
Mobile Offloading technique for
Latency-sensitive and

Computational-intensive task

MSc Research Project

Cloud Computing

Niranjan Karunanithi
Student ID: X18177727

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Niranjan Karunanithi

Student ID: X18177727

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 17/08/2020

Project Title: Mobile Offloading technique for Latency-sensitive and
Computational-intensive task

Word Count: 6211

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 28th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Mobile Offloading technique for Latency-sensitive and
Computational-intensive task

Niranjan Karunanithi
X18177727

Abstract

The idea of Mobile cloud computing is to utilise the resources of the powerful
computing nodes for the improvement of performance in resource constraint devices.
The offloading decision has been taken in various aspects of the device. In this pa-
per, the decision making engine will offload both computational intensive task and
latency sensitive task based on the device current parameters by considering differ-
ent decision factor for respective type of task. Offloading computational intensive
task will free up memory space in the device which improves the device performance
but offloading latency sensitive task improves device performance with increased
latency. Decision making engine decide when to offload and where to offload task by
considering parameters such as user preference, type of network connectivity, type
of charging, complexity of task. Decision engine works with different algorithm for
the two types of tasks which increases the overall performance the device.

1 Introduction

In the modern world, number of mobile device increasing predominantly and also the need
for smart devices. The major drawback or threat to this devices are the finite amount
of resources allocated to them, in other words unexpansive capacity of device which is
explained by Buyya et al. (2019). To overcome this issue, Mobile cloud computing has
been introduced in resource constrained devices. The main key idea of Mobile cloud
computing is to offload identified tasks from mobile to cloud. Execution of this identified
tasks perform better in cloud than on local device which make space for some other
critical task that can only be executed in the local device. The most crucial part in this
process flow is decision making for offloading which is discussed by Noor et al. (2018),
it has to make accurate decision for offloading. The decision making framework lies
within mobile application which will decide which task can be offloaded and when it can
be offloaded. Many decision making framework has been introduced based on various
parameters which can able to handle only specific types of task such as computational
intensive task or latency sensitive task.

In this paper, we have formulated decision making engine in Android application
which will handle both delay sensitive task and computational intensive task. Proposed
framework will consider different decision factor for this two types of task. Tasks in
android application are replicated as microservices in AWS lambda functions and can
accessed through REST API calls through AWS API Gateway. AWS API gateway is
integrated with AWS lambda functions, so that it can be accessed through API calls.

1



If the device parameters favours offloading, the decision making framework will offload
task to cloud. Offloaded task will be executed in the AWS lambda functions when the
decision engine request for offloading. The results shows offloading task to cloud improve
the performance of the device.

2 Related Work

2.1 Mobile Cloud Architecture

Mobile device has become a vital part in day-to-day activities which drastically changes
the human lifestyle. Mobile applications also increasing in count for the betterment
of humans daily activities. Complex mobile application enforced with deep learning
and machine learning will provide accurate results and perform better to fulfil the user
requirement. But the complex application require more computing power and energy
to interpret the results. So Mobile cloud computing has been introduced to offload the
complex task to powerful computing node.

Figure 1: Cloudlet Architecture by Abdo and Demerjian (2017)

Mobile cloud Architecture has two layers namely Physical Layer and Application
Layer. There is no standard architecture for Mobile cloud computing so far, stated
by Abdo and Demerjian (2017). But, widely accepted Physical layer architecture is
Cloudlet Architecture. The key idea of Cloudlet is to provide computing and storage
capabilities to nearby mobile devices by offloading mobile tasks. The powerful computing
node is connected to mobile devices with high speed communication channel to avoid
latency issues. Mobile devices will offload complex task to nearby computing node for
computation and get back the results. It helps the resource constrained device to save
energy and processing memory is discussed by Liu et al. (2015). In this paper, cloudlet
physical layer architecture is considered as it perform better than others.

Offloading techniques and decision making framework will fall under Application layer
architecture. Application layer mainly focuses on code partitioning and decision frame-
work. This application layer has to decide where to offload the task and when to offload
the task. In this paper, application layer has been enhanced with novel decision frame-
work which handle both latency sensitive and computational intensive tasks and code
will get offloaded to AWS lambda functions for cloud execution.

