~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Ghiridhar Iyer
Student ID: X18183468

School of Computing
National College of Ireland

Supervisor: Dr. Manuel Tova-Izquierdo

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ghiridhar Iyer
Student ID: X18183468
Programme: Cloud Computing
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Manuel Tova-Izquierdo
Submission Due Date: 17/8/2020
Project Title: Configuration Manual
Word Count: 4283
Page Count: 1]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 28th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ghiridhar Iyer
X18183468

1 Introduction

The implementation of the artifact was done using the Amazon Web Services (AWS)
platform. This configuration manual guides in executing the artifact. The following
services were utilised during the implementation:

e Amazon S3
o AWS Athena
AWS TAM

AWS Sagemaker

AWS QuickSight

The following sections are divided based on the implementation process.

2 Data Acquisition

Log in to the AWS Console at https://console.aws.amazon.com/

& c 0 & signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Fstate%3DhashArgs%25

$! Apps G Google RN MyAccount (@ SchoolofSkil [[@ Rediffcom: Online... © NSE- National Stoc... @ AccountAccess-L.. (a) Driversand Downlo... &)

aws
Sign in . .
Build mobile and web a
@ Root user . .
Account owner that performs tasks requiring w‘th o ut p rog ra m m I " g

unrestricted access. Learn more

Amazon Honeycode lets you bui
O 1AM user - | I
User within an account that performs daily tasks. apps fOI maﬂaglﬂg Work ln tea
Leamn more

Root user email address

username@example.com

Figure 1: AWS Console Login

In the list of services, navigate to Storage section and click on S3.

™ WhatsApp X @ AWS Management Console X + -
<« C 0 # console.aws.amazon.com/console/home?region=us-east-1 b4 . e
$Hf Apps G Google @R My Account School of Skill [[@ Rediff.com: Online... £ NSE - National Stoc... Account Access - L. @) Drivers and Downlo.. () Product Support | D... Solve Programming...
PP g u ¥ L] pr) f) PP g g
Q 7] or Android mobile device. Learn more [

» Recently visited services

Explore AWS

¥ All services
Amazon Redshift

{8} Compute == Blockchain [Security, Identity, &
EC2 Amazon Managed Compliance Fast, simple, cost-effective data warehouse that can extend
Lightsail [4 Blockchain 1AM queries to your data lake. Learn more [
Lambda Resource Access
s . Manager
Batch = " "
= < Satellite Cognito Run Serverless Containers with AWS Fargate
Elastic Beanstalk Ground Station 9
Serverless Application Secrets Manager AWS Fargate runs and scales your containers without having
Repository GuardDuty to manage servers or clusters. Learn more [4
#% Quantum
AWS Outposts . Inspector
Technologies
ECZ Image Builder Amazon Macie
Amazon Braket AWS Single Sign-On Scalable, Durable, Secure Backup & Restore with
1 Containers Certificate Manager Amazon 53
Elastic Container £]] Management & Key Management Discover how customers are building backup & restore
Registry Governance Service solutions on AWS that save money. Learn more [A
Elastic Container AWS Organizations CloudHsM
Service CloudWatch Directory Service
Elastic Kubernetes AWS Auto Scaling WAF & Shield AWS Marketplace
service CloudFormation AW_S Firewall Manager Find, buy, and deploy popular software products that run on
CloudTrail Artifact AWS. Learn more [
(=) Storage Config Security Hub
%3 OpsWaorks Detective

»

Figure 2: Click on S3

Click on ’'Create Bucket’ button in the page. Enter the bucket name as 'flood-
prediction-master-dataset’. Since S3 is Global, Region needs to be explicitly mentioned
while bucket creation. Ensure to have the S3 bucket in the same region where the rest
of the services like Sagemaker are deployed. This manual has deployed all the services
at the 'US East (N. Virginia)’ region. In the ML code, bucket name is explicitly
mentioned. If this bucket name is unavailable and different Bucket name is
being used, ensure to update the code with the new bucket name.

& C Y @ s3.consoleaws.amazon.com/s3/home?region=us-gast-1# T R ' :

522 Apps G Google @8 My Account @ School of Skill n Rediff.com: Online... £ NSE - National Stoc... ° Account Access - L., @ Drivers and Downlo... @ Product Support | D... u Solve Programming... »

Create bucket

@ Name and region @ Configure options @ Set permissions

Name and region

Bucket name
flood-prediction-master-dataset|

Bucket name is already owned by you

Region

US East (N. Virginia) v

Copy settings from an & ng bucket

o | coce [0

Figure 3: Create a bucket

Select the bucket and click on "Edit Public access settings’.

< C 0 @ s3.console.aws.amazon.com/s3/home?region=us-east-1# “* N ’ :

Apps G Google QB MyAccount @ Schoolof Skill [[@ Rediffcom: Online.. €% NSE - National Stoc.. @) AccountAccess-L.. (=) Drivers and Downlo.. (=) Product Support|D.. [l Selve Programming... »

Services ~ Resource Groups ~ * Support ~
S3 buckets (1 Discover the console
Amazon 33
‘ Q, Search for buckets ‘ ‘ All access types ~
| Buckets ‘

Batch operations 4+ Create bucket I Edit public access settingsl ‘ Empty | ‘ Delete ‘ 6 Buckeis 1 Regions =

Access analyzer for
a3 [] Bucket name + Access © v Region v Date created v

Jul 3, 2020 11:44:22

[] W& codepipeline-us-cast-1-436189706244 Objects can be public US East (N. virginia) 1

Block public access
(account settings)

flood-prediction-master-dataset Bucket and objects not public US East (N_ Virginia)

Jul 3, 2020 11:31:46

Feature spotiight (€ [] & floodashboard.co.uk Objects can be public US Bast (N Virginia) ST o
) . Jul 29, 2020 11:58:43
[] @& ghir-sample-quicksight Bucket and objects not public US East (N. virginia) "2 =0
. . " . Jul 26, 2020 7:14:17
[] & ghiridnar-sagemaker Bucket and objects not public US East (N. Virginia) 1“0 270 E
[[] & sagemaker-us-east-1-884654660367 Objects can be public US East (N. Virginia) Jul 25, 2020 7:42-36

PM GMT+0530

Operations 0 In progress 1 Success 0 Error

@ Feedback (@ English (US) Privacy Policy ~ Terms of Use

Figure 4: Change Public Access Settings

Deselect 'Block all public access’ option. The reason for making bucket public will be
explained in the upcoming steps. Click on Save button

« > C O # s3.console.aws.amazon.com/s3/home?region=us-east-1# % N '

G Google BB MyAccount @ SchoolofSkil [[@ Rediffcom: Online.. 4% NSE - National Stec.. @) AccountAccess-L.. () Drivers and Downlo.. (=) Preduct Support|D.. [l Selve Programming.. »

public access settings for selected buckets

Total buckets: 1 (Public: 0)

Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists {ACLs), bucket policies, access point policies, or all. In order to ensure that public
access to all your S3 buckets and objects is blocked, turn on Block all public access. These settings apply only to selected buckets and all their access points. AWS
recommends that you tum on Block all public access, but before applying any of these settings, ensure that your applications will work correctly without public
access. If you require some level of public access to your buckets or objects within, you can customize the individual settings below to suit your specific storage
use cases.

[l Block all public access

Tuming this setting on is the same as tuming on all four settings below. Each of the following settings are independent of one another.

Il Block public access to buckets and objects granted through new access control lists (ACLS)
53 will block public access permissions applied to newly added buckets or objects, and prevent the creation of new public access ACLs for existing buckets and objects. This seiting
doesn’t change any s that allow public access to 53 resources using ACLs.

Cancel Save

Figure 5: Unblock Public Access

Type 'confirm’ in the textbox and click on confirm.

« > C 0O # s3.console.aws.amazon.com/s3/homerregion=us-east-1# - A . :

52 Apps G Google BB My Account @ School of Skill n Rediff.com: Online... £ NSE - National Stoc... ° Account Access - L., @ Drivers and Downlo... @ Preduct Support | D... u Solve Programming... »

public access settings for selected
buckets

Updating the Amazon 53 block public access settings affects all selected buckets. This may
result in some buckets and objects becoming public.

To confirm the settings, type confirm in the field.

]

Figure 6: Type confirm

Click on the bucket. Click on ’Create Folder’. Enter the folder name as 'raw-datasets’
and click on Save button.

< [&] ﬂ @ s3.console.aws.amazon.com/s3/buckets/flood-prediction-master-dataset/?region=us-east-1&tab=overview T . c

I Apps G Google QB MyAccount @ SchoolofSkil [[@ Rediffcom: Online.. €% NSE- National Stoc.. @) AccountAccess-L.. (=) Drivers and Downlo.. (=) Preduct Support|D... [l Selve Programming... »

har ~ Global v Support ~

‘ Q, Type aprefix and press Enter to search. Press ESC to clear. ‘

X upload Create folder

[] Name= Last modified + Size = Storage class =

US East (N. Virginia) &

Viewing 1 to &

= I raw-datasets| I

When you create a folder, $3 console creates an object with the above name
appended by suffix " and that object is displayed as a folder in the $3 console.
Choose the encryption setting for the object

None (Use bucket settings)
") AES-256

Use Server-Side Encryption with Amazon S3-Managed Keys (SSE-53)

) AWS-KMS
Use Server-Side Encryption with AWS KMS-Managed Keys (SSE-KMS)

Operations 0 In progress 2 Success 0 Error

@ Feedback (@ English (US)

Privacy Policy Terms of Use

Figure 7: Create Folder in Bucket

Create all the folders as shown in the below Figure. [§

<« (& ﬂ 8@ s3.console.aws.amazon.com/s3/buckets/flood-prediction-master-dataset/?region=us-east-18itab=overview b4 v » ‘

I Apps G Google RE MyAccount @ SchoolofSkil [[@ Rediffcom: Online.. € NSE - NationalStoc.. @) AccountAccess-L.. () Drivers and Downlo.. (=) Product Support|D.. [l Selve Programming... »

Resource Groups ~ * har ~ Global + Support v

‘ Q, Type a prefix and press Enter to search. Press ESC fo clear. ‘

X, Upload Create folder

US East (N. Virginia) &

Viewing 110 8

Name v Last modified v Size v Storage class v
athena-files — _ _
final-dataset-1-hr - - -
final-dataset-15-min - — —
mi-sensor-data-1-hr - - -
ml-sensor-data-15-min - _ _
predictions-1-hr - - -

predictions-15-min — - _

|
|
|
|
|
|
|
U
O

=
=
=
=
=
=
=
=

raw-dataseis - - -

2 Success 0 Emor

Operations 0 In progress

@ Feedback

& English (US) c. orits

Privacy Policy Terms of Use

Figure 8: Create all these folders

Click on the Services drop down in the top left corner of the screen. Navigate to the
Machine Learning section. Click on Amazon SageMaker.

Resource Groups

Ghiridhar ~

History
Amazon SageMaker
53
Athena
Console Home
3 Billing

1AM

®
Amazon SageMaker

Amazon Augmented Al
Amazon CodeGuru
Amazon Comprehend
Amazon Forecast
Amazen Fraud Detector
Amazon Kendra
Amazon Lex

Amazon Personalize
Amazon Polly
Amazon Rekognition
Amazon Textract
Amazon Transcribe
Amazen Translate
AWS DeepComposer

Figure 9: Click on Sagemaker

Click on Notebook instances from the menu on the left.

Amazon SageMaker

Amazon SageMaker Studio

Dashboard

Search

v Ground Truth
Labeling jobs
Labeling datasets

Labeling workforces

v Notebook

Lifecycle configurations

Git repositories

¥ Processing

Processing jobs
¥ Training

@ Feedback

@ English (US)

Amazon SageMaker

Dashboard

AWS Marketplace X
Find, buy, and deploy ready to use model packages, algorithms, and data products in AWS Marketplace
Browse Catalog
Overview Hide

10%

X

Ground Truth

Set up and manage
labeling jobs for highly
accurate training datasets
using active learning and
human labeling.

ﬁ

Notebook
Availability of AWS and
SageMaker SDKs and
sample notebooks to
create training Jobs and
deploy models.

w30t

Ha &4

Training

Train and tune models at
any scale. Leverage high
performance AWS
algorithms or bring your
own.

Inference

Create models from
training jobs or import
external models for
hosting to run inferences
on new data.

¢ 30

Fa &

Processing Run

Pre- or post-processing
and model evaluation

workloads with a fully
managed experience.

Processing jobs

Figure 10: Click on Notebook Instances

Privacy Policy Terms

Click on ’Create Notebook Instance’. Multiple Jupyter Notebooks can be created

within an instance.

