~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Cloud Computing

Shantanu Dileep Paranjpe
Student ID: x19115644

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shantanu Dileep Paranjpe
Student ID: x19115644
Programme: MSc in Cloud Computing
Year: 2020
Module: MSc Research Project
Supervisor: Mr. Vikas Sahni
Submission Due Date: 17/08,/2020
Project Title: Configuration Manual
Word Count: 1994
Page Count: [7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shantanu Dileep Paranjpe
x19115644

1 Introduction

Configuration manual is a document that provides all the details related to the download-
ing, installation, and setup details. In this configuration manual, the steps for installing
the NS2 simulator, the detailed steps for downloading and installing the NSG (Network
Scenario Generator) tool along with the xgraph tool are provided in detail. The manual
is split into 3 sections in which section 1 provides information related to the downloading
of the software and tools required for the project, Sections 2 deals with the installation of
the tools and Section 3 provides the software setup related details and other implement-
ation details. The project emphasizes on the network simulation using NS2 simulator
in combination with NSG2 which is used as tool for building the scenarios related to
the simulationlIssariyakul and Hossain| (2009). To test the setup, a virtual machine with
Ubuntu OS is created in Oracle Virtual Boc for simulating the wireless network topology.

2 Downloading of Software and Tools

2.1 Oracle Virtual Box

The Oracle Virtual Box software is a hosted hypervisor that is installed and executed
on the top of the host operating system. The Oracle Virtual Box is a open source soft-
ware providing high performance and multiple features that are offered to users with a
user-friendly graphical user interface |Li (2010). It allows the users to create several guest
operating system on a single physical machine. Oracle Virtual Box has been used in
this project for creating a 64-bit virtual machine with Ubuntu guest operating using the
below configuration:

RAM: 4GB
vCPU: 1
Storage: 40GB [

thttps:/ /www.virtualbox.org/

Virtualbax is @ powerful <66 and AMD4/Intel4 virtualization product for enterprise as well as home use. Not only is VirtualBox an

extremely feature rich, high performance product for enterprise customers, it is also the only professional solution that is freely

irtual
available as Open Source Software under the terms of the GNU General Public License (GPL) version 2. See "About VirtualBox" for

Welcome to ox.org!
About an introduction.

sereenshots Presently, VirtualBox runs on Windows, Linux, Macintosh, and Solaris hosts and supports a large number of guest operating

Downloads systems including but nat limited to Windows (NT 4.0, 2000, XP, Server 2003, Vista, Windows 7, Windows 8, Windows 10},
DOS/Windaws 3.x, Linux (2.4, 2.6, 3.x and 4.x), Solaris and OpenSolaris, 05/2, and OpenBSD

Documentation

virtuslBox is being actively developed with frequent releases and has an ever growing list of festurss, supported guest operating
systems and platfarms it runs on, VirtualBox is a community effort backed by a dedicated company: everyone is encouraged ta
Techrical docs contribute while Oracle ensures the product always meets professional quality criteria,

End-user docs

Contribute

oy Download

VirtualBox 6.1

Figure 1: Oracle Virtual Box Configuration

2.2 Network Scenario Generator 2

The NSG2 is a software that can be used for building the simulation scenarios in a user-
friendly environment. It was built by Pen-Jung Wu at the National University in Taiwan
Huang and Shahnasser| (2011]). The network scenario generator has been used in our pro-
ject in combination with the NS2 simulator to generate the wireless topology for testing
the customized algorithm using SDN. Instead of manually writing the tcl code, the user
can create the .tcl file in an automated manner using the NS2 network scenario generator.
The highlighting characteristics of this tool are as follows:

1. The NSG2 is a tool that offers both the simplex and duplex network links for wired
as well as wireless topology.

2. It supports different types of application-based traffic like the CBR (Constant Bit
Rate, FTP (File transfer Protocol) and UDP (User Datagram protocol).

3. It also provides support for numerous routing protocols like DSR, AODV and DSDV
and TORA.

4. It also enables the user to set the total duration of the simulation as per the re-
quirements of the project and to save the generated simulation scenario in the form of a
tcl file that can be used along with the ns command to run the simulation.

