
Configuration Manual

Research Project

MSc Cloud Computing

Saurabh Kumar
Student ID: x18193188

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Saurabh Kumar

Student ID: x18193188

Programme: MSc Cloud Computing

Year: 2020

Module: Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 17/08/2020

Project Title: Configuration Manual

Word Count: XXX

Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 7th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Saurabh Kumar
x18193188

1 Introduction

In order to run the artifact, a platform needs to be configured and setup. Following are
the components that need to be installed. Each component installation is discussed in
the following sections.

� kubernetes[1]

� docker[2]

� golang[3]

� NATS server[4]

� linux based server[5]

1.1 VMs Configuration

Figure 1: VMs setup on openstack

1



There are 3 VMs configured for installing the above components on openstack. Each
VM has the following configuration.

� RAM : 2 GB

� CPU : 2.0 GHz

� Disk Space : 10 GB

� CPU cores : 2 physical cores 2 virtual cores

Among the 3 VMs that is taken for component installation, one acts as the kubernetes
master and other 2 act as kubernetes workers, all container initialization and spawning
of functions are done on the workers. Figure 1 shows the cluster setup for running the
artifact.

1.2 Component Versions

Below table 1 consists of the versions corresponding to the components used in setting
up the environment for deploying the artifact. The versions are important to ensure the
smooth running of the artifact.

Component Name Version

kubernetes 1.18
docker 19.03
golang 1.13

NATS server 2.1.7
linux based server ubuntu 18.04

kernel 4.15.0

Table 1: Component and version table

2 Installation

2.1 Installation on all 3 VMs components

� Disable swap, swapoff then edit fstab removing any entry for swap partitions

1. swapoff -a

2. vi /etc/fstab

� Adding Google’s apt repository gpg key

1. curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg — sudo apt-
key add -

� Adding the Kubernetes apt repository

1. sudo bash -c ’cat <<EOF >/etc/apt/sources.list.d/kubernetes.list deb ht-
tps://apt.kubernetes.io/ kubernetes-xenial main EOF’

2



� Update the package list and use apt-cache to inspect versions available in the re-
pository

1. sudo apt-get update

2. apt-cache policy kubelet — head -n 20

3. apt-cache policy docker.io — head -n 20

� Install the required packages

1. sudo apt-get install -y docker.io kubelet kubeadm kubectl

2. sudo apt-mark hold docker.io kubelet kubeadm kubectl

� Check the status of our kubelet and our container runtime, docker

1. sudo systemctl status kubelet.service

2. sudo systemctl status kubelet.service

� Add the above services to the inittab, so they are started on system boot

1. sudo systemctl enable kubelet.service

2. sudo systemctl enable docker.service

� Setup docker daemon

1. sudo bash -c ’cat >/etc/docker/daemon.json <<EOF ”exec-opts”: [”nat-
ive.cgroupdriver=systemd”], ”log-driver”: ”json-file”, ”log-opts”: ”max-size”:
”100m” , ”storage-driver”: ”overlay2” EOF’

� Restart all the VMs for the changes to take effect

2.2 Installation on master node

� Download the yaml files for the pod network - calico yaml file might have changed
since the publication of the thesis and is now avaialble at the URL below.

1. wget https://docs.projectcalico.org/manifests/calico.yaml

� Inside calico.yaml, find the network range CALICO IPV4POOL CIDR, adjust if
needed.

1. vi calico.yaml

� kubernetes cluster, specifying a pod network range matching that in calico.yaml,
the pod ip ranges will be decided from this file.

1. sudo kubeadm init –pod-network-cidr=192.168.0.0/16

� Our account on the master to have admin access to the API server from a non-
privileged account.

1. mkdir -p $ HOME / .kube

3



2. sudo cp -i /etc/kubernetes/admin.conf $ HOME/.kube/config

3. sudo chown $ (id -u): $ (id -g) $ HOME/.kube/config

� Deploy yaml file of the pod network

1. kubectl apply -f calico.yaml

2.3 Installation on worker node

� On the master, a list of token can be fetched using the following command.