Services ~ Resource Groups ~ * _.':1. Ghiridhar ~ N. Virginia v Support +

Amazon SBQEMaker X Amazon SageMaker Notebook instances
Amazon SageMaker Studio R
Notebook instances Create notebook instance
Dashboard
Q Search notebook instances 1
Search

Figure 11: Click on Create Notebook Instance

Enter the Instance name and type.

Amazon SageMaker Notebook instances Create notebook instance

Create notebook instance
Amazon SageMaker provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook instances

include example code for common model training and hosting exercises. Learn more [2

Notebook instance settings

Notebook instance name

CTGAN

Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unigue within your account in an AWS Region.

Notebook instance type

ml.m4.xlarge v

Elastic Inference Learn more [4

none v

» Additional configuration

Figure 12: State the Name and Instance Type

Choose the IAM Role for the SageMaker instance. If not created choose create a new
role.

Services ~ Resource Groups ~

Fermissions and encryption

IAM role
Notebook instances require pe services including SageMaker ghd S3. Choose a role or let us create a role with the
AmazonSageMakerFullAccess |/

AmazonSageMaker-ExecutionRole-20200712T142002 Y

Create a new role

Enter a custom IAM role ARN

Use existing role

‘AmazonSageMaker-ExecutionRole-20200712T142002

— T

Mo Custom Encryption v

» Network - optional

» Git repositories - optional

» Tags - optional

I Create notebook instance I

Cancel

@ Feedback (@ English (US)

Figure 13: Select IAM Role

On clicking ’create a new role’, the pop up asks to specify a particular bucket to
provide access. Access can be provided to a single bucket, all buckets or no buckets.
Select "Specify S3 buckets’ and enter 'flood-prediction-master-dataset’.

Create an IAM role X

ageMaker permission to perform acti
AmazonSageMakerFullAccess [A A
The IAM role you create will provide access to:
@ 53 buckets you specify - optional

Any 53 bucket

Allow users that have access to your noteback instance access to any bucket and its contents in
OUF aCCOUNt.

© Specific 53 buckets

flood-prediction-master-datas

Comma delimited. ARNs, and "/" are not supported

None

@ Any 53 bucket with "sagemaker” in the name
@ Any 53 object with "sagemaker” in the name

@ Any 53 object with the tag "sagemaker” and value “true" See Object tagging [

Figure 14: Specify S3 Bucket when creating TAM Role

Create Notebook instances as shown in the below figure Ensure to provide
‘'ml.m4.xlarge’ for any one instance. This instance is required for GAN generation.
GAN generation is compute intensive process which is not possible in 'ml.t2.medium’
or 'ml.t3.large” instances. Click on Open Jupyter link.

Q Search notebook instances 1 @

Name v Instance Creation time v Status ¥ Actions

gan-and-sensor-data-merge mlt2.medium i:fl!czz 202017:21 @ InService

Open Jupyter | Open
JupyterLab

Jul 20, 2020 15:37
uTc

Jul 18, 2020 17:44) Open
CTGAN L.m4 xl: InS
utc Onsenice S ytertab

Open Jupyter | Open

InServi
@ nservice JupyterLab

time-series-algorithms mli3.large

Figure 15: Click on Open Jupyter

Click on New and select 'conda_python3’. This creates a jupyter notebook instance
with a Python 3 environment.

-
-~ J u Pyter Open JupyterLab Quit Logout
Files Running Clusters Conda SageMaker Examples
Select items to perform actions on them Upload (s
Notebook:
0|~ W/ le
O R

Sparkmagic (PySpark)
Sparkmagic (Spark)

Sparkmagic (SparkR)
conda_amazenei_mxnet_p27
conda_amazonei_mxnet_p36
conda_amazenei_tensorflow2_p27
conda_amazenei_tensorflow?_p36
conda_amazenei_tensorflow_p27
conda_amazonei_tensorflow_p36
conda_chainer_p27
conda_chainer_p36
conda_mxnet_p27
conda_mxnet_p36
conda_python2
conda_pytorch_latest_p36
conda_pytorch p27
conda_pytorch_p36
conda_tensorflow?_p36

Figure 16: Create New Python3 File

Click on the title of the notebook stated as 'Untitled’. Pop up emerges to rename the
file. Rename the file to 'Data_Acquisition” and click on Rename.

Rename Notebook

Enter a new netebook name

I Data_Acquisition| I

Cancel Rename

Figure 17: Rename File

Import libraries. The Environment agency API is used to retrieve the sensor data
using pandas and saved as a CSV file. Public Access Rights is provided by the website

In []: #importing Libraries

import pandas as pd

In []: ng datasets

= pd.read_csv("https://environment.data.gov.uk/flood-monitoring/id/stations/550148/readings.csv?since=2017-61-a1&_limit-18800")
ure = pd.read_csv("https://environment.data.gov.uk/flood-monitoring/id/stations/3981/readings.csv?since=2017-01-01& limit=10800")
= pd.read_csv("https://environment.data.gov.uk/flood-monitoring/id/stations/694676/readings.csv?since=2017-81-81& limit=18800")

Ll 3

In []: #converting to csv
rainfall.to_csv("Rainfall.csv”,index=False)

temperature.to_csv("Temperature.csv”, index=False)
rest_all.to_csv("Wind Speed Direction and River level.csv",index=False)

Figure 18: Acquire Data from API and save as CSV

Boto3 SDK [is used to access the S3 bucket and store the CSV file.

In []: import datetime
import tarfile

import boto3 # AWS SDK for python. Provides Llow-level access to AWS services
from sagemaker import get_execution_role

import sagemaker

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region - sess.boto_session.region_name

bucket = 'flood-prediction-master-dataset’ # specify the 52 bucket to save the file

print('Using bucket ' + bucket)

In []: # send data to 53. key_prefix is the directory path. path is the local file name which will be sagved in 53 with same file name
ond bucket is the bucket name

upload = sess.upload_data(path="Rainfall.csv', bucket=bucket, key_prefix='raw-datasets/')
upload = sess.upload_data(path="Temperature.csv', bucket=bucket, key_prefix='raw-datasets/"')

upload = sess.upload_data{path="Wind Speed Direction and River level.csv', bucket=bucket, key_prefix="raw-datasets/")

Figure 19: Save to S3 using Boto3 SDK

!Public Access: |https ://environment .data.gov.uk/flood-monitoring/doc/reference
2Boto3 Documentation: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/
migrations3.html

10

https://environment.data.gov.uk/flood-monitoring/doc/reference
 https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ migrations3.html
 https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ migrations3.html

3 Data Transformation and Formatting

Click on the services drop down and navigate to the Analytics section. Click on Athena.
Athena provides SQL based data querying on S3 objects.

« > C 0 # s3.console.aws.amazon.com/s3/buckets/flood-prediction-master-dataset/Zregion=us-east-1&tab=overview o ¥ n '

G Google RN MyAccount @ SchoolofSkill |[§ Rediffcom: Online.. @ MNSE - NationalStoc.. @) AccountAccess-L.) Drivers and Downlo.. (<) Product Support|D.. [Solve Programming... »

Resource Groups ~ * Support -

History
Group AZ

S3
Console Home @ Compute @oe Blockchain Analytics @j Business Applications
Billing EC2 Amazon Managed Blockchain Alexa for Business
1AM Lightsail & EMR Amazon Chime

Lambda CloudSearch WorkMail
Amazon Sagettaker Batch &5 satellite Elasticsearch Service Amazon Honeycode

WS Cost Explorer Elastic Beanstalk Ground Station Kinesis

Serverless Application Repository Quicksight 2

AWS Outposts Dala Pipeline [&) End User Computing

EC2 Image Builder @ Quantum Technologies AWS Data Exchange WorkSpaces

Amazon Braket AWS Glue AppStream 2.0
- AWS Lake Formation WerkDocs
.,)
:;orage |_§3 Management & Governance MSK forkcink

EFs AWS Organizations

Fax CloudWatch () Security, Identity, & 4fp Internet Of Things

33 Glacier AWS Auto Scaling Compliance loT Core

Storage Gateway CloudFormation 1AM FreeRTOS

AWS Backup CloudTrall Resource Access Manager loT 1-Click -

A close M

Figure 20: Click on Athena

Choose the Data source as S3 and metadata as AWS Glue. Click on Next.

Athena Query editor Saved queries History Workgroup : primary Settings Tutorial Help What's new
Connect data source
| Step 1: Choose a data source Choose where your data is located

Athena queries data where it is. Data is not loaded or moved. Learn more &

Query data in Amazon S3 O Query a data source (beta)

Choose an external data catalog Configure a connector for common data sources.

Choose a metadata catalog

The catalog contains the schema for the source data such as column names, data types and table names. Learn more '

Apache Hive metastore

‘ AWS Glue data catalog

edback (@ English (US) Privacy Poicy Terms of Use

Figure 21: Choose S3 as Data Source

Choose to enter table schema manually and click on ’Continue to add Table’.

11

Connect data source
Step 1: Choose a data source Connection details: AWS Glue data catalog
| Step 2: Connection details Athena will connect to your data stored in Amazon 53 and use AWS Glue data catalog to store metadata, such as table and column names

Once connected, your databases, tables and views appear in Athena's query editor. Learn more

O Setup crawler in AWS Glue to retrieve schema information automatically
dd a table and enter schema information manually

Cancel Previous Continue to add table

Figure 22: Choose to enter Table Structure Manually

Enter the Dataset name, Table name and S3 path to the raw datasets. The path
should be a folder. Athena extracts all the data from the files as a single file. Click on
Next.

Databases Add table

Step 1: Name & Location Step 2: Data Format Step 3. Columns Step 4. Partitions

Database | Create a new database v
Choose an existing database or create a new one by selecting "Create new database”

Iﬂoudpredidiondataae{ I

Name of the new database

Table Name I all_sensor_data

Name of the new table. Table names must be globally unigue. Table names tend fo correspond o the directory where the data will be stored.

Location of Input Data Set I s3./fMood-prediction-master-dataset/raw-datasets/ I O Encrypted data set @

Input the path to the data set you want to process on Amazon S3. For example if your data is stored at s3-//input-data-set/logs/1_csv, please enter
s3/finput-data-setlogs/. If your data is already partitioned, e g s3:/input-data-setflogs/year=2004/month=12/day=11/ just input the base path
s3/finput-data-setlogs/

Extemnal

Note: Amazon Athena only allows you to create tables with the EXTERNAL keyword. Dropping a table created with the External keyword does not
delete the underlying data.

Figure 23: Enter Dataset and Table Name and provide path

Choose Datatype of the Data source as CSV and click on Next.

12

Databases Add table

Step 1: Name & Location Step 2: Data Format Step 3: Columns Step 4: Partitions

Daia Format (& Apache Web Logs

O Text File with Custom Delimiters
O JSON

arguet
O ORC

Figure 24: Set Datatype as CSV

Enter the schema of the table. Since the schema of all the three files is same, it does
not affect the table schema process. In case the schema of each file differs, additional
steps would be involved. Click on Add column to add new column schema. After entering
the schema as per the figure below click on Next.

Step 1: Mame & Location Step 2: Data Format Step 3: Columns Step 4: Partiions

olumn name must be single words that start with a latter or 3 digit

Column fype v

Type for this column. Certain advanced types (namely, siructs) are not exposed in this interface

Column Name

Gelumn Heme ststionur _ x

Column name must be single words that start with a letter or a digit

Column type ~
¥Pe for this column. Certain advanced types (namely, structs) are not exposed in this interface

— s ;

Column name must be single words that start with a letter or 3 digit

Type for this column. Gertain advanced types (namely, siructs) are not exposed in this interface

Add a column || Bulk add columns

= |

Figure 25: Enter Table Structure

Click on Create Table since Partitioning is not essential.

13

Databases Add table

Step 1: Name & Location Step 2: Data Format Step 3. Columns Step 4: Partitions

Configure Partitions (Optional)

Partitions are a way to group specific information together. Partition are virtual columns. In case of partitioned tables, subdirectories are created under the

table’s data directory for each unique value of a partition column. In case the table is partitioned on multiple columns, then nested subdirectories are
created based on the order of partition columns in the table definition. Learn more.

Add a partition

Figure 26: Create Table

In every tab, queries can be executed based on the tables created. Click on the '+’

tab to add new tab. The code in the below figure selects the created table which contains
all the raw data.

New query 1 Newquery2 @ Newquery3 © Newquery4 @ Newquery5 @ Newquery6 @ Newquery7 @ +

1 select * from all_sensor_data

Save as Create ~

Use Cirl + Enter to run query, Ctrl + Space to autocomplete

Format query Clear

Figure 27: Show all Data

Selects data based on station. This provides five categories as output since there are
five sensor data.