The NSG2(Network Simulator 2) tool can be downloaded in the form of a.jar file from
the below source:

Zhttps:/ /ns2blogger.blogspot.com/2014/04 /nsg-21-tcl-script-generator.html

B

fLormtens - 3448, $1391 L ——

Download NSGz :

ANSGe(zoo7/5/20)

ASG2.2 (20081118

If wou still wanna download MNSG1 (previous varsion of NS3), it can be found here.

To execute N5G you need to install Java 6.0, N5G does not require any installation . . . T Just double click on the jar
file to launch N5G. If it does not work, please see the instructions provided on the homepage of N5G here,

Figure 2: Network Scenario Generator for NS2

2.3 Network Simulator 2

NS2 is a simulator that makes use of events to perform the simulation of both wireless and
wired networks. It also helps in the simulation of wireless routing protocols and network
functions. The NS2 simulator offers users the ability to control and manage the beha-
viour of these routing algorithms in real-time. The NS2 simulator simulates the network
protocols such as the UDP and TCP, traffic patterns like the Telnet, Constant Bit Rate
(CBR), and routing protocols like Dynamic Source Routing and Ad-hoc Distance vector
Routing. Due to its modular and flexible nature, NS2 has acquired worldwide popularity
as a stable network simulator which can be extensively used in the networking and re-
search fields. In our project, NS3 has been used for creating a wireless network topology
to demonstrate the use of the SDN in combination of link weight routing algorithm. The
network topology mainly comprises of the wireless sensor nodes in which the wireless
sensor nodes generate the IoT traffic and pass the traffic to the SDN controller which
receives the packet and sends the traffic to the destination node using the best available
path. NAM is an animation tool that is used for viewing the NS2 simulation traces and
events that are created with help of the Network Scenario Generator tool. The NAM
window is activated upon the execution of the Tcl script. The url for downloading NS2
is given as a footnote. [

3https://www.absingh.com /ns2

3 Installation of Software Tools and Packages

Once all the required tools and softwares are downloaded for our project, the next step
involves installation of all the tools. The installation of the tools is performed as below:
1. Installation of NS2 Package

2. Installation of Network Scenario Generator

3. Installation of xgraph

3.1 Installation of NS2 package

The below steps are used for installing the Network Simulator 2 on Ubuntu 64-bit oper-
ating system:

Stepl: The prerequisite for installing the NS2 package is to update the Ubuntu reposit-
ories using the below command:

shantanuishaan:~$ sudo apt-get update

[sudo] password for shantanu:

Hit:1 http://ie.archive.ubuntu.con/ubuntu bionic InRelease

{e.archive, ubuntu.com/ubuntu bionic-updates InRelease [88.7 kB]

Get:2 http://

Get:3 http://ie.archive.ubuntu.con/ubuntu bionic-backports InRelease [74.6 k8]

Get:4 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]

Get:5 http://ie.archive.ubuntu.con/ubuntu bionic-updates/main and6d Packages [1

022 kg

Get:6 http://ie.archive.ubuntu.con/ubuntu bionic-updates/main 1386 Packages [71

9 k8]

Get:7 http:/[ie.archive.ubuntu.con/ubuntu bionic-updates/main and64 DEP-11 Meta

data [295 kB]

Get:8 http://ie.archive.ubuntu.con/ubuntu bionic-updates/universe 1386 Packages
[1,826 k8]

Figure 3: Updating the Ubuntu Operating system

Step2: The Network Simulator 2 package can be installed using the below command.

shantanu@shaan:~$ sudo apt-get install ns2

Reading package lists... Done

Building dependency tree

Reading state information... Done

ns2 is already the newest version (2.35+dfsg-2.1).

