
Optimizing Kubernetes Performance by
Handling Resource Contention with Custom

Scheduler

MSc Research Project

Cloud Computing

Akshatha Mulubagilu Nagaraj
Student ID: 18113575

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Akshatha Mulubagilu Nagaraj

Student ID: 18113575

Programme: Cloud Computing

Year: 2020

Module: Research Project

Supervisor: Mr. Vikas Sahni

Submission Due Date: 17/08/2020

Project Title: Optimizing Kubernetes Performance by Handling Resource
Contention with Custom Scheduler

Word Count: 5060

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Optimizing Kubernetes Performance by Handling
Resource Contention with Custom Scheduler

Akshatha Mulubagilu Nagaraj
18113575

Abstract

In virtualized environment, multiple instances use same resources of the envir-
onment,implying that chances of requesting similar resources for finishing jobs at
same point in time is critical. Furthermore, resource contention is faced if reques-
ted resources exceed the accessibility of resources. Most cases enter a waiting state,
when more than one job requests for same set of resources in completion of the
task with only few requests being attended to execute. As a result of such delays,
there is overall performance degradation. It is a peculiar issue which resurfaces in
Kubernetes container management system. Activities like placement location and
resource provision is the main aim of Kubernetes scheduler. Container placement,
dependent on CPU and memory parameters, is the default and conventional rule in
Kubernetes. Although it is very well known that these two factors are not the only
resources in a shared environment leading to resource contention issues. Careful
and exhaustive resource usage is taken into consideration for placement of the con-
tainer through the implemented scheduler. To reduce this issue, the implemented
solution discusses about how two containers intensely utilizing the same resources
could be placed in two distinct and separate Kubernetes pods. So, this proposed
Kubernetes scheduler handles resource contention problem resulting into improved
performance.

1 Introduction

The growth of lightweight docker containers was initiated by increasing virtualization
requirements. Monitoring of the status of the applications along with automatic manage-
ment of the application is the need post adopting the docker containers. This resulted in
creation of the Kubernetes container orchestration tool. Automatic installation coupled
with handling of the docker containers is the main aim of Kubernetes. Buyya et al. (
2018) states that for improvement in the scheduler, since many issues still limit the per-
formance of the default scheduler, further research can be undertaken. The tendency to
reduce conflicts amongst resources and curtail contention of resources can be a reality if
resource allocation is in lines with the ratio of the incoming workload.

1.1 Research Question

One or more container pods consisting of multiple containers which share resources is
managed by Kubernetes. Diverse workload is supplied by resources viz, CPU, ram,
network, storage.

1



Can Kubernetes Performance be optimized by lowering Resource Con-
tention through implementation of unique and efficient scheduling technique
depending on the application resource requirement?

Default Kube-scheduler considers resource demand and in-house resource availability
at each pod. The problem of resource management is handled through a resource reserve
mechanism that sets the cap on CPU and memory resources. Although such system is
inefficient and insufficient to handle resource contention issues. To avoid performance
degradation, without reserving resources a run time schedule needs to be in place.

2 Related Work

For an in depth understanding of the resource contention challenge occurring in Kuber-
netes, it is essential to comprehend previous technologies to Kubernetes. Subsequently, it
is essential to come to terms with the knowledge if resource contention, in earlier virtual
environments, was an issue or is it unique to Kubernetes. Varied approaches of researchers
whose work also aimed at reduction in resource contention issues in default Kubernetes
scheduler is also reviewed in this study. This background work is subsequently divided
into four subsections as listed below

2.1 Kubernetes Components and Architecture
Discussion related to fundamentals of both the technologies, namely basics of Virtu-

alization and necessity of containerization.
2.2 Limitations of Default Scheduler
This subsection highlights container orchestration structure and findings of various

researchers and the limitations of current literature on the same.
2.3 Virtualization Technologies
Post appreciating Kubernetes’ architectural components, the above mentioned sub-

section analyses the issues faced in an earlier virtualized technology, virtual machines to
Kubernetes, in relation to resource contention.

2.4 Contribution.
To illustrate this study, resource contention issues from current researches are ex-

plained with a focus on Kubernetes.

2.1 Kubernetes Components and Architecture

Division of the above depicted architecture is into two parts
1. Master Components

Medel et al. (2018) A single master component is in control of a cluster in each Kuber-
netes cluster. Activities like handling the scheduling task along with responding to cluster
activities like initiation of a new pod is carried out by the controller manager. Etcd is a
storage component where the system state is accumulated. Scheduling of each pod presen-
ted on the node is the job of kube-scheduler. Reception of user’s command coupled
with manipulation of data for Kubernetes objects is carried out by kube-apiserver.

