partial Correlation, it depicts
the correlations between the lag values which are the remaining value after the auto-
correlation is plotted.

Further, for each resource, the statistical analysis is calculated. The mean value
depicts the daily average resource consumption for CPU, Mem, and Block I/O which is
shown in figure 9. The standard deviation values depict the variability in the values of
the resource for CPU, Mem, and BlockI/O used.

Further, plotting was performed of the past time-series data on the auto-correlation
then p=0 value was predicting as the absolute value which is 1. But when the next value
which is p=1,2, there was some correlation between for each resource type, which can be
seen in figure 10.

So to identify the q parameter, ACF (auto-correlation) chart has to be observed. Next
for identifying the p parameter PACF chart (partial-correlation) has to be observed. So
the model parameter values that are taken for CPU was (2,1,0) which was tested with
various combination and received the best fit AIC values as 85.828. Next for the memory,
the parameter value based on the ACF and PACF charts was taken as (1,1,0) with the
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Figure 9: Resources Mean and Standard Deviation

(a) CPU Auto-Correlation
(b) Memory Auto-
Correlation

(c) BlockI/O Auto-
Correlation

Figure 10: Auto-Correlation

best fit AIC value as 55.449. Whereas, for the blockI/O (2,1,0) was considered with the
best fit AIC value as 61.86.

Next, the values are forecasted for the CPU, memory, and blockI/O from the fore-
cast method. Figure 11 depicts the forecasted values performed by the ARIMA model.
In figure 11a, the three-step further predictions are considered in which the first value
forecasted is 77.48% for CPU utilization and if the 01/August past value is observed,
then there is only 5% of CPU resource difference. Next, memory utilization in percent is
forecasted for the same date 01/August which is shown in figure 11b, which is 61.34 %
and if it is compared with the past 01/August, then there is only 6% of the difference.
The Same goes with the BlockI/O in figure 11c where 1MB of difference is forecasted for
the first value. Next, for second value 12MB of difference is predicted by the ARIMA
model which is a significant prediction.

(a) CPU ARIMA Forecast
(b) Memory ARIMA Fore-
cast

(c) BlockI/O ARIMA Fore-
cast

Figure 11: ARIMA Resource Prediction

As soon as the data forecasting is done, the first index value from the array is sent
to the AWS CloudWatch Dashboard as future expected resource consumption utilization

16



for each resource, which can be seen in figure 12. When standard time-series analysis and
the ARIMA model are compared, the ARIMA model provides more realistic prediction
values as compared to the standard time-series analysis.

Figure 12: AWS CloudWatch Dashboard Predicted Future Resource Utilization

6.2 Experiment 2: Evaluation for proposed approach

In Experiment 2, the figlet function invoke count was increased to 2000 in which re-
sources utilization got high, especially for CPU, BlockI/O bandwidth. Below are the
charts representing the Resource Allocation and Consumption when Dynamic Allocation
of resources is performed after invoking the functions 2000 times. The important thing
to note here is when the function was invoked for 500 times in the previous experiment.
The dynamic allocation was done appropriately and the execution time for the function
for processing the requests was also good. But, when the invoke count was exceeded to
2000 times, the execution time for the function of processing that requests were taking
too much of time as compared to when it was invoked 500 times. This means that the
dynamic allocation of resources and execution time for processing the requests for the
figlet function performed well when it was invoked 500 times. But when the invoke count
was increased to 2000 it showed some issues for processing the requests and was taking
too much time for processing the 2000 requests.

(a) CPU Resource when in-
voking function 2000 times

(b) Memory Resource when
invoking function 2000 times

(c) BlockI/O Resource when
invoking function 2000 times

Figure 13: Dynamic Resource Allocation when invoking function 2000 times

6.3 Discussion

With the help of the above evaluations performed, it can be concluded that when the
functions are invoked in less count the Dynamic Resource Algorithm works very well.
However, when the functions are invoked in major count such as 2000, the dynamic re-
source algorithm allocates the resources appropriately but to process that 2000 requests
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again the figlet function container takes much time as compared to the functions which
are invoked for less count. Whereas, the experiment performed for the resource predic-
tion using the standard and ARIMA time-series model specifies that the ARIMA model
provides more realistic resource predictions as compared to the Standard Time-Series
Analysis. Furthermore, the research question which is specified in Section 1.2.1, has
been answered and the objectives specified in Section 1.2.2 have also been implemented
appropriately.

7 Conclusion and Future Work

The aim of the proposed approach was to optimize the resources and dynamically alloc-
ate to the serverless functions using the Dynamic Resource Algorithm. Moreover, the
predictions are performed for the future resources to be expected for the serverless func-
tions using the ARIMA time-series analysis model. Resources such as Cpu, Memory, and
BlockI/O that are responsible for application to work efficiently has been considered. As
the OpenSource OpenFaaS Serverless platform leverages Docker container for processing
the functions requests, the resource allocations are performed on the underlying Docker
container of the function using the Dynamic Resource Algorithm. The proposed model is
evaluated with the Default Docker Resource Allocation Algorithm and the results showed
that our proposed approach works very well in terms of Dynamic Resource Allocation of
the containers when the function was invoked 500 times. However, when the functions
are invoked in major count such as 2000 count, the execution time for processing that
requests after allocating the resources using the proposed approach took more time to
process those requests. Additionally, the ARIMA time-series analysis for predicting fu-
ture resource consumption for the serverless functions provided more realistic predictions
as compared to the standard time-series analysis. Akaike Information Criteria (AIC) was
leveraged for analyzing the best fit of the parameter selected for each resource in the AR-
IMA model. Lastly, for each experiment, the results are illustrated and explained with
the help of graphical charts. The future work will be implementing the Dynamic Re-
source Algorithm for the real-time serverless applications which requires more processing
and compute power, for instance, Big Data Applications. The NetworkI/O resource can
also be implemented as future work in Dynamic Resource Algorithm. Whereas, for the
ARIMA model the Seasonal ARIMA can be integrated with the Big Data Serverless
Applications which will provide more realistic predictions and best AIC fit.
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