The following packages were automatically installed and are no longer required
fonts-liberation2 fonts-opensymbol girl.z2Z-appindicator3-0.1
girl.2-gst-plugins-base-1.0 girl.2-gstreamer-1.0 girl.2-gudev-1.0
girl.2-keybinder-3.0 girl.2-udisks-2.0 grilo-plugins-0.3-base
gstreamer1.0-gtk3 gstreamerl.@-1libav gstreamerl.@-plugins-ugly
i965-va-driver libas2-©.7.4 libaacs® libass9 libavcodec57 libavfilters
libavformat57 libavresample3 libavutil55 1ibbdplus® libblurayz
libboost-date-timel.65.1 libboost-filesysteml1.65.1 libboost-iostreams1.65.1
libboost-localel.65.1 libbs2b® 1libcdr-©.1-1 libchromaprinti
libclucene-contribsiv5 libclucene-corelv5s libcmis-©.5-5v5 libcolamd2
libcrystalhd3 libdazzle-1.0-8 libdvdnav4 libdvdread4 libe-book-©.1-1
libedataserverui-1.2-2 libeot® libepubgen-0.1-1 libetonyek-©6.1-1
libexiv2-14 libflitel libfreerdp-clientz2-2 libfreerdp2-2 libgcicz
libgee-0.8-2 libgexivz2-2 libgme® libgom-1.0-0® libgpgmepp6 libgpod-common
libgpod4 1libgsm1l libkeybinder-3.0- liblangtag-common liblangtagil
liblirc-client® liblua5.3-® libmediaart-2.0-©® libmpeg2-4 1libmspub-©.1-1
libmysofa® 1libnorml libodfgen-©.1-1 libopencore-amrnb® libopencore-amrwbe
libopenjp2-7 libopenmpt® libpgm-5.2-8 libpostproc54 libggwing2v5 librawils

Figure 4: NS2 Package Installation

Step3: Once NS2 is installed, the NAM package is installed for graphically representing
the network simulation traces.

shantanu@snaan:~§ sudo apt install nam

Reading package lists... Done

Building dependency tree

Reading state information... Done

nan is already the newest version (1.15-4)

The following packages were automatically installed and are no longer required:

fonts-1iberation2 fonts-opensymbol girt.2-appindicator3-0.1
girl.2-gst-plugins-base-1.0 girl.2-gstreaner-1.9 qirt.2-qudev-1.0
gir1.2-keybinder-3.8 girt.2-udisks-2.0 qrilo-plugins-0.3-base
gstreaner1,0-gtk3 gstreaner,0-1ibav gstreanert.-plugins-ugly
1965-va-driver 1iba52-6.7.4 libaacs® ibass9 libavcodecS7 Tibavfilters
libavformat57 libavresampled libavutilss libbdplusd libbluray2

110000st -ate-tine1.65.1 Libboost-filesystend.65.1 1ibboost-iostreans.6b.1

Figure 5: Network Animator Installation

3.2 Network Scenario Generator Execution

After installing OpenJDK, the Network Scenario Generator is executed as a jar file. The
NSG2 jar file can be executed using the below command

shantanufishaan:~5 ca Demo/
shantanu@snaan:~/Demo§ (s
delay.auk dem. tcl NSG2.1.jar pdf .ank wirelesst,nan
Delay.tr EfficientTraffichgnt.tcl out.nam POR.Ar wirelesst.tcl

deno.nan genthroughput. auk out.tr Throughput.tr wirelesst.tr
shantanu@snaan:~Demo$ java -Jar NSG2.1.jar
shantanufishaan; ~Demo

Figure 6: Network Scenario Generator Execution

System Sgenario| Window About
MNew wired scenario Crl-w

Mew wireless scenario <trl-L

Figure 7: Network Scenario Generator Main Window

3.3 Wireless Topology Setup

In order to create a wireless topology, the “New wireless scenario” option is selected.
On clicking new wireless scenario, a window is opened with all the options for creating
wireless topology.

System Scenario Window About

= —
Wireless scenario i = o =
File Draw Mode

| Hand " MNode " Agent " Application || Parameters ” TCL |

I Single |v|

Location : { 223. 26) Transmission ranaelinterference ranue" Set Zoom —— !

Figure 8: Network Scenario Generator Wireless Scenario

The wireless scenario can be generated by creating the wireless sensor nodes by clicking
on the option called as “Node”. The nodes will be numbered as n0, nl....so on.