2



2.2 Scenarios for offloading

Depends on various factors code will be offloaded from resource constrained devices to
rich computing node. The decision will be made based on the current device profile and
network connectivity. Offloading tasks to cloud is mainly due to deficiency in resources of
mobile devices and more energy consumption is analysed by Masip-Bruin et al. (2016).
Offloading computational intensive task to cloud will consume less energy in resource
constrained device is evaluated by Huang et al. (2017) which will increase the computa-
tion capabilities of mobile devices with minimum latency. For delay sensitive tasks, the
tasks will be offloaded to nearest node to keep minimum latency and it will fall under fog
computing.

Osanaiye et al. (2017) offload task from one computing node to another if it reaches
maximum computing capabilities and it can be achieved only in distributed computing
environment. It proves that this architecture is fault tolerant in which if one computing
node fails or refuses to accept request, same request will be executed in the nearby
computing node.

Another major drawback of resource constrained device is limited storage capabilities.
Elgazar et al. (2018) proposed a model to store frequently accessed data in local device
and rarely used data in cloud environment for future purposes which will free up memory
in resource constrained device. Some of the task will handle sensitive data such as health
data which cannot be send to public cloud without user concern due to security issues.
So user permission is required to offload task to cloud and it is explained by Aazam et al.
(2016)

2.3 Offloading framework

Offloading framework can be described as how the code offloaded to cloud. Many Of-
floading framework has been introduced with different decision factors. MAUI framework
which is invented by Cuervo et al. (2010) forms base framework for other evolved frame-
works. In the model, the code partition is done up to class level instead of cloning whole
application in cloud. The decision making algorithm resides inside the application will
decide whether the task can be executed locally or in cloud. All tasks in the mobile ap-
plication cannot be offloaded to cloud, some of them are depend on I/O device or sensors
of local device. It’s programmers responsibilities to identify tasks that can be independ-
ently executed in cloud. The author proved that offloading complex task in cloud reduce
energy consumption in local device.

CloneCloud by Chun et al. (2011) is the another offloading framework which reduces
the burden of programmers to change the source code for offloading compared to MAUI
framework. The author achieves thread level granularity in code partitioning. The static
code partitioning is done in offline and cloned in cloud server. The author claims the
proposed model is multithreading but the task which executes locally has to wait for
remotely executed threads to complete so it fails to comply with author claim and it
affects device performance.

ThinkAir by Kosta et al. (2012) is another popular framework in Mobile cloud com-
puting. The idea of ThinkAir framework is to annotate the offloadable task in the devel-
opment phase of application and offloading decision will be made during the execution of
task. The author achieves method-level granularity in code partitioning which is better
than CloneCloud as it did not create any wait time for cloud execution. The decision for
offloading is taken by execution controller which resides inside the application based on

3



device current status and network connectivity and author showed better results in the
device performance.

Another framework is introduced by Kemp et al. (2010) for Android application and
author proved that execution in the cloud is energy efficient with better device overall
performance. Major drawback of this framework is platform dependent and it is restricted
only to Android application. Montella et al. (2017) offloading is quite straightforward
in which programmers should annotate offloadable task in the development phase itself.
During execution, if the annotated task called for offloading, control send to RAPID
compiler which resides inside the application. RAPID compiler will provide required
code for offloading and it comes under CPU computational offloading. For GPGPU
computational offloading, as the code were in native CUDA functions developer has to
call RAPID’s API to provide wrapper class for the functions further it will get offloaded
to cloud.

Benedetto et al. (2019) focused on the execution time alone rather than energy con-
sumption. The author used records for each task completion time in both local and cloud
environment. With the heuristics based algorithm, decision making engine approximates
the task execution time in local and cloud. Decision will be made to offload task if net-
work bandwidth is available with less execution time in cloud. With three different types
of mode in the application namely Optimistic mode, Concurrent mode and Cloud only
mode, user can prefer mode in their choice. Optimistic mode will execute all process in
local device and decision making framework wont try to offload any task. In concurrent
mode, decision making framework will check for time approximation and decide based
on less time for task execution. Cloud only mode will prefer always cloud if network
bandwidth is available.

2.4 Offloading techniques

Zhao et al. (2016) mainly focused on the network latency and energy consumption.The
author compared latency of fog node and cloud. The proposed model will calculate energy
consumption in cloud, fog and local device. Decision making algorithm will make decision
based on the energy consumption. On contrast, Fricker et al. (2016) discussed about the
task will get offloaded between nodes in distributed environment. The proposed model
will achieve load balancing by offloading tasks from crowded node to near by available
node and it become fault tolerant but this can be achieved in distributed environment.