2. Node components
Medel et al. (2018) As per Kubernetes structure, a single pod can hold multiple contain-
ers. Here each pod get separate unique ID by the master node and that is considered as
a virtual server. Medel et al. (2018) Reporting of node events, resource utilization along
with status of the pod is functioned through Kubelet node agent.

2



Figure 1: Kubernetes Architecture

2.2 Limitations of Default Scheduler

Figure 2: Traditional Scheduler Architecture

As illustrated above in Figure 2, there are three main steps in the selection process viz,
predicates, properties and round robin. All the accessible pods are provided to Predicates’
capacity and it returns valid or fake dependent on acknowledgment or dismissal of every
node by pod. For handling and supplying results for node selection by arranging them
in the range of 1 to 10 along with similar attributes is functioned after Prioritise. As per
priority level sequence, node selection process takes place where nodes from this priority
sequence get picked. Hence, nodes at same priority level get elected or served resources
on round robin basis.

Round robin technology is used by default scheduler in pods for container positioning.
Though, there is no control over the placement of the job. This implies that if similar
types of requests are assigned it would lead to demand for similar types of resources.
Consequently, many requests do not get served since containers of these jobs contend
with each other serving only few of the requests ; leading to resource contention issues.

3



To solve the issue of performance degradation and resource contention, solution provided
by default scheduler specifying limits for CPU and memory are insufficient. Performance
is improved at some level through reserve mechanism although it does lead to unused
cluster resources. This is why resource reservation is not a full proof solution for resource
contention issues. To overcome this difficulty, it would be a better plan to not to put
services together which are intensely utilizing same kind of resources.

2.3 Virtualization Technologies

Virtualization technologies are high on radar in the current times since they are majorly
utilized in cloud computing. The ability to share multiple computing resources without
the interference in execution of other tasks, virtual machine is relied upon to solve the
issue of dedicated hardware resources. For controlling resource usage and ensuring that
workload remains isolated, virtual machines provide the impression of real physical re-
sources. Felter et al. (2015). Virtual Machine (VM) encapsulates the operating system
and application through virtual technology. A single physical machine (PM) helps in the
execution of such multiple virtual machines Nasim et al. (2016). Degradation of VM
performance can be reduced by increasing the chances of resource contention occurring
through physical resource sharing. Consequently, a vital role in maintaining the VM
performance is conditional on VM placement decision. Zhao et al. (2018) Nasim et al.
(2016). Buyya et al. (2018) state that the process of overcoming the wastage of dedicated
resources through sharing of multiple nodes is containerization. Mavridis and Karatza
(2019) performed an analysis of how an application’s output and performance is influ-
enced by configuration of virtual machines and container technologies. The conclusion
of this study was the fact that configuration of is dependent on application’s sensitiv-
ity. Recent introduction of Unikernels technology, according to a study of Benedictis
and Lioy (2019), consists of all the elements needed for auto booting. Futuristically,
this can be used as an alternative for currently existing Linux containers. Containers
always cannot be alternative for VMs. This is isolated from the fact that there can be
minimization of resource cost along with good utilization of resources through contain-
ers. In the end, selection of system generated best-fit match is important.Kubernetes, a
Container Management System, Chang et al. (2017)open source container orchestration
framework which offers resolution for bundle of nodes, VM and container solutions are
restricted to single nodes only. Scenarios of under-provision along with over provision is
prevented through this tool. Work by Medel et al. (2018) analyse container and pods
performance in Kubernetes through deployment, maintenance and termination phases.
Improved resource management and overall capacity planning can be executed through
Petri net-based performance model. The application’s design including circumstantial
structure of the containers and pods is achieved through it. Since the chances of re-
source contention issues are not considered, the utility is limited only to performance
management of the Docker containers.

Resource Contention in various virtualization technologies
To study above research question, this section does analysis of resource contention prob-
lem in earlier technologies such as virtual machine, docker containers as well as Kuber-
netes. Additionally, it dwells and seeks an explanation into the issues of performance
degradation due to challenges in resource contention.

1. Virtual Machine
Operating multiple VMs on identical PM enhances resource utilization, according to Zhao

4



et al. (2018). Since resources are shared, there is high probability that resource conten-
tion issues would crop up since similar resources are being employed in turn heading
towards degradation of performance. Isolation of resources is achieved through hyper-
visor of VMs but that is not enough. Isolation, again, is challenging for bandwidth, cache,
and memory. According to Nasim et al. (2016a), migration of VMs to a smaller num-
ber of hosts is carried out to save energy from unutilized hosts. Due to such migration,
there are variations in characteristics which leads to performance degradation. An optim-
ized VM placement solution is provided through this research of performing quantitative
methods of assessments of requested resources like disk, memory and CPU. In a study
by Blagodurov et al. (2010), multiple researches focus on analysis of the performance
intrusion for detection of inter-VM contention. Hence, Blagodurov et al. (2010) proposes
mitigation of the issue by interference and detection interference at PM level metrics.