System Scenario Window About
e

File Draw Mode

| Hand || MNode ” Agent ” Application " Parameters || TCL |

| single [=]

(5 BhNEE2)
nl —mm—
/ 5\go1) 58, %\
no

(128} 215)

nes s -——————————— N4
(187, 58) (391, s8)

Location : { 224, 146) Transmission range"lnterference range" Set Zoom L

Figure 9: NSG2 Topology creation

Next, a TCP agent and a TCP Sink agent is attached to the source node and the
Sink node so as to establish a TCP connection between the wireless node(n0) and the

Sink node(n3).

(5 3A332)
n —— n2
o, 297
Il:_QpO 2 6, \ S_Lnk
nD
(128} 215])
7
i ng
* S 76, 162)
ne s —_-n4
(15?. 58:] (39]_. 58) (594. 55)

Figure 10: TCP agent and Sink Agent

For transferring the data through the TCP connection a cbr or ftp agent is attached to

the TCP agent.

In the next step, the simulation time can be defined by entering the Start Time as

1sec and Stop time as 15sec.

ng

//(;s 3\332)

ftpo n ——— N2

po 596.\291) 96, 297 sink
/,@'
n3
no 64, 2
(126} 215)
n7y no
92, h71) /?s 162)

ne s n4
(167, 58) (391, 58) (594, 66)

Figure 11: FTP agent attach to the TCP agent

| Hand || Node ” Agent || Application " Parameters ” TCL |

Aplication type Start time|1 Stop time(15

ng

#iF#J,#,r-'*"#;'F)’?; 34332)

ftpo n —— N2

PO 236M291) S8, 297 sink
//©'
n3
no 64, 2
(126} 215)
n7 3
92, 171) /76.162)
n4

(594, 66)

ne ns
(187, 58) (391, 58)

Figure 12: Simulation Time

Lastly, the simulation parameters like the total simulation time, name of the trace file
and name of the Nam output file are defined.

Simulation paramekters setup =

Simulation wWireless Channel
Simulation time|1 =Z.0
Trace File wirglessl.tr
rMam File wirelessl.mam
| Done || Sawve as default |

Figure 13: Simulation Setup

Before saving the simulation, wireless routing protocol like AODV, DSDV and DSR
can be set by clicking on a tab named wireless.

Simulation parameters setup <

Simulation Wireless Channel

Channel typ e Chanmnmnel/f/wirelessChannel —
Propagation model Propagation/TwoRayGrournd | -
Phy type Phy/wirelessPhwy ——
Mac protocol tType Mac/802 11 —
Queuse type Queus/DropTail/PriQueuas ~—
Link layer type LL —
Antennmna type Antenna/OmnibAantenna —
Max packet in gqueus S0

Routing protocol DS DWW -
Agent trace L] 0] —
Router trace L] 0} —
Mac trace O —
Mowvement trace L] 0} —

Done || Sawve as default

Figure 14: Simulation Parameters

In the final step, the simulation is saved in the form of a .tcl file which can be used with
the ns command to display the simulation workflow.

ndow About

set ftp0 [Nnew Application/FTP]
$ftp0 attach-agent $tcpO

$ns at 1.0 "$ftp0 start"

$ns at 12.0 "$ftp0 stop”

$ns at $val(stop) "puts V'don

_ N Please seleck File [~

Termination
o= m=mmmmmmm=—=—=——i A o
#Define a 'finish' proced S3veIn: I shantanu |v|
proc finish {} {

global ns tracefile namfile] Demo —Insg [add.-tcl

$ns flush-trace O Desktop [Pictures [Delay.t

close $trace,ﬂ|e —J Documents 1 Project [namoodg

close snamfile ~

exec Nam wireless1 .nam & |[—] Downloads 3 Public [out_nar

exit O [Music [J Templates [y PODR-Er
s O netsim_full [wvideos [perform
for {seti0} {$i = $wvallnn) } -

$ns at $val(stop) "“$n$ire: [1 I | »
$ns at $vallstop) "$ns nam- File Name: [Demo.tcl |
$ns at $val(stop) "finish Files of Type: |All Files [=]

$ns run

Save I | Cancel

4 I

Figure 15: TCL Scripting

After saving the simulation as a TCL file, the tcl file can be executed for running the
simulation scenarios. For running the simulation, ns command is used followed by the
name of the tcl file. The name of the tcl file used in the project is wireless1.tcl. When the
tcl file is executed, it calculates the number of nodes that are part of the topology design
and generates the corresponding number of wireless nodes as per the topology setup and

also labels the nodes and performs the initialization of the tcp, udp or cbr traffic.