14

Newquery1 | Newquery2 @ Newquery3 @ Newquery4 © Newquery5 @ Newquery6 @ Newquery7 ©

1 select stationurl from all_sensor_dats group by stationurl

Save as Create ~ Format query

Use Ctrl + Enter to run query, Ctrl + Space to autocomplete
Figure 28: Group Data by sensor type
Creates a River level table based on sensor station value.

Newquery1 Newquery2 ©@ Newquery3 @ Newquery4 @ Newquery @ Newqueryé @ Newquery7 @ +

1 CREATE TABLE floodpredictiondstaset.river_level 15_min
2 WITH (
3 format="TEXTFILE",

4 field_delimiter=',"
5
&

select SUBSTR(all sensor_data.datetime,1,16) AS "TimeRecorded”,sensorvalue from all sensor_data where stationurl = '"http://environment.data.gov.uk/flood-
monitoring/id/measures/634676-level-stage-1i-15_min-m';

Save as Create ~ Format query

Use Cirl + Enter to run query, Ctrl + Space to autocomplete

Figure 29: Create River level Table

Creates a Rainfall table based on sensor station value.

New query 1 Newquery2 @ Newquery3 © Newquery4 @ Newquery5 © Newquery6 © Newquery7 © +

CREATE TABLE floodpredictiondstaset.rainfall_15_min

WITH (

format="TEXTFILE',

field_delimiter=',"'

AS

select SUBSTR(all_sensor_data.datetime,1,16) AS "TimeRecorded”,sensorvalue from all sensor_data where stationurl = '"http://envirenment.dsta.gov.uk/flood-
monitoring/id/measures/55@148-rainfall-tipping_bucket_raingauge-t-15_min-mm';

LR Ry

Save as Create ~ Format query

Use Ctrl + Enter to run query, Ctrl + Space to autocomplete

Figure 30: Create rainfall Table

Creates a Temperature table based on sensor station value.

15

Clear

Clear

Clear

Newquery1 ' Newquery2 @ Newquery3 @ Newqueryd @ Newquery5 @ NewqueryS @ Newquery? @ +

1 CREATE TABLE floodpredictiondataset.temperature_15_min

2 WITH (

3 format="TEXTFILE',

4 field_delimiter=","

5)

& select SUBSTR(all_sensor_data.datetime,1,16) AS "TimeRecorded”,sensorvalue from all_sensor_data where stationurl = 'http://environment.data.gov.uk/flood-

monitoring/id/measures/39@1l-temperature-dry bulb-i-15 min-deg C°;

Save as Create ~ Format query Clear

Use Cirl + Enter to run query, Cirl + Space to autocomplete
Figure 31: Create temperature Table

Creates a Wind Speed table based on sensor station value.

New query 1 Newquery2 @ Newquery3 @ Newquery4d @ Newquery5S © Newqueryb6 @ Newquery7 @ +

1 CREATE TABLE floodpredictiondataset.wind_spesd_15_min

2 WITH (

3 format="TEXTFILE',

4 field_delimiter=","

5)

& select SUBSTR(all_sensor_data.datetime,1,16) AS "TimeRecorded”,sensorvalue from all_sensor_data where stationurl = 'http://environment.data.gov.uk/flood-

monitoring/id/measures/694670-wind-speed-Mean-15_min-m_s";

Save as Create ~ Format query Clear

Use Cirl + Enter to run guery, Cirl + Space to autocomplete

Figure 32: Create Wind Speed Table
Creates a Wind Direction table based on sensor station value.

Newquery1 | Newquery2 @ Newquery3 @ Newquery4 @ Newquery5 @ NewqueryS © Newquery7 @ +

1 CREATE TABLE floodpredictiondataset.wind_dirsction_15_min

2 WITH

3 format="TEXTFILE',

4 field_delimiter=","

5)

& select SUBSTR(all_sensor_data.datetime,1,16) AS "TimeRecorded”,sensorvalue from all_sensor_data where stationurl = 'http://environment.data.gov.uk/flood-

monitoring/id/measures/694670-wind-direction-Mean-15_min-deg';

Save as Create ~ Format query Clear

Use Cirl + Enter to run guery, Cirl + Space to autocomplete

Figure 33: Create Wind Direction Table

Creates a table by applying a Join between River level table and rainfall table based
on timestamp column.

16

New query 1 New query 8 © New query 9 @ Newquery 10@ Newquery 11 @ Newquery12@ <+

CREATE TABLE floodpredictiondataset.river_and_rain
WITH
format="TEXTFILE",
field_delimiter=',"
) AS
select river_level 15 _min.TimeRecorded, river_level 15_min.sensorvalue AS "river”, rainfall_15 min.sensorvalue AS "rain” from river_level 15 min JOIN rainfall 15_min ON
river_level 15_min.TimeRecorded = rainfall_15_min.TimeRecorded;

EXUE Sryere

Save as Create ~ Format query Clear

Use Cirl + Enter to run query, Ctrl + Space to autocomplete

Figure 34: Joining River level and rainfall

Creates a table by applying a Join with the above table and temperature table based
on timestamp column.

New query 1 Newquery8 @ Newquery9 @ Newquery10@ Newquery 11 @ Newquery 12 +

CREATE TABLE floodpredictiondataset.river_rain_temperature
WITH
format="TEXTFILE',
field delimiter=","
) As
Select river_and_rain.TimeRecorded, river_snd_rain.river, river_snd_rain.rsin, temperature_15_min.sensorvalue AS “temperature” from river_and_rain JOIN
temperature_15_min ON river_snd_rain.TimeRecorded = temperature_15_min.TimeRecorded;

05 2) 29 [

o

Save as Create ~ Format query Clear

Use Cirl + Enter to run guery, Ctrl + Space to autocomplete

Figure 35: Joining Temperature

Creates a table by applying a Join with the above table and Wind Speed table based
on timestamp column.

New query 1 Newquery 8 @ Newquery9 © | Newquery 10@ Newquery11@ Newquery12@ <+

CREATE TABLE floodpredictiondataset.except_speed
WITH (

format="TEXTFILE',

field_delimiter=","
) As
Select river_rain_temperature.TimeRecorded, river_rain_temperature.river, river_rain_temperature.rain, river_rain_temperature.temperature,
wind_direction_15 min.sensorvalue AS “wind_direction™ from river_rain_temperature JOIN wind_direction_15_min OM river_rain_temperature.TimeRecorded =
wind_direction_15_min.TimeRecorded;

4
5

@

Save as Create ~ Format query Clear

Use Cirl + Enter to run guery, Cirl + Space to autocomplete

Figure 36: Joining Speed
Creates a table by applying a Join with the above table and Wind Direction table

17

based on timestamp column. This creates a table with 6 columns - one timestamp column
and five sensor data columns with a time period of 15 minutes.

New query 1 Newquery8 © Newquery9 © Newquery10© Newquery11 @ Newquery12© +

1 CREATE TABLE floodpredictiondstaset.ml_sensor_dsta 15_min
2 WITH (

3 format="TEXTFILE',

4 field delimiter="' "

5 external location= 570 Tlood-prediction-master-dataset/ml-senzor-data- -
&

Select except_speed.TimeRecorded, except_speed.river, except_speed.rsin, except_spesd.temperature, except_speed.wind_direction, wind_speed_15_min.sensorvalus AS
"wind_speed” from except_speed JOIN wind_speed_15_min ON except_speed.TimeRecorded = wind_speed_15_min.TimeRecorded;

Save as Create ~ Format query Clear

Use Cirl + Enter to run query, Cirl + Space fo autocomplete
Figure 37: Final 15 minutes dataset

Aggregating the above table based on hour. Aggregate wind speed, wind direction
and temperature to their average values. Aggregate rainfall to its sum value and river
level to its max value.

New query 1 Newquery 8 @ Newquery9 @ Newquery10@ Newquery11 @ Newqueryi2zg +

1 CREATE TABLE floodpredictiondataset.ml_sensor_data_1_hr

2 WITH (

3 format="TEXTFILE',

4 ield delimiter="_"

5 lexternal locataon="cs2://Tlcod-prediction-master—gataset /ml-scnzor-data-1-hr |
6

)
SELECT SUBSTR(TimeRecorded,1,13) AS "TimeRecorded”, round(MAX(river),3) AS "river”, round(SUM(rain),1) AS "rain”, round(AVG{temperature),2) AS "temperature”,
round(AVG(wind_direction),8) A5 “wind_direction”, round(AVG(wind_speed},3) AS “wind_speed” from tempTable group by SUBSTR(TimeRecorded,1,13);

I Run query Save as Create ~ Format query Clear

Use Cirl + Enter to run guery, Cirl + Space to autocomplete

Figure 38: Aggregated Dataset
Navigate to the S3 bucket inside the 'ml-sensor-data-15-min’ folder. The table will be

stored in a .gz format. Select the file and go to Actions. Click on "Make Public’ option.
Although bucket was made public, objects are not public unless explicitly made public.

18

£\ Ghiridhar ~ Global v Support ~

Services Resource Groups ~ *

IAmazun S3 > flood-prediction-master-dataset > ml—sensor—dala—15—mm|

flood-prediction-master-dataset

Qverview

‘ Q Type aprefix and press Enter to search. Press ESC to clear.

Viewing 1 to 1

Q

AQC 13gs

Make public
Storage class «

Name v Rename Last modified v Size v
. Delete Aug 3, 2020 9:12:48 PM
[{) mi_sensor_daia_15_min gz e 33.4 KB Standard
Undo delete
Viewing 1 to 1

Copy

Move

erved Privacy Policy Terms of Use

@ English (US)

@ Feedback

Figure 39: Making 15 Minute dataset public

Click on 'Make Public’ to confirm the action. Do the same action for 1 hour dataset

in the 'ml-sensor-data-1-hr’ folder.

Make public

Selection: 1 Objects, 0 Folders Total size: 33.4 KB Total objects: 1

ml-sensor-data-15-min/ml_sensor_data_15_min.gz
-334KB » -

Everyone will have access to one or all of the following: read this object, read and write permissions.

ke pte

Figure 40: Confirming

Create jupyter python_3 file with file name "Source_Dataset_gz_to_csv’ inside the CT-
GAN instance. Retrieve both the .gz files and save them as CSV files.

19

In[]:

#import packages|

import pandas as pd

In[]:

In[]:

Using

#import source file
hr_file = pd.read_csv("https://flood-prediction-master-dataset.s3.amazonaws.com/ml-sensor-data-1-hr/ml_sensor_data_1_hr.gz", name

min_file = pd.read_csv("https://flood-prediction-master-dataset.s3.amazonaws.com/ml-sensor-data-15-min/ml_sensor_data_15 min.gz",
4 »

#saving as csv file

hr_file.to_csv("ml_sensor_data_1 hr.csv",index=False,header=None)
min_file.to_csv("ml_sensor_data_15_min.csv",index=False,header=None)

Figure 41: retrieve file using pandas

Boto3, save the CSV files to their respective folders in S3. This Format con-

version was done by making the bucket and the .gz file as public, as Boto3 faces issues
while streaming and decoding the .gz file.

In[1:

In[]:

import datetime
import tarfile

import boto3 # AWS SDK for python. Provides Low-level access to AWS services
from sagemaker import get_execution_role

import sagemakesr

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region = sess.boto_session.region_name

bucket = "flood-prediction-master-dataset’ # specify the 53 bucket to save the file

print('Using bucket ' + bucket)

send data to 53. key_prefix is the directory path. path is the Local file name which will be saved in 53 with same file name
and bucket is the bucket name

upload = sess.upload_data(path='ml_sensor_data_1 hr.csv', bucket=bucket, key prefix-'ml-sensor-data-1-hr/')

upload = sess.upload_data(path="ml_sensor_data_15_min.csv’, bucket=bucket, key prefix="ml-sensor-data-15-min/")

Figure 42: Save CSV format to S3

Navigate to the S3 bucket and inside the 'ml-sensor-data-15-min’ folder. Since the .gz
and .csv have the same name, a no named folder is created within which the CSV file is

saved.

I Amazon S3

» flood-prediction-master-dataset > ml-sensor-dala-15-mm|

flood-prediction-master-dataset

Overview

‘Q Type a

prefix and press Enter to search. Press ESC to clear.