2. Containers Containers were developed to conquer constraints of virtual machine.
Oh et al. (2018) states that due to resource contention issues container based clusters are
facing performance loss. GPU sharing between containers was the focused area of this
research where they succeeded sharing with reduced memory loss. By employing adaptive
fair-share technique, we can look at minimization of resource contention issues. On basis
of their importance, each active container is provided with different amount of memory.
This is done instead of storing equal quantity of memory for each container. But the
limitations of this research is the fact that it is based upon GPU parameters resulting
into improved performance. In addition to that, Kim et al. (2018) does research on
similar problem but that is in containerized scientific workflows where he provides solution
of Hierarchical Recursive Resource Sharing. In this case, along with dynamic resource
allocation technique they also maintain multi-tier applications. This provides maximum
number of resources to request in the top most tier and the minimal for the rest of the
tiers.

3. Kubernetes
Resource management according to Blagodurov et al. (2010) states that it is the process
of assigning resources like computing processes, virtual machines, storage, network, nodes
to an application. Further Madni et al. (2017) mentions that, resource congestion occurs
when more than one user request for similar sets of resources of a particular instance.
Additionally, he also states that resource sharing amongst containers is similar to resource
sharing of virtual machines. This implies that requesting nodes compete amongst them-
selves when there is a request for more than one single node. Blagodurov et al. (2010) also
states that based on resource availability, Kubernetes scheduler is liable to align container
placement. Considering parameters like CPU and memory, Kubernetes scheduler takes
the decision of alignment. Furthermore, in a study by Fazio et al. (2016) it is concluded
that Container contention is still an topic for analysis. Consumption of resource and
application performance are dependent on each other. These two are interrelated factors,
as when number of microservices executes on a host, few of them need more storage,
few need more network likewise, requests are bandwidth or memory intensive. But since
there is improper management of resources and incorrect container placement decision it
leads to resource contention and performance degradation. Recognition of factors which
Kubernetes scheduler contemplates on while determining on container placement is the
main aim of this research.

5



2.4 Contribution

With minimal overhead, programmed resource management envisages rapid instance life-
cycle implementation according to Medel et al. (2018). To come to that conclusion, Medel
et al. (2018) work analyses launching and termination of Kubernetes overhead for distinct
configurations using Petri Net based model. By monitoring network and characters of
CPU, rules have been created for assigning the number of containers per pod. Although
his work, for deciding the overheads, only considers CPU and network characters. For
efficient resource scheduling, one has to understand characters of the application accord-
ing to Figueiredo (2006). In such scenario, CPU load along with other resources such as
I/O, memory, network needs to be considered for better resource scheduling. However,
the constrain of this research is limited to manual selection of performance metric. This
needs to be changed to automatic for handling online classification. Also, a generic pro-
gram for better resource provisioning has been built by Chang et al. (2017) since dynamic
resource provisioning in Kubernetes default is based on only CPU utilization which in
turn is insufficient for taking a call on utilization. This generic platform considers QOS
metrics along with system resource utilization along with additionally employing CPU
utilization. Not only is over provisioning handled but scenarios of under provisioning are
also looked after through this modularized process. And in case it falls below 40 percent,
it is considered to be light load period ; it is considered to be a heavy load period when
70 percent is exceeded. This is taken into consideration if pod is to be added or released.
The deployment process is simplified and streamlined of resource provisioning algorithm
without affecting other modules. Concurrently considering I/O contention issues at either
node level or cluster level projects the resource management problems. To take care at
the node level or cluster level, McDaniel et al. (2015) has built a two-tier approach by
combining the qualities of docker container and docker swarm, both of which are respons-
ible for it. Depending upon the priority level- high, medium or low, from the node level
I/O resources are supplied for each container. Unlike at cluster level which assigns the
properties of docker swarm. Here, the work is focused on handling contention problems of
containers with I/O shares. Wei-guo et al. (2018) achieved kube-scheduler performance
improvement by blending properties of two different algorithms such as ant colony and
swarm optimization. Through this model, load balancing is enhanced and cost reduction
for resources is achieved since it only considers parameters of memory and CPU.

6



2.5 Literature Work Summary

Author Research Benefits Limitations

I. Figueiredo(2006)
Jian Zhang and
Figueiredo (2006)

Classification on pat-
terns of resource con-
sumption

Overall enhancement
in system throughput
and report scheduling

Selection of resources
is done manually.