1. kubeadm token list

� Generate a new token if the old one has expired.

1. kubeadm token create

� On the master, the CA cert hash can be found by following command.

1. openssl x509 pubkey in /etc/kubernetes/pki/ca.crt — openssl rsa pubin
outform der 2>/dev/null — openssl dgst -sha256 -hex

� Using the master (API Server) IP address, the token and the cert, use the below
command to let the worker node join the master.

1. sudo kubeadm join <IP ADDRESS OF MASTER > – token <TOKEN
>–discovery-token-ca-cert-hash <CERTIFICATE >

2.4 Installation of NATS server

� The NATS server should be installed in order for the artifact to enable scatter-
gather communication.

1. Create a new file ”nats-server-pod.yaml”

2. Deploy the file on kubernetes : kubectl apply -f nats-server-pod.yaml

3. Figure 2 shows the config details of the nats-server-pod.yaml

2.5 Installation of private registry in docker

� Create a private registry in docker

1. docker run -d -p 5000:5000 –restart=always –name registry registry:2

� All the images are created and pushed on to the private registry so it can be pulled
by the kubernetes engine while launching worker and master containers

� The purpose of creating a private registry is to ensure that the kubernetes engine
doesnot pull the image from docker hub and there is a proper segregation of images
created by the user and the pre-existing images.

4



Figure 2: NATS server config yaml file

2.6 Installation of artifact

� Download the repo from Github - https://github.com/saurabh7517/thesis

� Save the golang program to the ip addresses where kubernetes is installed

� Run the following commnand

1. go run github.com/saurabh7517/thesis

� The above command will launch a web server and a file can be uploaded using a
post request, subsequently that file once uploaded will be divided into chunks and
processed by the workers spawned by the artifact.

3 Execution

After the artifact and the environment is setup, a HTTP client application like postman
needs to be installed to upload a file to trigger the artifact. Since the application is a
serverless function it needs to be triggered by an external remote procedure call. In this
case the RPC is a post request. Figure 3 illustrates the upload of a file using a HTTP
client application Postman.

3.1 Output

Once the file is uploaded, this will trigger the artifact to launch master function, the
master function will calculate the file depending on the configurable file size and launch

5



Figure 3: Postman configuration for triggering the artifact

worker functions. For the following setup

� file size = 1,654 bytes

� block size = 300

� pods created = 6

Figure 4: Outputs from 2 worker functions

The above outputs can be seen if the access to the terminal on which the artifact is
running is granted.

References

[1] G. Sayfan, Mastering Kubernetes: Large scale container deployment and management.
Birmingham Mumbai: Packt Publishing, 2017, oCLC: 967366064.

[2] C. Boettiger, “An introduction to Docker for reproducible research,” ACM SIGOPS
Operating Systems Review, vol. 49, no. 1, pp. 71–79, Jan. 2015. [Online]. Available:
https://dl.acm.org/doi/10.1145/2723872.2723882

[3] M. Tsoukalos, Mastering Go: create Golang production applications using network
libraries, concurrency, and advanced Go data structures, 2019, oCLC: 1127080883.

[4] “NATS - Open Source Messaging System | Secure, Native Cloud Application
Development.” [Online]. Available: https://nats.io/

6

https://dl.acm.org/doi/10.1145/2723872.2723882
https://nats.io/


[5] U. R. Sawant and Packt Publishing, Ubuntu Server cookbook: arm yourself to make
the most of the versatile, powerful Ubuntu Server with over 100 hands-on recipes,
2016, oCLC: 949751073.

7


	Introduction
	VMs Configuration
	Component Versions

	Installation
	Installation on all 3 VMs components
	Installation on master node
	Installation on worker node
	Installation of NATS server
	Installation of private registry in docker
	Installation of artifact

	Execution
	Output