X, Upload + Create folder

US East (N. Virginia) £

Viewing 1 1o 2

[] Namew Last modified + Size = Storage class «

o=

[[mi_sensor_data_15_min gz

Aug 3, 2020 9:12:48 PM

334 KB Standard
GMT+0530 anar

Figure 43: Go inside Empty Folder

20

Click on the folder. Select the CSV file and go to actions. Click on Move.

Amazon S3 > flood-prediction-master-dataset > ml-sensor-data-15-min >

flood-prediction-master-dataset

Overview

‘ Q Type a prefix and press Enter to search. Press ESC to clear.

X Upload + Create folder

Name +

[mi_sensor_data_15_mir csv

Add Tad

Make public

Rename

Delete
Undo delete

Copy

Last modified +

Aug 14, 2020 7:05:26 PM
GMT+0530

Figure 44: Move File

Size v

136 5 KB

US East (N. Virginia)

Viewing 1to 1

Storage class v

Standard

Viewing 1to 1

ndows

Click on the flood-prediction-master-dataset’ S3 bucket. Do not choose the bucket,
but click on the bucket name.

Choose move destination

@ Choose move destination

Buckets

‘ Q, search by name

Name -

O codepipeline-us-east-1-436189706244

O Jnood-prediction-master-ataset |

O floodashboard.co.uk
O ghiri-sample-quicksight
O ghiridhar-sagemaker

O sagemaker-us-east-1-884654660367

@ Review

Region

US East (N. Virginia)
US East (N. Virginia)
US East (N. Virginia)
US East (N. Virginia)
US East (N. Virginia)

US East (N._ Virginiay

Cancel

Figure 45: Click on Destination S3 bucket

Choose the folder to move the file. Here select the 'ml-sensor-data-15-min’. Click on

Choose.

21

-
s

Choose move destination

C‘D Choose move destination @ Review

S3 » flood-prediction-master-dataset

Objects

Q

O m fnal-dataset-1-hr
O = final-dataset-15-min
O = misensor-data-1-hr
O m predictions-1-hr
O = predictions-15-min

O m rawaatasets

Figure 46: Choose the destination folder

Click on Move to confirm the action.

Review

@ Choose move destination @ Review

Selection: 1 Objects, 0 Folders ~ Total size: 136.5 KB Total objects: 1

e T flood-prediction-
Source LSS e Destination master-dataset/ml-
min/f]
sensor-data-15-min/

ml-sensor-data-15-min//ml_sensor_data_15_min.csv

b -136.5 KB

Previous Move

Figure 47: Confirm Move Action

Ensure the process was successful. The no named folder is deleted by itself. Do the
same process for the 1 hour CSV file.

22

IAmazon S3 > flood-prediction-master-dataset > ml-sensor-data-15-min I

flood-prediction-master-dataset

Overview

‘ Q Type a prefix and press Enter to search. Press ESC to clear.

Viewing 1 10 2
[] Namew Last modified + Size v Storage class v
] O mi_sensor_data_15_min csv g‘:ﬁ_rlt;szzo 71059 P 136 5 KB Standard
[M® mi_sensor_data_15_min.gz gﬁééﬁo IAZ4EPM 33.4KB Standard
Figure 48: Ensure both files are inside the same directory.
Choose the bucket and click on "Edit Public Access Settings’.
S3 buckets X Discover the console
‘ Q, Search for buckets ‘ ‘ All access types ~v

I Edit public access settings I | Empty | ‘ Delete 6 Buckets 1 Regions o
[] Bucket name Access @ v Region v Date created v
[[] & codepipeline-us-east-1-436189706244 Ohjects can be public US East (N. Virginia) Jul 3, 2020 11:44:22

PM GMT+0530

Jul 15, 2020 10:55:38
AM GMT+0530

§ flood-prediction-master-dataset Obiects can be public US East (N. Virginia)

Figure 49: Edit Bucket Public Access

Check on the 'Block all public access’ option and click on Save.

23

Edit block public access settings for selected buckets

Total buckets: 1 (Public: 0)

Block public access (bucket settings)

Public access is granted fo buckets and objects through access control lists {ACLs), bucket policies, access point policies, or all. In order to ensure that public
access 1o all your 53 buckels and objects is blocked, furn on Block all public access. These settings apply only fo selecied buckets and all their access points. AWS
recommends thal you tum on Block all public access, but before applying any of these setiings, ensure that your applications will work correctly without public
access. If you require some level of public access to your buckets or objects within, you can customize the individual settings below to suit your specific storage
use cases. =
Block ali public access

Turning this setting on is the same as turning on all four settings below. Each of the following settings are independent of one another.

[l Block public access to buckets and objects granted through new access control lists (ACLs)

53 will block public s permissions applied to newly added buckels or objects, and prevent the creation of new public access ACLs for existing buckeis and objects. This setling
doesn’t change any ng permissions that allow public access to S3 resources using ACLs.

Cancel Save

Figure 50: Block access

Type ’confirm’ in the textbox and click on Confirm. This converts all the public
objects inside the bucket as private.

Edit block public access settings for selected X
buckets

This will result in public access being blocked for selected buckets and all objects within

To confirm the settings, type confirm in the field.

Cunﬂrm‘ _
Cancel Confirm

Figure 51: Confirm Action

4 GAN creation and Merging
Create a Python3 file named GAN _generator_15_min in CTGAN instance. Go to Kernel

and go to Change Kernel and Choose 'conda_mxnet_p36’. This Kernel enables installing
Third Party libraries in AWS SageMaker environment.

24

File Edit

View Insert Cell

Widgets

Help

+ 3 BB+ ¥ H Run| Interrupt v @ nbdiff
Restart
| Restart & Clear Qutput
In [1]: | #EXECUTE THIS commani Restart & RunAll fonda_mxnet_p36". ONLY THIS KERN
L. Reconnect
! pip install --user
Shutdown

Reguirement already i ime/ec2-user/,local/lib/python3.

Requirement already

» R
(from ctgan) (@.22.1] i
Requirement already ¢ Sparkmagic (PySpark)
Requirement already ¢ CondaPackages Sparkmagic (Spark)
1.18.1 s
gan) () Visit anaconda.org Sparkmagic (SparkR)

Requirement already ¢_ - 3
Reguirement already satisfied: torch<2,»>=1,
Requirement already satisfied: scipy»=8.17.
t-learn<®.23,»>=8.21->ctgan) (1.4.1)
Requirement already satisfied: joblib»=8.11
-learn<@.23,»=8.21->ctgan) (8.14.1)
Requirement already satisfied: pillow»=4.1.
vision<l,>=@.4.2->ctgan) (7.8.8)
Requirement already satisfied: pytz»=2017.1
<8.26,>=0.24->ctgan) (2018.3)

Regquirement already satisfied: python-dateu
rom pandas<@.26,»=8.24->ctgan) (2.8.1)
Requirement elready satisfied: future in /b 40 mxnet_p27
@->ctgan) (@.18.2) =

Requirement already satisfied: six»>=1.5 in conda_mxnet_p36

eutil»>=2.6.1->pandas<@.26,>=0.24->ctgan) (1 conda_python2

conda_amazonei_mxnet_p27
conda_amazonei_mxnet_p36
conda_amazonei_tensorflow2_p27
conda_amazonei_tensorflow2_p36
conda_amazonei_tensorflow_p27
conda_amazonei_tensorflow_p36
conda_chainer_p27

conda_chainer_p36

book.us-gast-1.sagemaker.aws/notebooks/GAN_generator_15_min.ipynb# conda_python3

Figure 52: Change Kernal

Install the ctgan library using the pip command.

In [1: #EXECUTE THIS COMMAND WITH KERNAL SET TO “conda_mxnet_p36". ONLY THIS KERNALCAN INSTALL EXTERNAL LIBRARIES.

! pip install --user ctgan

Figure 53: Install CTGAN library

Change the kernel back to 'conda_python3’.

File Edit View Insert Cell Widgets Help

= | O nbdiff

B+ 3 B

B+ + MRun

#EXECUTE THIS COMMANI

Interrupt v

Restart
Restart & Clear Qutput

fonda_mxnet_p36”. ONLY THIS KERNAL(

In [1]: Restart & Run All
Reconnect
I pip install --user
+ Shutdown

Requirement already ¢ ime/ec2-user/.local/1lib/python3.6/:

Reguirement already i R ani
(from ctgan) (@.22.1

Requirement already ¢ Sparkmagic (PySpark) cal
Requirement already ¢« CondaPackages Sparkmagic (Spark) B/e
an 1.18.1 isil N

ﬁeqfnir('ement :lready L_-VIS-II_E_H_E-CUPEE-._O_[E]-- o | Sparkmagic (SparkR) ¥1:
Requirement already satisfied: torch<2, { conda_amazonei_mxnet_p27 pyt
Reguirement already satisfied: scipy»=0.17. nvs

conda_amazonei_mxnet_p3%
t-learn<d.23,>=0.21->ctgan) (1.4.1)

Requirement already satisfied: joblib»=8.11
-learn<@.23,»=8.21->ctgan) (8.14.1) conda_amazonei_tensorflow2_p36
Requirement already satisfied: pillow»=4.1. . nve
vision<1,»=@.4.2->ctgan) (7.0.8) conda_amazonei_tensorflow_p27
Requirement already satisfied: pytz»=2017.:
<8.26,>=0.24->ctgan) (2019.3)

conda_amazonei_tensorflow2_p27 yg,

conda_amazonei_tensorflow_p36 Vs,

conda_chainer_p27

Requirement already satisfied: python-datel ace
rom pandas<@.26,>=8.24->ctgan) (2.8.1) conda_chainer_p36

Requirement already satisfied: future in /F conda_mxnet_p27 et
@-»ctgan) (e.18.2)

Requirement already satisfied: six>=1.5 in conda_mxnet_p36 Xne

eutil»=2.6.1->pandas<@.26,>=0.24->ctgan) (1 conda_python2

| I conda_python3 I I

book.us-east-1.sagemaker.aws/notebooks/GAN_generator_15_min.ipynb# _

Figure 54: Change Kernal to Python3

Import all the required libraries. Stream the 15 minutes file from S3 and specify the
column names.

25

In [1:|#import packages
from ctgan import CTGANSynthesizer

import pandas as pd
import boto3

In []: | #import source file
s3 = boto3.client('s3")

bucket = 'flood-prediction-master-dataset
key = 'ml-sensor-data-15-min/ml_sensor_data_15_min.csv

obj = s3.get_object(Bucket- bucket,Key= key)
file = pd.read_csv{obj['Body'],names=["time","river"”,"rain","temperature”, "wind_direction”,"wind_speed”])

file
In []:|#specify the headers to GAN

discrete_columns = [
"time',
"river’',
"rain’,
"temperature’,
"wind_direction’,
"wind_speed’

Figure 55: Retrieve file and mention columns

Declare the CTGAN, train the model and generate records.

In []: | #creating instance

ctgan = CTGANSynthesizer()
In []: #training

ctgan.fit(file, discrete_columns)
In []: | #sample creation

samples - ctgan.sample(2758)

In []: import datetime
import tarfile

import boto3 # AWS SDK for python. Provides Low-level access to AWS services

from sagemaker import get_execution_role

import sagemakesr

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region = sess.boto_session.region_name

bucket = 'flood-prediction-master-dataset’ # specify the 53 hucket to save the file

print('Using bucket ' + bucket)

Figure 56: Train and Create samples.

Save the Generated file as CSV and using Boto3 save it to S3.

In []: #sove the file as csv Llocally

samples.to_csv("gan_data_15_min.csv")

In []: # send data to 53. key prefix is the directory path. path is the Local file name which will be saved in $3 with same file name
and bucket 1s the bucket name

upload = sess.upload_data(path="gan_data_15_min.csv", bucket=bucket, key_prefix="ml-sensor-data-15-min/")

Figure 57: Convert to CSV and save to S3

Create a python3 file named GAN generator_1_hr in CTGAN instance. Repeat the
same process as in the above figures to Stream the 1 hour dataset and train the
model.

26

In []: |#EXECUTE THIS COMMAND WITH KERMAL SET TO "conda mxnet_p36™. ONLY THIS KERNALCAN INSTALL EXTERNAL LIBRARIES.
! pip install --user ctzan

In []: | #import packages
from ctgan inport CTGANSynthesizer

import pandas as pd
import boto3

In [1:|#import source file

53 = botoz.client('s3')

3.get_object(Bucket= bucket,Key= key)
file - pd.read_csv(obj[*Body*], names=[“time",“river",“rain", “temperature”, "wind_direction”,"uind_speed"])

file

In [1: | #sp

cify the headers to Gan

discrete_celumns = [
‘time',
‘river”,
‘rain’,
'temperature',
‘wind ction’,
peed”

1

In [1: | #cresting instance

ctgan = CTGANSynthesizer()

In [1:|#training

ctgan.fit(file, discrete_columns)

Figure 58: GAN generation for 1 Hour data

Generate sample records, save the file as CSV and stream it to S3 using Boto3.