Wei-guo et al. (2018)
Wei-guo et al. (2018)

Combining features
and properties of ex-
isting algorithms for
achieving collective
results such as serve
node with a minimal
objectives.

Performance improve-
ment, reduction in
load balancing man-
agement, leads to im-
proved resource utiliz-
ation

This work considers
limited resources such
as CPU and memory.

Medel et
al.(2018)Medel et al.
(2018)

Resource provisioning
by tracking perform-
ance of an application
with various configur-
ations .

Reduction in wastage
of resources, better ca-
pacity planning result-
ing in improved re-
source management in
turn overall improved
structure.

Research is lim-
ited to monitoring
performance at dif-
ferent configurations
without considering
any other resource
management policies.

McDaniel et al.(2015)
McDaniel et al. (2015)

Provide solution on
I/O contention prob-
lem at different levels
by implementing
scheduler at node and
cluster level.

Reduction in I/O re-
source contention

Only useful for applic-
ations need more I/O.

Table 1: Literature work summary

3 Methodology

While the purpose of this analysis is to define the resource contention problem in the
Kubernetes pods and, depending on the form of application scheduler, to place and
container in such a way that the resource contention problem does not occur. With this
implementation, scheduler positions the container as mentioned in subsequent algorithm.

3.1 Custom Scheduler Design Overview

Below described 3 scenarios works for each requested job from workload file as given in
figure 3.

Scenario 1: there are 4 different types of already existing requests in the first pod
then the occurrence of fifth request irrespective of the type would lead to the launch of
a new pod

Scenario 2: There is a storage intensive request and in case there is already existing
request in the earlier pod, even if the container count is less than 4, there is a launch of
new pod to handle the storage intensive application.

7



Scenario 3: In case there is vacancy for a particular type of container and there are
more resources available for execution, even if there are less than 4 containers in a pod,
a new pod would be launched.

Figure 3: Custom Scheduler Design Overview

3.2 Working of Proposed Custom Scheduler

3.2.1 Application Classification

Algorithm 1 : Application Categorization Algorithm
Input: Application Workload, An
Result: Type of an Application.
For each application, do
1. Deploy Application on one VM.
2. Monitor application resource utilization.
3. Compare between resource utilization.
4. Categorized resource in a group of maximum utilized resource (as per Step 3 result).
5. end
This section underlines two different algorithms, in the attempt to experiment schedul-

ing, viz, application categorization and application placement algorithms that aid in
scheduling applications. Through python simulation and for testing purpose by gen-
erating fabricated workload, this research gives a unique approach in formation of an
environment that aids in implementation. Requests are categorized into 4 sections us-
ing Algorithm 1 viz, storage-group, network-group, CPU-group or memory-group. Each
request’s utilization is calculated and post the calculation, they are classified depend-
ing upon the comparison amongst as many as possible resources. Using Application
Scheduling Algorithm, custom scheduler decides the placement of the application post
the category of request is identified.

3.2.2 Scheduling Algorithm

Data : Application and group of an application

8



Result : Application placement in respective container
For each request
Switch
Case 1 : Group == CPU
Check if (container in pod ¡=4)
Check if (container of CPU group)
Sufficient resource check()
Check existence of CPU group request ()
Launch New pod ()
else
Launch Container in same pod()
else
Launch New pod ()
Launch New pod ()
Case 2: Group == Memory
Case 3: Group == Network
Case 4: Group == Storage
The scheduling algorithm scheduler post the categorization of the application validates

if an application has high mips rate than others resources. If so then it is put under
CPU-group. Such a request needs to be placed in a pod. An individual pod here holds
maximum of 4 containers where every single container is a representation of a different
group. Before execution, it checks the count of containers in each pod is not more than
4. If that is not the case then availability of resources is confirmed. Post that types of
requests are compared and validated if such a request is already existing and finally a new
pod is launched. Likewise, similar request are not aligned with to the pod where there
is already a request of the existing kind. There is no interference of the pods amongst
each other since they function independently in a well-mannered function where each
container in a pod belongs to different group.

3.3 Application Baseline and Benchmarking

Success of this implementation is validated on the basis of CPU, Network, Storage and
Ram like parameters. These are considered as baseline for proposed algorithm. Further,
to do comparative analysis, user has given choice to execute either using original scheduler
or with proposed scheduler. Then, comparison of both outcomes can be compared to
comment on implementation.

3.4 Application Execution Environment

This study executes python simulator and provides an input of fabricated workload for
validation. This is done to simulate proposed scheduling technique.