Hasan et al. (2018) proposed the model is controlled by Java based application as
a controller which controls mobile devices and connected IOT devices. The tasks are
offloaded to Aura cloud which reduce the energy consumption upto 63% of resource con-
strained device. Pu et al. (2016) focuses on the reduced energy consumption in offloading
tasks from resource constrained devices. The model will run on different schemes for of-
floading they are Reciprocal, greedy and random schemes. Random scheme performs
better than other schemes with 30% of energy saving. In other hand, Meurisch et al.
(2017) focuses on performance of the device irrespective of the energy consumption. The
idea is to approximate the performance of the complex task by sampling two tasks in the
complex task. This model achieves 86% of accuracy in approximation. If the prediction
of performance better at cloud, task will get offloaded to cloud.

Zhang et al. (2016) achieves 18% less energy consumption if the task get offloaded
to cloud. This model neglected the latency sensitive tasks for offloading and concen-
trated only to computational intensive tasks. The results shows that there is no effect

4



in performance even though there is network traffic for offloading. But Craciunescu
et al. (2015) concentrated on latency sensitive application and offloading task only for
time sensitive critical application with low latency. The author does not take power con-
sumption in evaluation metrices. This model will predict the fall of network upto 90% of
accuracy for decision making. Wang et al. (2016) compared fully offloaded application
and the application with partial offloading. The results shows fully offloaded application
consume 36% less energy compared to partially offloaded application.

2.5 Communication protocol

The RESTful API is a REST-based API designed for interaction between components.
RESTful API has the ability to handle different types of calls and can able to return
different data formats. Hong et al. (2018) compared RabbitMQ and RESTful API
performance for microservice execution. As the result, RESTful API performs better for
microservices execution with minimum latency in low network congestion. RabbitMQ
method performance is not get affected if there is high network traffic.

Figure 2: AWS Serverless Application Model (AWS SAM)

In this paper, AWS serverless application model is used for cloud execution. When
there is high network traffic, AWS will automatically handle the scaling and provide
better performance at user end. Each microservices will form lambda functions in AWS
and it is integrated with AWS API gateway. As the lambda function has only relationship
with particular API, it is more secure and it can be accessed through RESTful API calls.
In security perspective, AWS handles DDoS attack and all request to API is made via
HTTPS which enable encryption and secure connection in transit.

3 Methodology

Android application is developed with Android studio 3.6.3 IDE which is integrated with
Github for version control. The application is developed with AndroidX package with
Google vision library. For cloud environment, application are developed as microservices
which perfectly suits to AWS lambda functions with API Gateway or Google cloud func-
tions with Cloud endpoints. The implementation is done in AWS lambda functions with
API Gateway. Lambda functions are developed in NodeJS programming language and
configured with NodeJS 12.x as runtime environment and memory limit in AWS lambda
function set to maximum limit (3008MB) with 10 seconds timeout.

The Complexity of the task is calculated with Mc Cabes Cyclometric method. This
method will calculate the complexity of method by considering the loops and conditional
statement. By assigning appropriate score to each component in code and return integer
value as complexity count. If the complexity count is more than 20, it is considered as

5



complex task if it is less than 20 will be considered as non-complex task Manukumar
and Vijayalakshmi (2019). Online tool 1 is used for complexity calculation. For evalu-
ation purpose, the android application is integrated with Firebase plugin to monitor the
application activity and device activity. To analyse performance of the device locally,
Android profiler as profiler tool in Android studio software. It will provide CPU activity
of the device for each task and it will generate graph which can be analysed for discussion
and conclusion.

4 Design Specification

In the proposed model, most widely accepted Cloudlet physical layer architecture is
used. As there is no standardised architecture for Mobile cloud computing, Cloudlet
architecture shows better results among others. In the Application layer architecture
changes has been made to handle both latency sensitive tasks and computational intensive
tasks.

Figure 3: Process flow diagram

Android application is developed in Java programming language with latency sensitive
task and computational intensive task for the evaluation of proposed approach. QR code
scanner as latency sensitive task and Image editing as computational intensive task. Both
task coupled in single android application.

In the proposed model, offloading technique falls under dynamic offloading which
means task will get offloaded during runtime. Offloadable task will be annotated by
developer in the development phase of application. As the decision making framework
resides inside the application, it consists of Device profiler, Network profiler and Task
profiler as separate activity and can be accessed by all other activity in the application.
Device profiler will provide device status and current battery parameters, at the same time
Network profiler will provide details about connection status and type of connection. Task
profiler will have pre-defined data as it does not change during runtime. Each method
in the task analysed offline for complexity index and stored in a Hashmap values. Task
profiler will return complexity index of the method along with the type of task when
requested by decision making engine.