In []: |#sample creation

samples = ctgan.sample(692)|

In []: import datetime
import tarfile

import boto3d # AWS SDK for python. Provides Low-level access to AWS services
from sagemaker import get_execution_role

import sagemaker

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region = sess.boto_session.region_name

bucket = "flood-prediction-master-dataset’ # specify the S3 bucket to save the file

print(‘Using bucket ' + bucket)
In []: #save the file as csv Locally

samples.to_csv{"gan_data_1_hr.csv"

In []: # send data to 53. key prefix is the directory path. path is the Local file name which will be saved in 53 with-same -file 'name
and bucket 1s the bucket name

upload = sess.upload data(paﬂF'gan data_1 hr.csv‘l bucket=bucket, key prefixl'ml—semsor- ata-1- rf1

Figure 59: Create sample and upload to S3

Now create a Python3 notebook named Sensor_and_GAN_merger_15_min in 'gan-and-
sensor-data-merge’ instance. Import libraries and Stream the 15 minutes sensor and GAN
data.

27

In [1: #pockages
import pandas as pd

import numpy as np
import boto3

In [1: #file import from S3
s3 = boto3.client("s3")
bucket 'flood-prediction-master-dataset’
key :I -sensur‘-aata-ls-mlﬂfmlisensoridatailsimln.csv | |

obj = s3.get_object(Bucket= bucket,Key= key)
sensor_file = pd.read_csv(obj['Body’],names=["time", "river”,"rain", "temperature”,"wind_direction”,"wind_speed”])

kay :I‘ml-sensmr-data-ls-minfgan_data_is_min.csv'l

obj = s3.get_object(Bucket= bucket,Key= key)
gan_file = pd.read_csv(obj['Body']) #GAN was saved with header. hence no need for stating column names

Figure 60: Retrieve both files

Add DateTime column and source column. Source column states the source of the
record - GAN or sensor. Combine both files

In []:|#converting the string datatype of time values to datetime

sensor_file["timerecorded’] = pd.to_datetime(sensor_file['time'])
gan_file["timerecorded’] = pd.to_datetime(gan_file[time'])

In []:|#dropping the redundant column

sensor_file.drop([time'],axis=1,inplace=True)
gan_file.drop([time'],axis=1,inplace=True)

In []:|#sorting by datetime column

gan_file.sort_values(by=["timerecorded’], inplace=True)
sensor_file.sort_values(by=["timerecorded'],inplace=True)

In []:|#quicksight imports all data from all the csv files from the folder and files specified
#Hence, a distinguishing column is required.

gan_file['source'] = 'GAN"
sensor_file["source’] = 'SENSOR®

In []: #merging both datasets

final_file_15_min = gan_file.append(sensor_file)
Figure 61: Add Time and source column

Find the mean of each column for sensor and GAN data to assess how close the values
are. Save the file as CSV.

In []: print("Mean of River GAM: "+str(round(gan_file['river'].mean(),4))+" Mean of River Sensor: "+str(round(sensor_file['river’].mean
print("Mean of Rainfall GAN: "+str(round(gan_file['rain'].mean(),4))+" Mean of Rainfall Senscor: "+str(round(sensor_file['rain'].n
print("Mean of Temperature GAN: "+str(round(gan_file['temperature'].mean(),4))+" Mean of Temperaturs Senser: "+str(round(sensor_{

print("Mean of wind direction GAN: "+str(round(gan_file['wind_direction"].mean(),4))+" Mean of wind direction Sensor: "#str(roun

print("Mean of wind speed GAN: "+str(round(gan_file['wind_speed’].mean().4))+" Mean of wind speed Sensor: "+str(round(sensor_file

4 »
In []: final_file_15_min

In []: #reset file index to current dataframe

final_file_15_min.reset_index(drop=True, inplace=True)
In []: #save as a csv file locally
final_file_15_min.to_csv("final_data_15_min.csv")

Figure 62: Mean comparison and convert to CSV

Using Boto3, save the file to S3.

28

In []: import datetime
import tarfile

import boto3 # AWS SDK for python. Provides Low-Llevel access to AWS services

from sagemaker import get_execution_role

import sagemaker

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region = sess.boto_session.region_name

bucket = 'flood-prediction-master-dataset’ # Bucket name where the file is to be saved

print(‘Using bucket ' + bucket)

save data to 53. key_prefix is the directory path. path is the Local file name which will be saved in S3. It has to be
the same file name as saved Locally and bucket is the bucket name

upload = sess.upload_data(path bucket=bucket, key_prefix-| final-dataset-15-min'})
Figure 63: save to S3 folder

Similarly, create a Python3 notebook named Sensor_and_GAN_merger_1_hr in ’gan-
and-sensor-data-merge’ instance. Import libraries and Stream the 1 hour sensor and GAN
data.

In [1: | #packages
import pandas as pd

import numpy as np
import boto3

In []: | #file impert from 53
s3 = boto3.client('s3")

bucket = 'flood-prediction-master-dataset’

key = ‘ml-sensor-data-1-hr/ml_sensor data 1 _hr.csv’

obj = s3.get_object(Bucket= bucket,Key= key)
sensor_file = pd.read_csv(obj['Body’],names=["time","river”,"rain", "temperature"”,"wind_direction”,"wind_speed”])

key = 'ml-sensor-data-1-hr,

obj = s3.get_object(Bucket= bucket,Key= key)
gan_file = pd.read_csv(obj['Body']) #GAN was saved with header. hence no need for stating column names

Figure 64: 1 hour data import

Create DateTime column and source column. Combine both files.

In []: #converting the string datatype of time values to dotetime

sensor_file["timerecorded’] = pd.to_datetime(sensor_file['time"])
gan_file['timerecorded'] = pd.to_datetime(gan_file["time'])

In [1: #dropping the redundant column

sensor_file.drop(["time'],axis=1,inplace=True)
gan_file.drop([' time'],axis=1,inplace=True)

In []: |#sorting by datetime column

gan_file.sort_values(by=['timerecorded’],inplace=True)
sensor_file.sort_values(by=['timerecorded’],inplace=True)

In []: #quicksight imports all data from all the csv files from the folder and files specified
#Hence, a distinguishing column is required

gan_file['source’'] = 'GAN'
sensor_file["source'] = 'SEMSOR'

In []: | #merge both datasets

final_file_1_hr = gan_file.append(sensor_file)
Figure 65: Adding source and time columns

Save the file as CSV and save the file to S3.

29

In []: #reset file index to current dataframe

final_file_1_hr.reset_index(drop=True, inplace=True)

In []: |#save as a csv file locally

final_file_1_hr.to_csv("final_data_1_hr.csv")

In []: import datetime
import tarfile

import boto3 # AWS SDK for python. Provides Low-level access to AWS services

from sagemaker import get_execution_role

import sagemakesr

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region = sess.boto_session.region_name

bucket = "flood-prediction-master-dataset’ # Bucket name where the file is to be saved
print('Using bucket ' + bucket)

sgve data to 53. key_prefix is the directory path. path is the Local file name which will be saved in 53. It has to be
the same file name as saved locally and bucket is the bucket name

upload = sess.upload data(path="ffinal data 1 hr.csw , bucket=bucket, kev prefix=1final-dataset-1-hry)

Figure 66: Save 1 Hour Final dataset to S3

Find the mean for each column in Sensor and GAN file to assess how close the values
are.

2

In [1: print("Mean of River GAN: "+str(round(gan_file['river'].mean(),4))+" Mean of River Sensor: "+str(round(sensor_file['river'].mean

2

print("Mean of Rainfall GAN: "+str(round(gan_file['rain'].mean(),4))+" Mean of Rainfzll Sensor: "+str(round(sensor_file['rain'].n

2

print(“Mean of Temperature GAN: "+str(round(gan_file[temperature’'].mean(),4))+" Mean of Temperature Sensor: "+str{round(sensor_i

print(“Mean of wind direction GAN: "+str(round(gan_file['wind_direction’].mean(),4))+" Mean of wind direction Sensor: "+str(roun

=

print("Mean of wind speed GAN: “+str(round(gan_file['wind_speed’].mean(),4))+" Mean of wind speed Sensor: "+str(round(sensor_file

e

Figure 67: Mean comparison for 1 Hour Data

5 QuickSight configuration and Visualization

QuickSight expects a JSON file named as 'manifest.json” which states the list of files to be
extracted along with Upload Settings for the same. The below figure states the manifest
file for generating a QuickSight visualization for sensor and GAN data for the 15 minutes
time period.

"fileLocations™: [
{
"URIs™ [
"https://flood-prediction-master-dataset.s3.amazonaws.com/final-dataset-15-min/final data_15 min.csv"
]
}

1.

"globalUploadSettings": {
"format": "CSV",
"delimiter": ".",
"containsHeader™ "true"

}
}

Figure 68: manifest file of 15 minutes sensor and GAN data

Upload the file by navigating to the 'final-dataset-15-min’ by clicking on Upload.

30

IAmazon S3 > flood-prediction-master-dataset > ﬂnal—dataset—‘lE—mmI

flood-prediction-master-dataset

Overview

‘ Q Type a prefix and press Enter to search. Press ESC to clear

X, Upload + Create folder

US East (N. Virginia) &
Viewing 1to 2
[Namew Last modified v Size v Storage class
] [final_data_15_min.csv g‘r"%ﬁ;ﬁfo 24542 FM 337.4KB Standard
O é‘;ﬁiﬂ%‘;ﬁmmzsz A 37208 Standard
Figure 69: S3 Folder of 15 minutes data
The below figure shows the manifest file for 1 hour time period file.
{
"fileLocations": [
{
"URIs": [
"https://flood-prediction-master-dataset.s3.amazonaws.com/final-dataset-1-hr/final_data_1_hr.csv"
1
3
I
"globalUploadSettings": {
"format": "CSV",
“delimiter™ ",
"containsHeader™: "true"
}
}
Figure 70: Manifest file for 1 hour time period for sensor and GAN data comparison
The ’final-dataset-1-hr’ should seem like the figure below.
IAmazon 53 > flood-prediction-master-dataset > final-dataset-1-hr I
flood-prediction-master-dataset
Overview
‘ Q Type a prefix and press Enter to search. Press ESC to clear.

[Namew

] [final_data_1_hr.csv
oo

Figure 71: S3 folder of 1 hour data

Last modified v

Aug 12, 2020 2:43:47 PM
GMT+0530

Jul 24, 2020 12:13:36 AM
GMT+0530

Size v

842KB

368.08

Viewing 1 to 2

Storage class v

Standard

Standard

Click on Services and navigate to the Analytics Section. Click on QuickSight.

31

Resource Groups ~ %

L

Ghiridhar ~ Global ~ Support ~

History

83

Athena

[l

] Group A-Z

j:@} Compute

oee Blockchain

Eﬂ Business Applications

Consale Home EC2 Amazon Managed Blockchain Athena Alexa for Business
Billing Lightsail & EMR Amazon Chime &
A Lambda CloudSearch WorkhMail
' Baich 5 Satellite Elasticsearch Service Amazon Honeycode
Amazon SageMaker Elastic Beanstalk Ground Station Kinesis
Serverless Application Repository QuickSight 2
AWS Outposts) Data Pipeline [ZE] End User Computing
EC2 Image Builder @ Quantum Technologies AWS Data Exchange WorkSpaces
Amazon Braket AWS Glue AppStream 2.0
AWS Lake Formation WorkDocs
Storage MSK WorkLink

|§j Management & Governance

53

EFS AWS Organizations

Fox CloudWatch @ Security, Identity, & 4fp Internet Of Things
53 Glacier AWS Auto Scaling Compliance 16T Core

Storage Gateway CloudFormation 1AM FreeRTOS

AWS Backup CloudTrail Resource Access Manager 10T/1-Cligk

Figure 72: QuickSight Menu

The following screens appear only once. A different account has been used to guide
the process. Click on ’Sign Up for QuickSight’. The AWS Account number is unique for

every account.

Your AWS Account is not signed up for QuickSight. Would you like to sign up
Fa. now?
Az

317468511322

m AWS Account

Sign up for QuickSight

To access QuickSight with a different account, log in again.

aws

Figure 73: Sign Up to QuickSight

Click on Standard. Choose Enterprise in case you plan to avail those additional
services. Click on Continue.