3.4.1 Creation of Workload

This implementation makes use of fabricated workload. This workload is generated using
random number generator. For simulation purpose it considers CPU, Storage, Ram and
network parameters. These parameters can be changed as per application need. For real
implementation actual data set can be passed as input for this application.

9



3.4.2 Simulation using Python

Python scripting language is executed for simulating this Kubernetes architecture. Pre-
viously, existing cloudsim simulator was supposed to be utilized for this research work.
Since this Kubernetes service is new and any simulator is not yet fully featured. As
with existing versions of cloudsim, it is possible to calculate utilization of VM and host
but it is not possible to monitor resource utilization of each request. However, for real
implementation GoogleCloud can be used.

4 Design Specification

Main goal of new design is to overcome drawbacks of default round-robin based algorithm
and handle that by redirecting it to new custom scheduling technique. Initially, the
algorithm would distinguish the arrival of new request into one of the four resources
group. This is based on the level of intensive usage of resources. Consequently, proposed
scheduler facilitates the decision of which container placement is to be applied. This is
shown in Figure 4.

4.1 Proposed Kubernetes Scheduler Architecture Overview

In this segment, we examine and emphasize the overview of the architecture of the pro-
posal to explore our research objective. The general use of the application is improved
significantly through this strategy. This implementation works in two stages

• Application Classification
• Application Scheduling

Figure 4: Proposed Kubernetes Scheduler Architecture Overview

In the first stage, categorisation of the application is done through characterization
model using Application Categorization Algorithm which is based upon resource usage
of the workload being provided. The application is distinguished into Storage group,
CPU group, Ram group and Network group by comparing resource need. Then after, in
second stage scheduling algorithm makes decision on to add new pod or use existing one
by validating against earlier discussed cases. The proposed model ensures that different
requests belonging to same resource group are not billed in the same pod. Additionally, it
also ensures that accessibility and availability of the resources of the pod is not surpassed
by the resources requested. Similarly, chances of same job requests intending to use similar
resources are minimised when identical types of requests are placed in various pods. Thus,

10



reduction of resource contention, to some degree, and enhancement of the application’s
performance by averting over-utilization and under-utilization can be achieved through
improved resource utilization is the realization and proof of the principle.

4.2 Kube-Scheduler Architectural Flow

Architectural workflow involving different stages such as scanning of generated workload,
creation of pods and then launching of containers in existing pods or in new pod depending
upon workload execution is illustrated in Figure 5. Briefly, the file reader pursues the
information and data from the source workload file in the workload reading phase. Also,
initialization of datacentre takes place with required configuration depending upon the
configuration of the system consisting of amount of hosts for the datacentre. Later, to
host development, the algorithm performs the workload file and determines the resource
consumption for each request. Once resource utilization is identified, the type of the
application is identified for execution by assessing resource usage of every single request.
Workload placement is decided through custom scheduler following resource utilization.
Suppose the request belonging to memory group gets served by first pod. After that if
second request is of CPU group then depending on resource availability it will be assigned
to the same pod of memory. But if a request is CPU intensive is followed after the first one
then it gets assigned into the next pod. Network, storage and any additional resources
are handled through this algorithm. Accommodation of maximum four containers, each
of different types a single pod can contain.

Figure 5: Kube-Scheduler Architectural Flow

11



4.3 Implementation and Deployment

To show the proposed work for genuine and real usage application needs to be deployed
straightforwardly on Google cloud or simulation can be used. The proposed scheduler can
be better appreciated when the work would be done through simulation utilizing python.
Steps illustrated in Figure 6 need to be performed for real implementation whereas in
figure 7, there are details of steps which can be carried out for simulation of this work.

4.3.1 Simulation

As for real implementation we need to monitor actual input application. In a same way
or simulation, either existing dataset file like NASA or fabricated workload file needs to
be presented. Simulation is done by following below mentioned steps illustrated in figure
7. First datacenter structure needs to be created and post that depending on requests,
Host machines and containers get initiated. Once execution is over, resources will be
made available for further execution.

Figure 6: Simulation

4.3.2 Real Implementation on Google Cloud

Here the process talks about real implementation of this proposal on Google Cloud.
For this, different monitoring tools are available in the market. Tools such as Grafana,
Prometheus can be used and after that Google cloud container cluster get implemented
by uploading container docker image. Ultimately, the application gets presented to the
web.

12



Figure 7: Implementation on Google Cloud steps

5 Code Implementation

To incorporate the Kubernetes Scheduler, this section explores the model’s implementa-
tion framework in depth where it retains a different class for each component.

5.1 Development Structure

Using python, Kubernetes model has been simulated. This can be seen in figure 8 where
aforementioned algorithms for simulation are worked upon through developed classes and
methods.