1http://www.lizard.ws

6



Algorithm 1 Decision making algorithm

Result: Returns True or False
get the TaskType; get the charging status; get the usedMemory; get the totalMemory;
get the complexity; get the batterylevel; get the threshold;

if Network connectivity then
if userPreference==hybrid then

if TaskType==delaySensitive then
if connectionType==wifi then

if isCharging==true then
if freeMemory greater than 50% ‖ complexity then

return true
else

return false
end

else
if batterylevel≤ threshold ‖ freeMemory greater than 50% ‖ complexity
then

return true
else

return false
end

end

else
return false

end

else
if isCharging==true then

if freeMemory greater than 50% ‖ complexity then
return true

else
return false

end

else
if batterylevel ≤ threshold ‖ freeMemory greater than 50% ‖ complexity
then

return true
else

return false
end

end

end

else
if userPreference==onlyCloud then

return true
else

return false
end

end

else
return false

end
7



Decision engine is a programming code in which with the given input along with the
user preference it will decide whether the task should be executed locally or in cloud.
Decision making engine works on two types of tasks

1. If the offloading task is latency-sensitive, it will check for network connection status
as Wifi from Network profiler. If it is not connected to Wifi, task will get executed
locally.

2. If the offloading task computational-intensive, it will request device current status
and complexity of offloading task from device profiler and network status from
network profiler.

When the task started, application will request decision making framework for of-
floading. Decision engine will check for network connection in first priority to avoid
unnecessary computation in the framework if connection is not established. Decision
engine will handle latency sensitive task and computation intensive task differently by
considering different decision factor for each type of task.

For latency sensitive task, when the device connected to network it will further check
for type of connection to which the device is connected. If the type of connection is wifi
it will further proceed to next computations for decision making. In other words, latency
sensitive task will not offloaded to cloud when the device is connected to Mobile data. For
computational intensive task, decision making engine will check for network connection
but not for type of connection, task may get offloaded even the connected to mobile data
for computational intensive task.

Device profiler will provide parameters such as memory info, battery status, charging
status while Network profiler will provide connection status and Task profiler will provide
details about nature of the task and complexity of the task. With the available parameters
decision engine will make decision for offloading. The battery threshold level set to 20%
and free memory threshold is set to 50%. In the proposed model, complexity greater
than 5 is considered as complex task due time frame restriction as developing complex
task will require more time and effort for evaluation. If the conditions satisfies with the
available parameters, the decision engine will offload task to cloud for further execution.

In the cloud side, AWS lambda functions are used which is integrated with AWS API
gateway. The code has been partitioned in statically for each task and developed as
lambda function. The proposed model achieves method-level granularity level in parti-
tioning. Both QRcode scanner and Image editing functionalities are replicated in AWS
lambda functions which are developed in NodeJS. These lambda functions are integrated
with AWS API gateway and can be accessed through RESTful API calls.

5 Implementation

5.1 Mobile environment

5.1.1 QR code scanner

QR code scanner is latency sensitive task in which QR code reader should return result
with low latency for better user experience. For local execution, google providing pre-
defined library for all basic mobile functionalities in Androidx package. Google play
services vision library is used for QR code scanner for local execution.

8



Figure 4: Decision Making Engine

Once the QR code activity is started, it request Decision making engine whether the
task can be offloaded or not. In further, Decision engine will request Device profiler,
Network Profiler and Task profiler for the current status of the device and it will decide
accordingly and return the result to QR code activity.

If the result from decision is true, it will open the camera for image capture. The
captured image will be sent to AWS lambda functions for further execution through
RESTful API calls. If the result from decision engine is false, QR code activity will
initialise the google play services vision library and it start to detect QR code in camera.
In both cloud and local execution, the results will be available in display when the task
get completed.

5.1.2 Image Editing

Image editing is computational intensive task as it involves processing of image for each
pixels. For the captured picture, three processes are done as image editing. Contrast of
image increased by 20% , Brightness of image increased by 20% finally color of the image
is inverted.

When the Image editing activity started, it will open the camera. Once the image

9



Figure 5: Android Mobile Application

is captured, it will request Decision making engine for offloading. In further decision
making engine will request Device profiler, Network profiler and Task profiler for the
current status of the device and it decides whether the task can be offloaded or not.