32

Edition

First author with 1GB SPICE

Team trial for 60 days (4 authars)*

Additional author per month (yearly)**
Additional author per month (monthly)*
Additional readers (Pay-per-Session)
Additional SPICE per month

Single Sign On with SAML or OpenlD Connect
Connect to spreadsheets, databases & business apps
Access data in Private VPCs

Row-level security for dashboards

Hourly refresh of SPICE data

Secure data encryption at rest

Connect to your Active Directory

Use Active Directory Groups ***

Send email reports

FREE
FREE
$9
$12

N/A

$0.25 per GB
N
v

e Sessions of 30-min

Figure 74: Choose Plan

O Enterprise

FREE
FREE
$18

$24

$0.30/session (max $5/reader/month) ****

$0.38 per GB

R N Y N B

lon. Total charges for each reader are capped at $5 per manth Conditions apply

Enter the account name and email address. Check the Amazon S3 to select the buckets
to be provided access to QuickSight.

QuickSight region

Select a region.

US East (N. Virginia)

QuickSight account name

sample-account
You will need this for you and others to sign in.

Notification email address

I ghiridhar2712@rediffmail.com I

For QuickSight to send important notifications.

Enable invitation by email

o

Allow inviting new users by email.This setting cannot be changed after sign-up is complete.

> Z] Enable autodiscovery of data and users in your Amazon Redshift, Amazon RDS, and AWS IAM services.

[7] Amazon Athena

Enables QuickSight access to Amazon Athena databases

Please ensure the right Amazon S3 buckets are also enabled for QuickSight.

mazon 53

lr.::\lu; QuickSight to auto-discover your Amazon 53 buckets

Figure 75: Set Account Name and email address

Choose 53 buckets

A Sample Bucket has been selected. Click on 'flood-prediction-master-dataset’ and
click on Finish. This process was already executed by the main account. Since this

cannot be reiterated, another account was used for showing these steps.

33

Select Amazon S3 buckets

53 Buckets Linked To QuickSight Account S3 Buckets You Can Access Across AWS

Select the buckets that you want QuickSight to be able to access.

Salected buckets have read only permissions by default. However, you must give write permissions for Athana Werkgroup feature.

[v] Select all
53 Bucket Write permission for Athena Workgroup
I [v] ghiri-sample-bucket I M

coneel

Figure 76: Choose S3 buckets to provide access

Click on Go to Amazon QuickSight.

Congratulations! You are signed up for Amazon QuickSight!

Access QuickSight with the following information
Account name: sample-ghiri-quicksight

Figure 77: Go to QuickSight Page

The below figure shows the QuickSight Analyses tab.

34

Search for analyses, data sets, and dashboards Q i
31746.
Analyses Last updated (newest first) A
% Favorites

@ Recent r—

ﬁ Dashboards ‘

k2 Analyses People Overview analysis Sales Pipeline analysis Web and Social Media Anal... Business Review analysis

§ Datasets

Figure 78: QuickSight main page

Click on Datasets tab to the left.

| w Favorites

@ Recent

m Dashboards

13

Analyses

(]

Datasets

Figure 79: Click on Datasets

Click on 'New dataset’.

Search for analyses, data sets, and dashboards

Datasets | New dataset
* Favorites

© Name Owner Last Madified ~
Recent
‘ sample_s3 Me 2 days ago
thi Dashboards M prediction_compare_15_min Me 14 days ago
b Analyses ‘ sample_15_min Me 14 days ago
* prediction_compare_1_hr Me 15 days ago
g Datasets
M 1_br_prediction_compare Me 15 days ago

Figure 80: Adding a New Dataset

Click on ’S3’ to enter the manifest path.

35

a
M
B8B465...

Data Sets

Create a Data Set
FROM NEW DATA SOURCES

Upload : ﬁrlet [Salesfor:le 7 S3 Analytics
(.csv, .tsv, .clf, .elf, .xlsx, json) Connect to Salesforce

* S3 Athena . RDS

€

. Redihiﬂ . rF:edslhiFt @ MySQL

Figure 81: S3 as data source

Enter a name for the visualization process. Provide the path for the manifest.json
file.

New S3 data source *
Data source name

I 15_min_gan_compare I
Upload a manifest file © URL 'C:' Upload

I -ediction-master-dataset.s3.amazonaws.com/final-dataset-1 S—mim‘mamfest.'sod I

Figure 82: Provide Manifest file path

Click on Visualize.

Finish data set creation

Table: 15_min_gan_compare

Estimated table si... 674.9KB

Data source: 15_min_gan_compare

Import to SPICE +/ 1000MB available

Email owners when a refresh fails

Edit/Preview data

Figure 83: Visualize

36

Click on the line chart from the list at the left bottom. Drag and Drop "timerecorded’
column to the X-Axis, river’ to Value and ’source’ to Color. The visualization is created
below. QuickSight extracts all the file mentioned in the manifest.json and dumps the
data into the SPICE storage (storage of QuickSight). Hence a differentiating column
is required. Hence, source column was created. The same process is to be followed for
obtaining a visualization for sensor and GAN data with a time period of 1 hour. Click
on Print at the top right to print/save the visualization.

¢ 15_min_gan_compare analysis Autosave ON ~ @ e
Print Capture
Data set 7’ Field wells
all
Visualize 15_min_gan_co... v 100%
Xaxis Value Color
Filter =
ain
Sum of River by Source and Timerecorded "
HT # temperature SHOWING TOP 200 IN TIMERECORDED AND BOTTOM Z IN SOURCE B
o e GAN
{% Visual types hd 10 # SENSOR
Actions . ~ ~ . .
F A0 C WANWAWAW.
4 \ \ / \ /
Th - I - - - ~
emes —_— - il = ,
&
o
@] et s
Settings (TR TTTY N
~ 1 = H
H s=n -ull 4

REA -

Figure 84: Select Visualization and columns

Click on ’Go to Preview’.

Prepare for printing *
Paper size
US letter ~

Paper orientation

Landscape

D Print background color @

Cancel

Figure 85: Preview Print

Click on ’Print’.

37

th
Share

o

B8465...

>

Preview Ready to print

Sum of River by Source and Timerecorded

Figure 86: Preview Print

A pop up opens which provides an option to print or save as PDF.

Print 1 sheet of paper |
|

Destination ™ Microsoft Print to PDF + |

Pages All -

Layout Portrait -

Color Calor -

More settings hd

Cetrn

Figure 87: Print Visual

Print or Save the file as PDF.

38

File name: | sample

Save as type: |PDF Document (*.pdf) i

A Hide Folders Save | Cancel

Figure 88: Save the Visual as PDF

6 Model Creation, Prediction & Visualization

Create a Python3 file named "Random_Forest_Prediction_15_min’ inside time-series-algorithms
instance. Import libraries and stream the dataset.

In [1: | #import Libraries
import pandas as pd

import numpy as np
import boto3

In []: | #import data
s3 = boto3.client('s3")

bucket = 'flood-prediction-master-dataset
key = 'final-dataset-15-min/final_data_15_min.csv

obj = s3.get_object(Bucket- bucket,Key- key)

dataset_15min = pd.read_csv(obj['Body'])

Figure 89: Stream 15 Minutes dataset for Random Forest

Remove the index column and rearrange the column order. GAN and sensor data are
stored into two files. GAN data’s timestamp is incremented by month and appended to
the sensor data.

In []: | #drop existing index column
dataset_15min.drop(['Unnamed: @'],axis=1,inplace=True)
#setting datetime datatype from string. Default is string when reading from csv
dataset_15min['timerecorded’] = pd.to_datetime(dataset_15min[' timerecorded’])
#rearranging columns
dataset_15min = dataset_1Smin[['timerecorded’,'river’,'rain’, 'temperature’, 'wind_direction’, 'wind_speed’, 'source’]]
#splitting GAN and sensor data

gan_file = dataset_15min.loc[dataset_15min[' source’J=="GAN"]
sensor_file = dataset_15min.loc[dataset_15min['source’]=="SENSOR']

In []: | #makes the GAN datetime go ahead by 1 month. June - July sensor data. June to august is summer. Hemce GAN 1 month ahead
gan_file["timerecorded'] = gan_file['timerscorded’'] + pd.DateOffset(months=1)
#merging both files and resetting index

dataset_15min = sensor_file.append(gan_file)
dataset_15min.reset_index(drop=True, inplace=True)

Figure 90: DateTime conversion and GAN timestamp Incrementation

39

Time Features are added to the dataset. Dataset is splitted in a ratio of 95:5.

In []: |# odding the datetime column value as a feature. River Llevel being time dependent, datetime column value is saved as

continuous columns.

dataset_15min['dayofweek'] = dataset_15min['timerecorded’'].dt.dayefueek
dataset_15min['hour'] = dataset_15min[’timerecorded’].dt.hour
dataset_15min['minute’] = dataset_15min['timerecorded’].dt.minute
dataset_15min['month'] = dataset_15min[' timerecorded’].dt.month
dataset_15min['year'] = dataset_1Smin['timerecorded’].dt.year
dataset_15min['dayofmonth’] = dataset_15min[timereccrded®].dt.day
dataset_15min['dayofyear'] = dataset_1Smin['timerecorded’].dt.dayofyear

In []: dataset_15min.shape

In []: #splitting into train and test dataset

train_dataset = dataset_15min[:5248]
test_dataset = dataset_15min[5248:]

Figure 91: Data Splitting for Random Forest of 15 Minutes Time Period

Training and testing files are saved as CSV and bucket name is provided to Boto3.

In []:|# removing dependent columns from test dataset. timerecorded is not required for prediction but for further pracesses

y_test = test_dataset[['timerecorded’, 'river’]]
test_dataset.drop(['timerecorded’, 'river'],axis=1,inplace=True)

converting training and testing datasets into csv files

train_dataset.to_csv("train_dataset.csv")
test_dataset.to_csv("test_dataset.csv")

In []: import datetime
import tarfile

import boto3 # AWS SDK for python. Provides Low-Level access to AWS services
from sagemaker import get_execution_role

import sagemaker

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region = sess.boto_session.region_name

bucket = 'flood-prediction-master-dataset’ # Bucket to store and retrieve data

print(‘Using bucket ' + bucket)

Figure 92: Saving Files as CSV

Training and Testing datasets are uploaded to S3. SageMaker ML either accepts
streaming data or S3 path as input.

In []:|# saving data to 53. SageMaker will take training data from s3
trainpath - sess.upload_data(
path="train_dataset.csv', bucket=bucket,
key_prefix="predictions-15-min")
testpath = sess.upload_data(

path="test_dataset.csv', bucket=bucket,
key_prefix="predictions-15-min")

Figure 93: Uploading files to S3

Random Forest is Scripted based on SageMaker Python SDK EI Libraries are imported
and a model is loaded if already present. Arguments are defined for the script.

3https://sagemaker.readthedocs.io/en/stable/frameworks/sklearn/using_sklearn.html

40

https://sagemaker.readthedocs.io/en/stable/frameworks/sklearn/using_sklearn.html

In [1: %¥writefile rftimeseriesiSmin.py
#doing by scripting

import argparse
import os

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestRegressor
import joblib

def model_fn(model_dir):
clf = joblib.load(os.path.join(model dir
return clf

if __name_ =="__main__ ':

print('extracting arguments”)
parser = argparse.ArgumentParser()

hyperparameters sent by the client are passed as command-Line arguments to the script

parser.add_argument('--n-estimators', type=int, default=156@)
parser.add_argument(’--max-leaf-nodes’, type=int, default=15)

Figure 94: Scripting the Random Forest algorithm - Model Loading

The environmental variables are used to retrieve the Datasets and models within
the AWS EC2 ML Instance. The datasets are retrieved and unnecessary columns are

removed.

Data, model, and output directories

parser.add_argument('--model_dir', type=str, deFau1t=05.environ.get(
parser.add_argument('--train’, type=str, default-os.environ.get(|'SM_CHANNEL_TRAIN")) |
parser.add_argument(’--test’, type=str, default=os.environ.get|(SM_CHAMMEL_TEST'))
parser.add_argument(’'--train-file', type=str, default="train_dataset.csv')
parser.add_argument(’--test-file', type=str, default="test_dataset.csv’)

args, _ = parser.parse_known_args()

print(’reading data")
train_df = pd.read_csv(os.path.join(args.train, args.train_file))
test_df = pd.read_csv(os.path.join(args.test, args.test_file))

print(building training and testing datasets’)

#since only one file is accepted as a script parameter, the predictors and target are segregated here
y_train = train_df['river']

remove unreguired columns

train_df.drop(['river’],axis=1,inplace=True)
train_df.drop(['Unnamed: @'],axis=1,inplace=True)
train_df.drop(['timerecorded’],axis=1,inplace=True)
train_df.drop(["source'], axis=1,inplace=True)

X_train = train_df

test_df.drop(['Unnamed: &'],axis=1,inplace=True)
test_df.drop(['source’],axis=1,inplace=True)

Figure 95: Using Environmental Variables to retrieve the required files for prediction

Training and prediction is defined in the script. Model is saved to a ML Instance

Folder.