Figure 8: Development Structure

As indicated above, separate class is maintained for creation of datacentre, Virtual
Machine, Container and Host. First class will be called initially which makes call to
datacentre class where datacentre initialization methods are defined. Further for ex-
ecution of workload, user has given choice to execute an application by using default
kube-scheduler or using proposed scheduler. After that PrintUtilization function prints
all utilization outcomes into output file. Next to that it applies check of over-utilization
for all resource types, where it checks for 30 limits. If it crosses 30 then new pod or here

13



VM will get launch. Here for now 4 resources are targeted so that, maximum container
capacity in a host will be 4 only. Each request looks for best-fit host.

6 Evaluation

This part of the study analyses and compares results of original and new Kubernetes
scheduler to carryout the main aim of the research. To increase the validation and
sureness of the implemented solution, examination flow was repeated for around five
times. The first section of the study evaluates the utilization of resources of default
scheduler implementation for evaluating the experimental results. Similarly, in second
part, implemented scheduler outcome is determined.

6.1 Output of Default Scheduler Implementation

For validating the implementation, results of both the original system results and imple-
mented solution results are to be compared. Below is the result of analytical analysis for
all the targeted resources.

Figure 9: Output with Default Scheduler

It is clear that in 9a, utilization of the RAM goes above 90 in nearly all cases. However
it is also plotted that is exceeding up to 70 in almost all cases. However, good amount
of variation is seen here that is 30-90. In the next 9b figure, utilization of Storage is
varying from 0 to 70. Also in some cases it has even crossed 70. However in 9c, even
though utilization is not varying, it lies around. It has also been observed in 9c network
utilization consistently lies near 60. But at some positions there are sudden falls. Again,
in same pattern, there are fluctuations for storage type. It is roughly varying between 30
and 90. Overall, results are not only fluctuating but are also seen to produce non-linear
results. Interestingly, few plots are over 70 and a note should be made on this occurrence.
It is safe to conclude that due to uncertain results, resource contention seems to take place
highly.

14



6.2 Output with Proposed Scheduler

To understand the success of this research, it is necessary to compare results with ex-
isting and with new implementation and on same workload. Experimental results of
implemented solution are illustrated in Figure 10

Figure 10: Output with Proposed Scheduler

This execution is also done with same dataset and for same resource set as earlier.
Here it has been clearly visible that these utilization’s are not that varying. These
are fluctuating around certain point but there are no spikes or downs. As per 10.a.
figure RAM utilization is in the range of 50-65. This is unlike what we did with default
implementation results. Consequently, all observations are mapped near 60. Unlike
default implementations, observations are not differing. Hence storage utilization, as
illustrated in 10b, is within 35-38 range. But in existing scheduler, the fluctuation of
results is seen in the range of 65-70s. In figure 10.c, results lies in the same range of 60.
But for this resource type drop rate has been improved. One can observe that there is
certain improvement as per Figure 10d’s fluctuations for utilization of CPU. The observed
range improved is from 45-65 to 25-95.

6.3 Statistical Analysis

For conducting statistical analysis, normality test is to be executed along with a histogram
method. Normality test is performed on summarized data. Data is not normal and this
can be observed through the test results. After performing Statistical Analysis Test, as
the data is not normal, Mann-whitneyWijnand and van de Velde (2000) test is selected.
This is one tail non-programmatic test. The outcome for all the monitored resources is
observed as p ¡ 0.05. Consequently, as the p value is less than 0.05 null hypothesis is
rejected. This leads to the fact that an alternate hypothesis has be to accept indicating
that there is substantial difference amongst the two groups with 95

15



Figure 11:

6.4 Comparison between Original and Proposed results

Figure 12: Original

Figure 13: Proposed

Here figure 12 depicts the combined result of all monitored resources with original imple-
mentation and figure 13 depicts for implemented scheduler. It can be clearly seen that

16



results of all types of resource utilization is approximately varying in the range of 3- 95
whereas that is not the case with new scheduler. Proposed scheduler plots utilization
around 40 and 60. This is good improvement and consistent results have been observed.
Results are not varying as earlier. As per Figure 11 plotting’s utilization is going above 60
at multiple points but that with proposed scheduler it resides in the range of 60. It varies
by +5 and -5 which is quite good improvement for CPU, Network and Ram. Additionally,
in same way storage results are also plotted near 40 with minimal variations.

This brings us to a conclusion that the proposed implementation outcome does im-
prove resource management and moderates the prospects of resource contention to arise.