The

simulator runs the simulation as per the time defined in the NSG2 wireless scenario.

shantanuf@ishaan:~/Demo$ ns wirelessl.tcl

Wnen configured, ns found the right version of tclsh in Jusr/bin/tclsh8.6

but it doesn't seem to be there anymore, so ns will fall back on running the fi
rst tclsh in your path. The wrong version of tclsh may break the test suites. R
econfigure and rebuild ns if this is a problenm.
num nodes is set 15

INITIALIZE THE LIST xListHead

channel.cc:sendUp - Calc highestAntennaZ_ and distCST
highestAntennaz_ = 1.5, distCST_ = 550.0

SORTING LISTS ...DONE!

shantanugshaan: ~/Deno$ ||

Figure 16: NS2 TCL script Execution

When the TCL script is executed, it transfers the call to a .nam file and displays the
simulation output. As seen in the below figure, the topology consists of wireless nodes.

10

nam: wireless1.nam []

| File Views Analysis | ——— ||
‘ A4 | - | u | »- | > |‘ 0.000000 | Step: 2.0ms ‘

=2 0

=2

hi - o

o @

] °©

©
© o o o
o @
< ©

!]

Figure 17: NS2 NAM Output

4 Plotting Simulation Traces on XGraph

For evaluation of results, a tool known as xgraph is used which helps to plot the in-
formation related to different performance like Throughput, response time and average
end-to-end delay in a graphical format. xgraph can downloaded in the form of a tar ball
using the below link:

/
Download XGRAPH for LINUX

o a0 438 e 2tenqg 194B) [1-9C-201E - Contas v extion plofin capaly. s verion
b

sfr 32 ittmux)

o 0000 438 I tanqg (20 AE) [1-90-201E)- Same s e outfor L

Figure 18: XGraph

In order to use xgraph, the contents of the tar gzip file are extracted. For extracting the
contents of the gzip tar file, -xvf option is used in the tar command where x stands for
extract, v stands for verbose and f stands for the name of the tar file. Xgraph is a tool
that is used to present the graphical output of the simulation scenarios. Xgraph plots
the graph using a X11 window by capturing the data from either the simulation trace
files or through the standard input. It annotates the graphical display with axis labels,
tables and tick marks or grid lines legend and grid labels Patel et al.| (2019). There are
several alternatives to regulate the appearance of the components of the Xgraph. The
graphical interface used to indicate the size and location and volume of the window is
dependent on the window manager which is being used. As soon as the X window is
opened, all the points in the data set or the simulation trace file are graphically displayed

11

shantanu@shaan:~% tar -xvf xgraph_4.38 linux64.tar.gz
XGraph4.38 linux64/

XGraph4.38 linuxé64/data/

XGraph4.38 linuxé64/data/pptxdata.scz

XGraph4.38 linux64/data/sxidata.scz

XGraph4.38 linux64/data/pptx/

XGraph4.38 linuxé64/data/pptx/.rels

XGraph4.38 linuxé64/data/pptx/thumbnail. jpeqg
XGraph4.38 linuxé64/data/oofficedata.scz
XGraph4.38 linuxé4/bin/

XGraph4.38 linux64/bin/xgraph

XGraph4.38 linux64/Readme. txt

XGraph4.38 linux64/testxy.dat
shantanu@shaan:~% ‘

Figure 19: Xgraph

along with a legend. The trace file generated after the completion of the simulation is
used as an input to the xgraph command for generating the graphical representation of
the simulation events. [

shantanufishaan:~/Demo$ xqraph Delay.tr

XGraph v4.38

Gtk-Message: Failed to load module "canberra-gtk-module"
Window (440 x 465)

50 points read.