41

X_test - test_df

train

print('training model')

model = RandomForestRegressor(
n_estimators=args.n_estimators,
max_leaf_nodes =args.max_leaf_nodes,
n_jobs=-1)

model .fit(X_train,y_train)

persist model

path = os.path.join(args.model_dir,| "rfmodel.joblib™)

joblib.dump(model, path)

print('model persisted at ' + path)

predicting value. Tt will not predict from the below code when deployed to AWS ML EC2.

t is reguired so that it can have a code when predict is called. It analyses the no of test parameters and its dtypes
The print in this script are shown in CloudWatcl

print('validating model’)
predictions = model.predict(X_test)

Figure 96: Training, Prediction and Saving Model

The Sagemaker estimator is provided the script, instance type and script argument
values. Datasets and Training is executed. Estimator is passed the Environment Folder
where the model persists.

In []: |# use of Estimator from the SageMaker Python SDK. stating the script and hyperparameters
from sagemaker.sklearn.estimator import SKLearn
sklearn_estimator = SKLearn(

entry_point="rftimeseriesiSmin.py”’,
role = get execution_role(),
train_instance_count=1,
train_instance_type='ml.m4.xlarge’,
framework_version="@.23-1",
base_job_name="randomforest-15-min",
hyperparameters = {
"n-estimators’: 2000,
‘max-leaf-nodes’: 20

b
In []:|# Lounch training job, with asynchronous call
sklearn_estimator.fit{{ train’:trainpath, 'test’': testpath}, wait=False)
In []: |# after training the model is created which is used for prediction. Here the model is generated. The path is displayed.

sklearn_estimator.latest_training_job.wait(logs="None')
artifact = m_boto3.describe_training_job(
TraininglobName=sklearn_estimator.latest_training_job.name)|['ModelArtifacts’][S3ModelArtifacts’]

print('Model artifact persisted at ' + artifact)
Figure 97: Random Forest Model Deployment
The model is deployed to an AWS Endpoint. Test dataset is passed to get the pre-
dictions. The timestamp column values from the test dataset and predictions from the

algorithms are saved as a dataframe. A source column is created with value 'RF’ to
identify the prediction source. The file is saved to S3.

42

In []: # An EC2 model is deployed based on the script and model

predictor = sklearn_estimator.deploy(instance_type='ml.nd.xlarge’,initial_instance_count=1)

In []: # removing unrequired columns

test_dataset.drop(['source'],axis=1, inplace=True)

In []: | # "outcome™ contains ML predictions. rf final has the datetime value for each prediction taken from y test.
“rf final™ is then provided prediction values saved as g column. Also source column states the algorithm name.
By just counting the number of predictions above flood Level, a better algorithm can be decided,
but the datetime column will help analyze the delay between two algorithms.

outcome = pd.DataFrame(predictor.predict(test_dataset))
outcome. rename(columns={@:"river"}, inplace=True)

rf final - y test['timerecorded’].to_frame()
rf_final.reset_index(drop=True, inplace=True)
rf_final['river'] - outcome['river'].astype(float)
rf_final['source’] = 'RF’

saving as a csv file Locally

rf_final.to_csv("random forest_predictions_15_min.csv")
saving file to s3

sess.upload data(

path="random_forest_predictions_15 min.csv', bucket=bucket,
key_prefix='predictions-15-min")

print("Success!")

Figure 98: Prediction and saving it to S3

Create a Python3 file named "XGBoost_Prediction_15_min’ inside time-series-algorithms
instance. Import libraries and stream the dataset.

In []: | #import Libraries
import pandas as pd

import numpy as np
import boto3

In []:|#import data
s3 = boto3.client('s3")

bucket = 'flood-prediction-master-dataset’

key = ‘final-dataset-15-min
obj = s3.get_object(Bucket= bucket,Key= key)

dataset_15min = pd.read_csv(obj['Body'])

Figure 99: Stream 15 Minutes Data for XGBoost

The below figures shows the process of streaming the data, imcrementing the GAN
timestamp value, feature generation and splitting the file in a 95:5 ratio.

In []: | #drop existing index column
dataset_15min.drop(['Unnamed: @'],axis=1,inplace=True)
#setting datetime datatype from string. Default is string when reading from csv
dataset_15min["timerecorded’] = pd.to_datetime(dataset_15min[timerecorded’])
#rearranging columns
dataset_15min = dataset_1Smin[['timerecorded’, river’,'rain’, temperature’,’'wind direction’, 'wind speed’, "source’]]

#splitting GAN and sensor data

gan_file = dataset_15min.loc[dataset_15min['source’]==
sensor_file = dataset_15min.loc[dataset_15min[source’

GAN']
=="SENSOR"]

In []: | #makes the GAN datetime go ahead by 1 month. June - July sensor data. June to august is summer. Hemce GAN 1 month ahead
gan_file['timerecorded’] = gan_file[timerecorded’] + pd.DateOffset(months=1)
#merging both files and resetting index

dataset_15min = sensor_file.append(gan_file)
dataset_15min.reset_index(drop=True, inplace=True)

Figure 100: DateTime conversion and GAN Timestamp incrementation

43

Import libraries, set the source bucket and select an AWS container comprising of XG-
Boost algorithm. AWS provides containers with preloaded XGBoost algorithm. Training

In [

1: # adding the datetime column value as a feature. River Level being time dependent, datetime column value is saved as
continuous columns.

dataset_15min['dayofweek'] = dataset_15min['timerecorded’].dt.dayofueek
dataset_15min['hour'] = dataset_15min['timerecorded’].dt.hour
dataset_15min['minute’] = dataset_15min['timerecorded’].dt.minute
dataset_15min['month'] = dataset_15min['timerecorded'].dt.month
dataset_15min['year'] = dataset_15min[timerecorded’].dt.year
dataset_15min['dayofmonth’] = dataset_15min['timerecorded’].dt.day
dataset_15min['dayofyear'] = dataset_15min['timerecorded’].dt.daycfyear

[]1: dataset_15min.shape

[1: train_dataset = dataset_15min[:5248]

test_dataset = dataset_15min[524@:]

[]: train_dataset.head()
[]: test_dataset.head()

[1: | # removing dependent columns from test dataset. timerecorded is not required for prediction but for further processes.

_test = test_dataset[[' timerecorded’, river’]]
test_dataset.drop(['timerecorded’, 'river'],axis=1,inplace=True)

converting training and testing datasets into csv files
train_dataset.drop(['timerecorded’, 'source'],axis=1,inplace=True)
train dataset.to csv("train.csv", header=None,index=False)

Figure 101: Feature Generation and File Splitting

and deployment processes are not benefitted but the scripting time is saved.

In

[1:

containers|= {'us-west-2":

import Libraries

import bote3, re, sys, math, json, os, sagemaker, urllib.request
from sagemaker import get_execution_role

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from IPython.display import Image

from IPython.display import display

from time import gmtime, strftime

from sagemaker.predictor import csv_serializer

Define IAM role and assign 53 bucket

role = get_execution_role()
prefix = 'predictions-15-min’
bucket_name = 'flood-prediction-master-dataset’ # bucket where data needs to be stored and retrieved

'433757028032.dkr.ecr.us-west-2.amazonaws . com/xghoost : latest’,
"811284229777.dkr.ecr.us-east-1.am naws.com/xgboost:latest’,
'825641698312.dkr.ecr.us-east-2.amazonaws.com/xghoost : latest’,

'us-east-
‘us-east-2":

‘eu-west-1': '685385470294.dkr.ecr.eu-west-1.amazonaws.com/xghoost:latest'} # each region has its XGBoost containe

my_region = boto3.session.Session().region_name # region of the instance
print("Success - the MySageMakerInstance is in the " + my_region + " region. You will use the " + containers[my_region] +

Figure 102: Choose AWS XGBoost Containers

Instance type, Hyperparameters and path to the datasets are provided.

44

In [1: # setting hyperparameters, bucket and session dota
sess = sagemaker.Session()
xgb = sagemaker.estimator.Estimator(containers[my_region],
role,
train_instance_count=1,
train_instance_type="ml.m4.xlarge’,
output_path="s3://{}/{}/output’ .format(bucket_name, prefix),
sagemaker_session=sess)
xgb.set_hyperparameters(eta=0.06,
silent=@,
early_ stopping_rounds=5,
objective="reg:linear’,
num_round=108a)

In []: | # saving data to 53. SageMaker will take training data from s3
boto3.Session().resource('s3").Bucket(bucket_name).Object(os.path.join(prefix, 'train/train.csv')).upload_file('train.csv")

trainpath = sagemaker.s3_input(s3_data="s3://{}/{}/train’'.format(bucket_name, prefix), content_type="csv')

In []: s3 = bote3.client("s3")
s3.get_object(Bucket=bucket_name)

Figure 103: Uploading Datasets to S3 and defining the estimator

The model is trained and deployed.

In []: # training the model
xgb.fit({ train’: trainpath})
In [1: | # deploying to a endpoint
xgb_predictor = xgb.deploy(initial_ instance_count=1, instance_type="ml.m4.xlarge’)

In []: xgb_predictor.content_type = 'text/csv' # set the data type for an inference
xgb_predictor.serializer = csv_serializer # set the serializer type

In [1: # removing unrequired columns

test_dataset.drop(['source'],axis=1,inplace=True)

Figure 104: XGBoost Training and Deployment 15 Minutes Time Period Data

The prediction is obtained which is combined with the test dataset timestamp. The
source’ column is created with value "XGB’. The test dataset is added a ’source’ column
with value "ACTUAL’. Both files are saved to S3.

In []: | #predictions contains ML predictions
#see how to add column name to prediction output
predictions = xgb_predictor.predict(test_dataset.values).decode('utf-8') # predicti
predictions_array = np.fromstring(predictions[1:], sep=",") # and turn the prediction into an array

outcome = pd.DataFrame(predictions_array)
outcome.rename(columns={8: "river”}, inplace=True)

rf_final = y_test['timerecorded'].to_frame()
rf_final.reset_index(drop=True,inplace=True)
rf_final['river'] = outcome['river'].astype(float)
rf_final["source'] = "XGB®
rf_final.to_csv("xgboost_predictions_15_min.csv™)
y_test['source’] = "ACTUAL
y_test.to_csv("actual_ 15 min.csv™)
sess.upload_data(

path="xghoost_predictions_15_min.csv’, bucket=bucket_name,

key_prefix="predictions-15-min")
sess.upload_data(

path="actual 15 min.csv', bucket=bucket_name,

key_prefix="predictions-15-min")

print(“Success!™)

Figure 105: Predicting and Uploading the file to S3

Manifest file for visualizing the actual river level and algorithm predictions for 15
minutes time period is provided below.

45

"fileLocations": [

{
"URIs": [
"https://flood-prediction-master-dataset.s3.amazonaws.com/predictions-15-min/actual_15_min.csv".
"https://flood-prediction-master-dataset.s3.amazonaws.com/predictions-15-min/random_forest_predictions_15_min.csv",
"https://flood-prediction-master-dataset.s3.amazonaws.com/predictions-15-min/xgboost_predictions_15_min.csv"
1
3

1.

"globalUploadSettings": {
"format™: "CSV",
"delimiter": ".",
"containsHeader": "true"

¥

}

Figure 106: 15 Minutes Prediction Manifest File

Below figure shows the 'predictions-15-min’ folder wherein three datasets and manifest

file is present.

Amazon 83 > flood-prediction-master-dataset > predictions-15-min

flood-prediction-master-dataset

Overview

| Q, Type a prefix and press Enter to search. Press ESC to clear.

+ ian

[[] Name~ Last modified v Size

[] & train

[[actual_15_min.csv Jul 31, 2020 8:45:04 PM GMT+0530 8.0KB

[[manifest json Jul 31, 2020 8:16:29 PM GMT+0530 59808
[] [@ random_forest predictions_15_min.csv Jul 31, 2020 8:45.05 PM GMT+0530 T9KB

[[] [@ xgboost_predictions_15_min.csv Jul 31, 2020 8:45:05 PM GMT+0530 82KB

Figure 107: S3 bucket folder of 15 minute predictions

US East (N. Virginia)
Viewing 1to 5
Storage class v
Standard
Standard
Standard

Standard

Provide QuickSight the manifest file’s link and configure the QuickSight as shown

below.