7 Conclusion

To sum up, on this proposed implementation, it can be concluded that, doing small
improvement of application positioning helps to achieve performance improvement by
lowering the contention problem and applying scheduling algorithms. A novel meth-
odology is used which plans an application by arranging the application on the level
of intensity it preserves during resource usage. There are fluctuations in the usage of
resources in the default scheduler for the placement of container technique using round-
robin even after the procedure of reserving resources such as memory and CPU which
causes either over or underutilization of these resources. However, that is not the case
with the custom scheduler implemented in this work. It can be seen in the results that
it minimizes fluctuations at great extent. Even though this implementation takes care
of resource utilization with reduced wastage it applies restriction to not go beyond 70 to
maintain application performance. Application performance should not be constrained
while handling resources. In comparison to the default scheduler, results vary a great
extent, and also there is no control over maximum resource utilization without impacting
application performance because there is no control over the level of maximum resource
utilization.

8 Future Work

Current implementation works well in handling contention problems by managing the
placement of application. Also, it lowers fluctuations and improves application perform-
ance. But still, it can be observed that resources are not fully- utilized. It is expected that
live-migration can handle this as well. So that container live-migration can be studied as
a part of future work for this research work.

References

Beltre, A., Saha, P. and Govindaraju, M. (2019). Kubesphere: An approach
to multi-tenant fair scheduling for kubernetes clusters, 2019 IEEE Cloud Sum-
mit, pp. 14–20. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

9045748&isnumber=9045505.

Chang, C., Yang, S., Yeh, E., Lin, P. and Jeng, J. (2017). A kubernetes-based mon-
itoring platform for dynamic cloud resource provisioning, GLOBECOM 2017 - 2017

17

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9045748&isnumber=9045505
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9045748&isnumber=9045505


IEEE Global Communications Conference, (Conference Rank : B), Singapore, Singa-
pore, pp. 1–6. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

8254046&isnumber=8253909.

Cloud, G. (n.d.). Kubernetes engine. reliable, efficient, and secured way to run kubernetes
clusters. https://cloud.google.com/kubernetes-engine/,.

Google Cloud (n.d.). https://cloud.google.com/.

Hightower, K., Burns, B. and Beda, J. (2017). Kubernetes: Up and running: Dive into
the future of infrastructure.

Jian Zhang and Figueiredo, R. J. (2006). Application classification through monitoring
and learning of resource consumption patterns, Proceedings 20th IEEE International
Parallel Distributed Processing Symposium, pp. 10 pp.–. https://ieeexplore.ieee.

org/stamp/stamp.jsp?tp=&arnumber=1639378&isnumber=34366.

Kozhirbayev, Z. and Sinnott, R. O. (2017). A performance comparison of container-based
technologies for the cloud, Vol. 68, p. 175–182.

Kube-Scheduler (n.d.). https://kubernetes.io/docs/concepts/

scheduling-eviction/kube-scheduler/.

Li, Z., O’Brien, L., Zhang, H. and Cai, R. (2012). A factor framework for experimental
design for performance evaluation of commercial cloud services, 4th IEEE Interna-
tional Conference on Cloud Computing Technology and Science Proceedings, pp. 169–
176. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427525&

isnumber=6427477.

Mavridis, I. and Karatza, H. (2017). Performance and overhead study of containers run-
ning on top of virtual machines, 2017 IEEE 19th Conference on Business Informatics
(CBI), Vol. 02, pp. 32–38. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=8012937&isnumber=8012382.

McDaniel, S., Herbein, S. and Taufer, M. (2015). A two-tiered approach to i/o quality of
service in docker containers, 2015 IEEE International Conference on Cluster Comput-
ing, pp. 490–491. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
7307624&isnumber=7307539.

Medel, V., Tolosana-Calasanz, R., Ángel Bañares, J., Arronategui, U. and Rana, O. F.
(2018). Computers electrical engineering, Characterising resource management per-
formance in Kubernetes, Vol. 68, pp. 286–297. http://www.sciencedirect.com/

science/article/pii/S0045790617315240.

Medel, V., Tolón, C., Arronategui, U., Tolosana-Calasanz, R., Bañares, J. and
Rana, O. (2017). Client-side scheduling based on application characterization
on kubernetes, pp. 162–176. https://www.researchgate.net/publication/

320248964_Client-Side_Scheduling_Based_on_Application_Characterization_

on_Kubernetes/citations.