WindowSize = (500, 465)
WindowSize = (500, 432)
WindowSize = (560, 461)

Figure 20: Xgraph-Command

4https://www.xgraph.org/linux/index.html

12

The output of the xgraph command is as follows:

Poincs

History: oo —]] | | | | | |
<= =
Relils =0 - -
Reselk o = 1o s =20 ==
i e

Figure 21: XGraph Sample Output

5 Implementation

The .tcl file built for creating the wireless topology is used along with the ns command to
run the simulation. The TCL script consists of 28 wireless nodes that communicate with
each other using the wireless links. The wireless nodes communicate with each other by
exchanging the ftp and cbr traffic over a TCP connection.

5.1 Code for Simulator Object Declaration:

The below code snapshot displays the contents of the TCL file.

Channel/WirelessChannel :# channel type

Propagati woRayGround ;# radio-propagation model
Phy /W 3 ;# network interface type
Mac/882_ ;® MAC type
Queue/DropTail/PriQueue H R ace queue type

LL ;# link layer type
AntennafOmniAntenna ;# antenna model

188 ;# max packet in ifg

29 ;# number of mobi odes
AODDV ;# routing proto

1008 ;# X dimension of topography

1088 ;# ¥ dimension of topography

25
EnergyModel :# Energy Model
;# value

Figure 22: Code for Simulator object Declaration

13

5.2 TCL Code for Node Generation:

The wireless topology in our project consists of 28 wireless nodes attached with RFID
tags. The experiment is carried out by performing 5 iterations and varying the count of
nodes in each of the iterations. The position for the wireless nodes is set by defining the
position relative to the X, Y axis. These values are set by using the Network Scenario
Generator whereby the user drags the node to a particular position and the scenario
generator sets the position of the wireless node in the respective tcl file.

for {set i O3} i Sval{nn) F { incr 1 F} {
set node_(S1i)

;)

Snode_(©)
Snode_(©)
Snode_(©)

Snode_ (1)
sSnode_ (1)
Snode_ (1)

Snode_(2)
Snode_(2)
Snode_(2)

Snode_(3)
Snode_(3)
Snode_(3)

Snode_(4)
Snode_(4)
Snode_(4)

Snode_(5)
sSnode (5)

Figure 23: TCL for Node generation

5.3 Code for Link Weight Routing Algorithm

—Ifrinclude <iostrearms>
#Hinclude <limitss>
using namespace std:

FdeTine MO Laad

—lclas= Edgemode{
public:
Iimt ke
int weights
EdgeMade *rnesct ;
EdgetModel fnt, frtl;

]
S Edg=Mode: tEdgetodelint kew, Int weight)4
this-—>key = lkeuw;
this-sweight — weight;
this-—>next = mULL ;
T

—lclas=s Sraphd

bool direscted:

public:
Edgetodse *edges MO 4+ 1]
Sraphibool) s
~Sraphi]);
woid inscert cedgs(int, Iint, Iint, booll:
woid prictll:

T
—lSraph: rSraphibool dircected){
this-»>directed = dircecbted:
= For(imt L = 1z i <« [(M&W + 131z L ++234
this->edge=[i] = HULL 3
T

Figure 24: Code for Link Weight Routing Algorithm

14

6 Scripts for Recording the Performance Statistics

The performance of the NS2 simulation is recorded by making the use of a performance
script. The scripting language for capturing the performance statistics is known as the
awk script. The awk is a language that is used for recording the below performance
parameters:

e Packet Delivery Ratio
e Average end-to-end Delay

e Throughput

6.1 Packet Delivery Ratio

The packet delivery ratio is the count of packets that were successfully received to the
count of the packets that were sent. The packet delivery ratio is measured in the form of
percentage. The results are captured by varying the number of nodes used in the topology
for the existing as well as the proposed algorithm. The awk script used for measuring
the packet delivery ratio is as follows:

shantanu@shaan:~/Demos cat pdf.awk
BEGIN {

sendLine

recvLine

fowardLine

* AGT/ {
sendLine ++ ;