It returns the result to Image editing activity, if the result is true. it will convert
image to base64 string and send to AWS lambda function in RESTful API call. Lambda
function will execute the process return the result to mobile device. If the result is false,
Image editing activity will start to process the image and return the result.

5.1.3 Device profiler, Network profiler and Task profiler

Device profiler will provide current status of device parameters such as Total RAM
memory, Free RAM memory, Charging status, Type of charging, Battery level.In the
application development, Broadcast receiver is registered for battery status change and it
will broadcast to battery manager if there is any change in battery status. It will extract
the type of charging whether the device connected to USB charging or AC adaptor. With
the Activity Manager, device profiler will extract the memory info of the device when it
is requested by decision engine.

Network profiler will monitor the network connectivity status of the device. Con-
nectivity manager in android application will provide the connectivity status of the device
and type of connection whether the device connected to Wi-Fi network or Mobile data.
When the decision engine requested for Network info, Network profiler will return required
network parameters to decision engine.

The proposed model is using static code partitioning and so complexity of each method
is analysed offline using Java Cyclometeric method. Online tool 2 was used to calculate
the complexity of each method using Java cyclometeric method which returns whole
number as complexity index. In image editing, increasing brightness method and in-
creasing contrast method has resulted with high complexity index. This obtained values
for all methods in both activity were segregated and declared as HashMap values in Task
profiler.

2http://www.lizard.ws

10



When decision engine requesting for complexity of task, Task profiler will provide
complexity index of the particular method along with the type. Decision engine will take
complexity index of the method in decision making process.

5.2 Cloud environment

AWS cloud provider has been choosed to offload the task from resource constrained
device. Each task in the mobile application is converted to microservices in the cloud.
AWS Serverless Application Model (AWS SAM) has been used for integration of cloud
and mobile application.

5.2.1 AWS lambda

AWS lambda is an implementation of FAAS (Function as a Service) by Amazon. In AWS
lambda function, virtual server configurations and environment are provided by Amazon.
But configurations and virtual server should be managed by developer in Amazon EC2
instances. Mobile application tasks are divided into microservices, so Lambda function
will suit for this requirement. Each lambda function will work independently and has
trust relationship only with integrated API gateway.

Each Lambda function has separate allocated RAM memory with timeout. 3008 MB
memory is allocated with 10 seconds timeout for each task. So that execution will be
faster with minimum failure. Compressed NodeJS application will act as lambda function
in AWS. Jimp library is used for image editing and image related functionalities. qrcode-
reader library is used for QR code scanning.

1. QR code Scanner

AWS lamba function will get request with JSON object in body. The JSON object
has the image as base64 string format and image is converted to Bitmap format
using Jimp library. The converted image is analysed with qrcode-scanner library
for the result. The result string value is converted to JSON object to send response
for the request.

Figure 6: QR code scanner - AWS lambda function log for cloud execution

11



2. Image editing process

As like QR code scanner, Image editing lambda function will get request with JSON
object in body. Image received as base64 string format and it is converted to Bitmap
format using Jimp library. The image will be processed with increasing brightness
by 20% function, increasing contrast by 20% function and inverting color function.
And processed image is converted again to base64 string using Jimp library. The
processed image in base64 string is converted to JSON object and send back the
response for the request.

Figure 7: Image editing - AWS lambda function log for cloud execution

5.2.2 AWS API Gateway

AWS API gateway is integrated with lambda functions and it is configured with RESTful
API. By using lambda proxy integration, there is no need to rephrase the response from
lambda functions. CORS policy is enabled in API gateway. During pre-flight request
from mobile device expected headers should be downloaded from response. It is enabled
for security purpose.

Figure 8: QR code scanner - AWS API Gateway POST method

12



Figure 9: Image editing - AWS API Gateway POST method

6 Evaluation

By offloading task to cloud, there is performance improvement in mobile device. Android
studio profiler has been used along with Firebase performance plugin in application for
evaluation. Experiments has been tested in ONEPLUS 5T with 8 GB RAM and 128GB
ROM. It has Octa-core Kryo processor.

6.1 Experiment 1 - QR code scanner - Local execution

Figure 10: QR code scanner - Local execution

13



Android application is built using Android Studio IDE with Firebase plugin integra-
tion. In this induced scenario, with battery level 93% ,free RAM memory is 54.3% of 8.0
GB, Not charging status, Network connection as wifi. The decision has been taken to
execute task in local device with the above parameters.