18

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8254046&isnumber=8253909
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8254046&isnumber=8253909
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1639378&isnumber=34366
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1639378&isnumber=34366
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427525&isnumber=6427477
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427525&isnumber=6427477
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8012937&isnumber=8012382
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8012937&isnumber=8012382
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7307624&isnumber=7307539
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7307624&isnumber=7307539
http://www.sciencedirect.com/science/article/pii/S0045790617315240
http://www.sciencedirect.com/science/article/pii/S0045790617315240
https://www.researchgate.net/publication/320248964_Client-Side_Scheduling_Based_on_Application_Characterization_on_Kubernetes/citations
https://www.researchgate.net/publication/320248964_Client-Side_Scheduling_Based_on_Application_Characterization_on_Kubernetes/citations
https://www.researchgate.net/publication/320248964_Client-Side_Scheduling_Based_on_Application_Characterization_on_Kubernetes/citations


Pereira Ferreira, A. and Sinnott, R. (2019). A performance evaluation of containers run-
ning on managed kubernetes services, 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 199–208. https://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=8968907&isnumber=8968820.

Resource Quota (n.d.). https://kubernetes.io/docs/concepts/policy/

resource-quotas/.

Rightscale (n.d.). Cloud computing trends: 2019 state of the cloud sur-
vey. https://www.rightscale.com/blog/cloud-industry-insights/

cloud-computing-trends-2019-state-cloud-survey,.

Song, S., Deng, L., Gong, J. and Luo, H. (2018). Gaia scheduler: A
kubernetes-based scheduler framework, 2018 IEEE Intl Conf on Parallel Dis-
tributed Processing with Applications, Ubiquitous Computing Communications,
Big Data Cloud Computing, Social Computing Networking, Sustainable Com-
puting Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 252–
259. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8672301&

isnumber=8672218.

Wei-guo, Z., Xi-lin, M. and Jin-zhong, Z. (2018). Research on kubernetes’ resource
scheduling scheme, Proceedings of the 8th International Conference on Communication
and Network Security, (Conference Rank : B), ICCNS 2018, ACM, Qingdao, China,
pp. 144–148. http://doi.acm.org/10.1145/3290480.3290507.

Wijnand, H. P. and van de Velde, R. (2000). Mann–whitney/wilcoxon’s nonparamet-
ric cumulative probability distribution, Computer Methods and Programs in Bio-
medicine 63(1): 21 – 28. "http://www.sciencedirect.com/science/article/pii/

S0169260700000584".

Wu, Q., Yu, J., Lu, L., Qian, S. and Xue, G. (2019). Dynamically adjusting scale of
a kubernetes cluster under qos guarantee, 2019 IEEE 25th International Conference
on Parallel and Distributed Systems (ICPADS), pp. 193–200. https://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=8975761&isnumber=8975714.

Xing, S., Qian, S., Cheng, B., Cao, J., Xue, G., Yu, J., Zhu, Y. and Li, M. (2019). A qos-
oriented scheduling and autoscaling framework for deep learning, 2019 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. https://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=8852319&isnumber=8851681.

Zhang, M., Ren, H. and Xia, C. (2017). A dynamic placement policy of virtual machine
based on moga in cloud environment, 2017 IEEE International Symposium on Parallel
and Distributed Processing with Applications and 2017 IEEE International Conference
on Ubiquitous Computing and Communications (ISPA/IUCC), (Conference Rank :B),
uangzhou, China, pp. 885–891. https://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=8367365&isnumber=8366890.

19

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8968907&isnumber=8968820
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8968907&isnumber=8968820
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https : / / www.rightscale . com / blog / cloud - industry - insights / cloud -computing - trends - 2019 - state - cloud - survey
https : / / www.rightscale . com / blog / cloud - industry - insights / cloud -computing - trends - 2019 - state - cloud - survey
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8672301&isnumber=8672218
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8672301&isnumber=8672218
http://doi.acm.org/10.1145/3290480.3290507
 "http://www.sciencedirect.com/science/article/pii/S0169260700000584"
 "http://www.sciencedirect.com/science/article/pii/S0169260700000584"
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8975761&isnumber=8975714
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8975761&isnumber=8975714
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8852319&isnumber=8851681
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8852319&isnumber=8851681
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367365&isnumber=8366890
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367365&isnumber=8366890

	Introduction
	Research Question

	Related Work
	Kubernetes Components and Architecture
	Limitations of Default Scheduler
	Virtualization Technologies
	Contribution
	Literature Work Summary

	Methodology
	Custom Scheduler Design Overview
	Working of Proposed Custom Scheduler
	Application Classification 
	Scheduling Algorithm

	Application Baseline and Benchmarking
	Application Execution Environment
	Creation of Workload
	Simulation using Python


	Design Specification
	Proposed Kubernetes Scheduler Architecture Overview
	Kube-Scheduler Architectural Flow
	Implementation and Deployment
	Simulation
	Real Implementation on Google Cloud


	Code Implementation
	Development Structure

	Evaluation
	Output of Default Scheduler Implementation
	Output with Proposed Scheduler
	Statistical Analysis
	Comparison between Original and Proposed results

	Conclusion
	Future Work