* AGT/ {
recvLine ++ ;

* RTR/ {
fowardLine ++ ;

END {

printf "cbr s:%d r:%d, r/s Ratio:%.4f, f:%d \n", sendLine, recvLine, (r
ecvLine/sendLine), fowardLine;

shantanu@shaan:~/Demo$

Figure 25: AWK script for Packet Delivery Ratio

6.2 Average End-to-End Delay

The average end-to-end delay is the additional amount of time taken by a packet to reach
the destination after leaving the source node. It is computed as the difference between
the time taken by the packet and the expected time to reach the destination. The average
end-to-end delay is computed by using an awk script. The delay is captured based on
the count of the number used in the topology. The awk script used for analysing the
end-to-end is as follows:

15

for{i=0; 1i<=seqgno; i1++) {
if(end_time[i] = @) {
delay[i] = end_time[1] - start_time[1i];
count++;

1lse

delay[i] = -1:

p
{
T
T
F

or{i=0; i<=seqgno; i1++) {
if(delay[i] = @) {
n_to_n_delay = n_te_n_delay + delay[i]:;
n
3
n_to_n_delay = n_to_n_delay/count;
print "\n";
print ° neratedPackets = " segno+1;
print "ReceivedPackets = " receivedPackets;
print "Packet Delivery Ratio = "
¢ vedPackets/(seqno+1)*1006

t "Total Dropped Packets = " droppedPackets;

"Average End-to-End Delay = " n_to_n_delay * 1000 ", ms";
"\n";

shantanu@shaan:~/pDemos [}

Figure 26: AWK script for Average End-to-End Delay

6.3 Throughput

The throughput of a network is measured by the rate at which the packets were transferred
from the source to the destination node. Whenever there is congestion in the network,
it results in packet loss and network congestion. The delay time can be calculated with
use of an awk script. The awk script used for analysing the throughput is as follows:

Store start time
if (level == "AGT" && event == "s" && pkt_size >= 512) {
if (time < startTime) {
startTime = time
1
1

Update total received packets' size and store packets arrival time
if (level == "AGT" && event == "r" && pkt_size >= 512) {
if (time = stopTime) {
stopTime = time

}
Rip off the header
hdr_size = pkt_si
pkt_size -= hdr_size
Store received packet's size
recvdSize += pkt_size
}
1

END {
printf("Average Throughput[kbps] = %.2f\n StartTime=%.2f\nStopTime=%.2f\
n",(recvdsize/(stopTime-startTime))*(8/10008),startTime,stopTime)

shantanu@shaan:~/Demo% I

Figure 27: AWK script for Throughput

16

References

Huang, J. and Shahnasser, H. (2011). A preprocessor tcl script generator for ns-2 commu-

nication network simulation, 2011 International Conference on Communications and
Information Technology (ICCIT), IEEE, pp. 184-187.

Issariyakul, T. and Hossain, E. (2009). Introduction to network simulator 2 (ns2), Intro-
duction to network simulator NS2, Springer, pp. 1-18.

Li, P. (2010). Selecting and using virtualization solutions: our experiences with vmware
and virtualbox, Journal of Computing Sciences in Colleges 25(3): 11-17.

Patel, R., Patel, N. and Patel, S. (2019). An approach to analyze behavior of network
events in ns2 and ns3 using awk and xgraph, Information and Communication Tech-
nology for Competitive Strategies, Springer, pp. 137-147.

17

	Introduction
	Downloading of Software and Tools
	Oracle Virtual Box
	Network Scenario Generator 2
	Network Simulator 2

	Installation of Software Tools and Packages
	Installation of NS2 package
	Network Scenario Generator Execution
	Wireless Topology Setup

	Plotting Simulation Traces on XGraph
	Implementation
	Code for Simulator Object Declaration:
	TCL Code for Node Generation:
	Code for Link Weight Routing Algorithm

	Scripts for Recording the Performance Statistics
	Packet Delivery Ratio
	Average End-to-End Delay
	Throughput