From the result, maximum CPU usage calculated as 160% (multiple core CPU). The
User CPU usage is 120% which denotes CPU computing power used to execute application
code. At the same time System CPU usage is 40% which denotes CPU computing power
utilized for Android OS on behalf of application.

6.2 Experiment 2 - QR code scanner - Cloud execution

In this scenario, the battery percentage is 100%, free RAM memory is 30.43% of 8.0 GB,
Charging in USB, Network connection as wifi. With the given condition, the task will
get offloaded to cloud to get back the result.

Figure 11: QR code scanner - Cloud execution

From the result, total CPU usage is 109% which includes User CPU utilization 80%
and System CPU utilization 30% which is less than the locally executed task usage.

6.3 Experiment 3 - Image editing - Local execution

For image editing task, the battery level is set to 100% with charging status, free RAM
memory is 30.33% of 8.0 GB, without Network connection. With the above parameters,
the decision engine will decide to execute task locally.

From the figure 12, when the image editing executed locally, the CPU usage went
upto 290% which proves that the task is computational intensive. Device will consume
energy proportional to the usage of the CPU.

14



Figure 12: Image editing - Local and Cloud execution

6.4 Experiment 4 Image editing - Cloud

For cloud execution of image processing, the battery level is set to 100% with charging
status, free RAM memory is 30.33% of 8.0 GB, Network connection as wifi. The decision
has made the decision to offload the task with above parameters.

From the figure 12, when the image editing is executed in cloud, the CPU usage can
be seen in graph which is less than 172% and it utilize low CPU usage when compared
to local execution.

6.5 Discussion

The proposed novel Decision making framework which handles both Latency sensitive
and Computational intensive task shows better results with improvement in device per-
formance. Jaskaniec (2019) formulated decision making framework for offloading generic
task and device performance is not evaluated with CPU activity but the proposed model
will consider different decision factor for each type of task and the task will get offloaded
to AWS Lambda functions for execution. Stable network bandwidth is needed for of-
floading Latency sensitive task and considering network connection type as a major part
in decision making for Latency sensitive task to avoid latency issues. While for com-
putational intensive task, any type of network connection will favours offloading. The
proposed decision making framework can be integrated to any existing application by
adding some java classes along with their original source code. On the cloud side, the de-
cision making framework not cloud provider dependent. Cloud provider can be changed
without changing the source code of application. The decision framework does not take
battery energy consumption metrics and network bandwidth strength. By incorporating
machine learning algorithm in decision making framework for accurate prediction for of-

15



floading will be the future scope of this paper. As this paper proposed framework for
Android device, the research can be extended to iOS device in future work.

7 Conclusion and Future Work

Many framework and offloading techniques has been proposed in mobile cloud computing
which focuses on different metrices. The offloading technique mostly focuses either on the
latency issues for latency-sensitive application or a strategy to reduce energy consumption
and computation overhead. But, the proposed approach will handle both latency sensitive
task and computation intensive task by considering different decision factor to achieve
better performance of local device. With reduced usage of CPU, it performs better than
other existing techniques by considering different decision factor and device context. The
Future work of the proposal will be in Network profiler. Network parameters such as signal
strength and bandwidth have to be considered for decision making with the implication
of machine learning algorithm. Thus, the decision making framework accuracy will get
increased if machine learning algorithm introduced.

References

Aazam, M., St-Hilaire, M. and Huh, E. (2016). Towards media intercloud standard-
ization evaluating impact of cloud storage heterogeneity, Journal of Grid Computing
abs/1602.06246. JCR Impact Factor: 2.800 (2018).
URL: http://arxiv.org/abs/1602.06246

Abdo, J. B. and Demerjian, J. (2017). Evaluation of mobile cloud architectures, Pervasive
and Mobile Computing 39: 284–303. JCR Impact Factor: 2.974 (2018).
URL: https://doi.org/10.1016/j.pmcj.2016.12.003

Benedetto, J. I., González, L. A., Sanabria, P., Neyem, A. and Navón, J. (2019). Towards
a practical framework for code offloading in the internet of things, Future Generation
Computer Systems-The International Journal of eScience 92: 424–437. JCR Impact
Factor: 4.639 (2018).
URL: https://doi.org/10.1016/j.future.2018.09.056

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R. N., Simmhan, Y., Varghese, B.,
Gelenbe, E., Javadi, B., Vaquero, L. M., Netto, M. A. S., Toosi, A. N., Rodriguez,
M. A., Llorente, I. M., di Vimercati, S. D. C., Samarati, P., Milojicic, D. S., Varela,
C. A., Bahsoon, R., de Assunção, M. D., Rana, O., Zhou, W., Jin, H., Gentzsch, W.,
Zomaya, A. Y. and Shen, H. (2019). A manifesto for future generation cloud computing:
Research directions for the next decade, ACM Comput. Surv. 51(5): 105:1–105:38. JCR
Impact Factor: 5.550 (2018).
URL: https://doi.org/10.1145/3241737

Chun, B., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011). Clonecloud: elastic
execution between mobile device and cloud, in C. M. Kirsch and G. Heiser (eds),
European Conference on Computer Systems, Proceedings of the Sixth European confer-
ence on Computer systems, EuroSys 2011, Salzburg, Austria, April 10-13, 2011, ACM,
pp. 301–314. CORE Ranking: ”A”.
URL: https://doi.org/10.1145/1966445.1966473

16



Craciunescu, R., Mihovska, A., Mihaylov, M., Kyriazakos, S., Prasad, R. and Halunga,
S. (2015). Implementation of fog computing for reliable e-health applications, 2015
49th Asilomar Conference on Signals, Systems and Computers, pp. 459–463. CORE
Ranking: ”C”.

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R. and
Bahl, P. (2010). MAUI: making smartphones last longer with code offload, in S. Baner-
jee, S. Keshav and A. Wolman (eds), Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys 2010), San Francisco, Cali-
fornia, USA, June 15-18, 2010, ACM, pp. 49–62. CORE Ranking: ”B”.
URL: https://doi.org/10.1145/1814433.1814441

Elgazar, A., Harras, K. A., Aazam, M. and Mtibaa, A. (2018). Towards intelligent edge
storage management: Determining and predicting mobile file popularity, 6th IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering, Mo-
bileCloud 2018, Bamberg, Germany, March 26-29, 2018, IEEE Computer Society,
pp. 23–28.
URL: https://doi.org/10.1109/MobileCloud.2018.00012

Fricker, C., Guillemin, F., Robert, P. and Thompson, G. (2016). Analysis of an offloading
scheme for data centers in the framework of fog computing, TOMPECS 1(4): 16:1–
16:18.
URL: https://doi.org/10.1145/2950047

Hasan, R., Hossain, M. M. and Khan, R. (2018). Aura: An incentive-driven ad-hoc
iot cloud framework for proximal mobile computation offloading, Future Generation
Computer Systems-The International Journal of eScience 86: 821–835. JCR Impact
Factor: 4.639 (2018).
URL: https://doi.org/10.1016/j.future.2017.11.024

Hong, X. J., Sik Yang, H. and Kim, Y. H. (2018). Performance analysis of restful api
and rabbitmq for microservice web application, 2018 International Conference on In-
formation and Communication Technology Convergence (ICTC), pp. 257–259.

Huang, C., Lu, R. and Choo, K. R. (2017). Vehicular fog computing: Architec-
ture, use case, and security and forensic challenges, IEEE Communications Magazine
55(11): 105–111. JCR Impact Factor: 9.270 (2018).
URL: https://doi.org/10.1109/MCOM.2017.1700322

Jaskaniec, A. (2019). Mobile task offloading based on bandwidth and battery availability,
Master’s thesis, Dublin, National College of Ireland.
URL: http://trap.ncirl.ie/3842/

Kemp, R., Palmer, N., Kielmann, T. and Bal, H. E. (2010). Cuckoo: A computation
offloading framework for smartphones, in M. L. Griss and G. Yang (eds), Mobile Com-
puting, Applications, and Services - Second International ICST Conference, MobiCASE
2010, Santa Clara, CA, USA, October 25-28, 2010, Revised Selected Papers, Vol. 76
of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Tele-
communications Engineering, Springer, pp. 59–79. CORE Ranking: ”A”.
URL: https://doi.org/10.1007/978-3-642-29336-8 4

17



Kosta, S., Aucinas, A., Hui, P., Mortier, R. and Zhang, X. (2012). Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading, in
A. G. Greenberg and K. Sohraby (eds), Proceedings of the IEEE INFOCOM 2012,
Orlando, FL, USA, March 25-30, 2012, IEEE, pp. 945–953. CORE Ranking: ”A*”.
URL: https://doi.org/10.1109/INFCOM.2012.6195845

Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R. and Qureshi, A. (2015). Applica-
tion partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions, Journal of Network And Computer Applications 48: 99–117. JCR Impact
Factor: 3.991 (2018).
URL: https://doi.org/10.1016/j.jnca.2014.09.009

Manukumar, S. T. and Vijayalakshmi, M. (2019). A novel multi-objective efficient of-
floading decision framework in cloud computing for mobile computing applications,
Wireless Personal Communications 107(4): 1625–1642. JCR Impact Factor: 1.200
(2018).
URL: https://doi.org/10.1007/s11277-019-06348-4

Masip-Bruin, X., Maŕın-Tordera, E., Tashakor, G., Jukan, A. and Ren, G. (2016). Foggy
clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud com-
puting systems, IEEE Wireless Communications 23(5): 120–128. JCR Impact Factor:
9.202 (2018).

Meurisch, C., Gedeon, J., Nguyen, T. A. B., Kaup, F. and Mühlhäuser, M. (2017). De-
cision support for computational offloading by probing unknown services, 26th Inter-
national Conference on Computer Communication and Networks, ICCCN 2017, Van-
couver, BC, Canada, July 31 - Aug. 3, 2017, IEEE, pp. 1–9. CORE Ranking: ”A”.
URL: https://doi.org/10.1109/ICCCN.2017.8038406

Montella, R., Kosta, S., Oro, D., Vera, J., Fernández, C., Palmieri, C., Luccio, D. D.,
Giunta, G., Lapegna, M. and Laccetti, G. (2017). Accelerating linux and android
applications on low-power devices through remote GPGPU offloading, Concurrency
and Computation-Practice Experience 29(24). JCR Impact Factor: 1.114 (2018).
URL: https://doi.org/10.1002/cpe.4286

Noor, T. H., Zeadally, S., Alfazi, A. and Sheng, Q. Z. (2018). Mobile cloud comput-
ing: Challenges and future research directions, J. Network and Computer Applications
115: 70–85. JCR Impact Factor: 3.991 (2018).
URL: https://doi.org/10.1016/j.jnca.2018.04.018

Osanaiye, O. A., Chen, S., Yan, Z., Lu, R., Choo, K. R. and Dlodlo, M. E. (2017). From
cloud to fog computing: A review and a conceptual live VM migration framework,
IEEE Access 5: 8284–8300. JCR Impact Factor: 3.557 (2018).
URL: https://doi.org/10.1109/ACCESS.2017.2692960

Pu, L., Chen, X., Xu, J. and Fu, X. (2016). D2D fogging: An energy-efficient and
incentive-aware task offloading framework via network-assisted D2D collaboration,
IEEE Journal on Selected Areas in Communications 34(12): 3887–3901. JCR Im-
pact Factor: 7.172 (2018).
URL: https://doi.org/10.1109/JSAC.2016.2624118

18



Wang, Y., Sheng, M., Wang, X., Wang, L. and Li, J. (2016). Mobile-edge computing:
Partial computation offloading using dynamic voltage scaling, IEEE Trans. Commu-
nications 64(10): 4268–4282. JCR Impact Factor: 4.671 (2018).
URL: https://doi.org/10.1109/TCOMM.2016.2599530

Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S. and Zhang,
Y. (2016). Energy-efficient offloading for mobile edge computing in 5g heterogeneous
networks, IEEE Access 4: 5896–5907. JCR Impact Factor: 3.557 (2018).
URL: https://doi.org/10.1109/ACCESS.2016.2597169

Zhao, X., Zhao, L. and Liang, K. (2016). An energy consumption oriented offloading
algorithm for fog computing, in J. Lee and S. Pack (eds), Quality, Reliability, Security
and Robustness in Heterogeneous Networks - 12th International Conference, QShine
2016, Seoul, Korea, July 7-8, 2016, Proceedings, Vol. 199 of Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications Engineering,
Springer, pp. 293–301. CORE Ranking: ”B”.
URL: https://doi.org/10.1007/978-3-319-60717-7 29

19


	Introduction
	Related Work
	Mobile Cloud Architecture
	Scenarios for offloading
	Offloading framework
	Offloading techniques
	Communication protocol

	Methodology
	Design Specification
	Implementation
	Mobile environment
	QR code scanner
	Image Editing
	Device profiler, Network profiler and Task profiler

	Cloud environment
	AWS lambda
	AWS API Gateway


	Evaluation
	Experiment 1 - QR code scanner - Local execution
	Experiment 2 - QR code scanner - Cloud execution
	Experiment 3 - Image editing - Local execution
	Experiment 4 Image editing - Cloud
	Discussion

	Conclusion and Future Work