46

Q

¥ prediction_compare_15_min analysis Autosave ON ~ @ el

Print Capture

Data set s Field wells
allo

Visualize mprediction;nm“, v 100%

Xaxis Value Color

Y iedstis a

Filter
Columnid-1
o] e Sheet1 v —+
Stary < source : ¥
Sum of River by Timerecorded and Source "
HT 3 timerecorded O TOR 200 1N TIMERECORDED AND E0TT0 counce]
Source o
Parameters 0.015K
AC
{% Visual types hd 001K ~R
Actions A N 4 A A K f .
Y AN
14 -1\ f ‘ 0.005K ,’J \ 1 rf kY \ Othe
*« s\ oL/
Th - I - - h N R b
emes il = = e
O3 A B R W N N T
~ 4 ﬁ1 ad B S R o S i
@ 1 * 1 Lall & oF 0"0%“&1(}1@ o @’é:’wo&iév gtr\(gt""g:"t"c”-’ & Fg
- P S o e e
Settings SR R S S S SO
etting: St EEmm .
L H zza 4

REAN
Figure 108: Visualization of 15 Minutes predictions

Create a Python3 file named "XGBoost_Prediction_1_hr’ inside time-series-algorithms
instance. The below code predicts the river level based on 1 hour dataset and follows the
same flow as in the above XGBoost file.

In []:|#import Libraries
import pandas as pd

import numpy as np
import boto3

In []: #import data
53 = boto3.client('s3")

bucket = 'flood-prediction-master-dataset”
key = 'final-dataset-1-hr/final_data_1_hr.csv’

obj = s3.get_object(Bucket= bucket,Key= key)

dataset_1ihr = pd.read_csv(obj['Body'])

Figure 109: Streaming the 1 hour time period datasets for XGBoost

In []: #drop existing index column
dataset_1hr.drop(['Unnamed: 8'],axis=1,inplace=True)
#setting datetime datatype from string. Default is string when reading from csv
dataset_1hr['timerecorded'] = pd.to_datetime(dataset_1hr['timereccrded'])
#rearranging columns
dataset_1hr = dataset_1ihr[['timerecorded’, 'river’, 'rain’, temperature’, 'wind direction’, 'wind_speed’, 'source']]
#splitting GAN and sensor data

gan_file = dataset_ihr.loc[dataset_thr[source’']=="GAN"]
sensor_file - dataset_ihr.loc[dataset_1hr['source']=="SENSOR"]

In []: #makes the GAN datetime go ahead by 1 month. June - July sensor data. June to august is summer. Hence GAN 1 manth ahead.
gan_file['timerecorded’'] = gan_file[timerecorded’] + pd.DateOffset(months=1)
#merging both files and resetting index

dataset_lhr = sensor_file.append(gan_file)
dataset_ihr.reset_index(drop=True, inplace=True)

Figure 110: DateTime conversion and GAN Timestamp incrementation

47

In [1: | # adding the datetime column value as a feature. River level being time dependent, datetime column value is saved as
continuous columns.

dataset_1lhr['dayofwesk'] = dataset_ihr['timerecorded’].dt.dayofweek
dataset_1hr['hour'] = dataset_ihr['timerecorded’].dt.hour
dataset_1ihr['minute’] = dataset_ihr['timerecorded’].dt.minute
dataset_ihr[‘month’] = dataset_ihr['timerecorded’].dt.month
dataset_1hr['year'] = dataset_ihr['timerecorded’].dt.year
dataset_ihr['dayofmonth’] = dataset_ihr['timerecorded’].dt.day
dataset_1hr['dayofyear'] = dataset_1lhr['timerecorded'].dt.dayofyear

In []: dataset_lhr.shape

In []: train_dataset = dataset_1ihr[:1315]
test_dataset - dataset_1hr[1315:]

In []: train_dataset.tail()
In []: test_dataset.head()

In []: | # remaving dependent columns from test dataset. timerecorded is not required for prediction but for further processes
g dep: q p 2

y_test = test dataset[['timerecorded’, river’']]
test_dataset.drop(['timerecorded’, *river’],axis=1,inplace=True)

converting training and testing datasets into csv files
train_dataset.drop(['timerecorded’, 'source'],axis=1,inplace=True)
train_dataset.to_csv("train.csv",header=None, index=False)

Figure 111: Feature Generation and Splitting

In []: # import Libraries

import bote3, re, sys, math, json, os, sagemaker, urllib.request
from sagemaker import get_execution_role

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from IPython.display import Image

from IPython.display import display

from time import gmtime, strftime

from sagemaker.predictor import csv_serializer

Define IAM role and assign 53 bucket

role = get_execution_role()
prefix = "predictions-1-hr
bucket_name = 'flood-prediction-master-dataset' # bucket where datg needs to be stored and retrieved

containers = {'us-west-2":
‘us-east-1°:
‘us-east-2
‘eu-west-1°:

433757028032 .dkr.ecr.us-west-2.amazonaws . com/xgboost:latest’,

811284229777 .dkr.ecr.us-east-1.amazonaws . com/xgboost: latest’,
'825641698319.dkr.ecr.us-east-2.amazonaws . com/xgboost: latest’

685385470294 .dkr.ecr.eu-west-1.amazonaws . com/xgboost:latest’} # each region has its XGBoost container

my_region = boto3.session.Session().region_name # region of the instance
print(“Success - the MySageMakerInstance is in the " + my_region + " region. You will use the " + containers[my_region] + " conte

1 3

Figure 112: Choosing the AWS XGBoost Containers

In []: | # setting hyperparameters, bucket and session data
sess = sagemaker.Session()

xgb = sagemaker.estimator.Estimator(containers[my_region],
role,
train_instance_count=1,
train_instance_type='ml.md.xlarge’,
output_path="s3://{}/{}/output’ .format(bucket_name, prefix),
sagemaker_session-sess)
xgb.set_hyperparameters(eta=8.06,
silent=6,
early_stopping_rounds=5,
objective="reg:linear’,
num_round=18e8)

In []: |# saving data to 53. SageMaker will take training data from s3
boto3.Session().resource(’s3").Bucket(bucket_name).0Object(os.path.join(prefix, 'train/train.csv')).upload_file('train.csv')

trainpath = sagemaker.s3_input(s3_data='s3://{}/{}/train’.format(bucket_name, prefix), content_type='csv"')

In []:|# training the model

xgh.fit({ 'train': trainpath})

Figure 113: Defining the estimators, uploading the files and training the model

48

In []: | # deploying to a endpoint

xgb_predictor = xgb.deploy(initial_instance_count=1,instance_type="ml.m4.xlarge’')

In []: xgb_predictor.content_type = 'text/csv' # set the data type for an inference
xgb_predictor.serializer = csv_serializer # set the serializer type

In []: | # removing unrequired columns

test_dataset.drop(['source'],axis=1,inplace=True)

Figure 114: Deploying the XGBoost model

In [1: |#predictions contains ML predictions
#see how to add column name to prediction output
predictions = xgb_predictor.predict(test_dataset.values).decode('utf-8') # prediction
predictions_array = np.fromstring(predictions[1:], sep=",") # and turn the prediction into an array
outcome = pd.DataFrame(predictions_array)
outcome.rename(columns={@: "river"}, inplace=True)

rf_final = y_test['timerecorded'].to_frame()
rf_final.reset_index(drop=True,inplace=True)
rf_final['river'] = outcome['river'].astype(float)
rf_final['source'] = "XGB'
rf_final.to_csv("xgboost_predictions_1_hr.csv")
y_test['source'] = "ACTUAL
y_test.to_csv("actual_1_hr.csv")
sess.upload_data(
path="xgboost_predictions_1 hr.csv', bucket=bucket_name,
key_prefix="predictions-1-hr")
sess.upload_data(
path="actual 1 _hr.csv', bucket=bucket_name,

key_prefix="predictions-1-hr")

print("Success!")

Figure 115: Predicting and uploading the file to S3

Create a Python3 file named 'Random_Forest_Prediction_1_hr’ inside time-series-algorithms
instance. The below code predicts the river level based on 1 hour dataset and follows the
same flow as in the above Random Forest file.

In []:|#import Libraries
import pandas as pd

import numpy as np
import boto3

In []:|#import dota
s3 = boto3.client('s3")

bucket = 'flood-prediction-master-dataset’
key = ‘final-dataset-1-hr/final_data_1_hr.csv’

obj = s3.get_object(Bucket= bucket,Key= key)

dataset_1hr = pd.read_csv(obj['Body'])

Figure 116: Streaming the 1 hour time period dataset for Random Forest

49

In []1: #drop existing index column
dataset_ihr.drop([‘Unnamed: 8'],axis=1,inplace=True)
#setting datetime datatype from string. Default is string when reading from csv
dataset_ihr["timerecorded’] = pd.to_datetime(dataset_1ihr['timerscorded’])
#rearranging columns
dataset_1hr = dataset_ihr[[timerecorded’,'river’,’'rain’, temperature’, 'wind_direction’, "wind_speed’, "source’']]
#splitting GAN and sensor data

gan_file = dataset_1hr.loc[dataset_1hr['scurce']=="GAN"]
sensor_file = dataset_ilhr.loc[dataset_1lhr['source’]=="SENSOR"]

In []: #mokes the GAN datetime go ahead by 1 month. June - July sensor data. June to gugust is summer. Hence GAN 1 month ahead
gan_file["timerecorded’] = gan_file[timerecorded’'] + pd.DateOffset(months=1)
#merging both files and resetting index

dataset_ihr = sensor_file.append(gan_file)
dataset_1lhr.reset_index(drop=True, inplace=True)

Figure 117: DateTime conversion and GAN Timestamp incrementation

In [1: | # odding the datetime column value as a feature. River Llevel being time dependent, datetime column value is saved as
continuous columns.
dataset_1ihr['dayofuweek'] = dataset_tihr['timerecorded’].dt.dayofweek
dataset_1hr["hour'] = dataset_ihr['timerscorded’].dt.hour
dataset_ihr[‘minute’'] = dataset_ihr['timerecorded'].dt.minute
dataset_1hr['month'] = dataset_lhr['timerecorded'].dt.month
dataset_ihr['year'] = dataset_ihr['timerecorded’].dt.year
dataset_1hr['dayofmenth'] = dataset_lhr['timerescorded’].dt.day
dataset_1ihr["dayofyear'] = dataset_ihr[timerecorded’].dt.dayofyear

In []: dataset_ihr.shape

In []: train_dataset = dataset_1hr[1315:]
test_dataset = dataset_ihr[:1315]

In []: train_dataset.tail()
In []: test_dataset.head()

In []: | # removing dependent columns from test dataset. timerecorded is not required for prediction but for further processes

_test = test_dataset[['timerecorded’, 'river']]
test_dataset.drop(['timerecorded’, 'river’],axis=1,inplace=True)

converting training and testing datasets into csv files

train_dataset.to_csv("train_dataset.csv")
test_dataset.to_csv("test dataset.csv")

Figure 118: Feature Generation and Dataset Splitting

In []: import datetime
import tarfile

import boto3 # AWS SDK for python. Provides Low-level access to AWS services
from sagemaker import get execution_role

import sagemaker

m_boto3 = boto3.client('sagemaker')

sess = sagemaker.Session()

region - sess.boto_session.region_name

bucket = 'flood-prediction-master-dataset' # Bucket to store and retrieve data

print('Using bucket ' + bucket)

In []: # send data to 53. SageMaker will take training data from s3
trainpath = sess.upload_data(
path="train_dataset.csv’, bucket=bucket,
key_prefix="predictions-1-hr')

testpath = sess.upload_data(
path="test dataset.csv', bucket=bucket,
key_prefix="predictions-1-hr")

Figure 119: Uploading file to S3

50

In []: %X¥writefile rftimeseriesilhr.py
#doing by scripting

import argparse
import os

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestRegressor
import joblib

def model_fn(model dir):
clf = joblib.load(os.path.join(model_dir, “rfmodel.joblib"))
return clf

if _ _name__ =="__main_ ":
print(’'extracting arguments')
parser = argparse.ArgumentParser()

hyperparameters sent by the client are passed as command-line arguments to the script.

parser.add_argument('--n-estimators', type=int, default=150@)
parser.add_argument(' --max-leaf-nodes’, type=int, default=15)

Data, model, and output directories

parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR'))
parser.add_argument(’'--train’, type=str, default-os.environ.get('SM_CHANNEL_TRAIN'))
parser.add_argument('--test’, type=str, default=os.environ.get('SM_CHANNEL_TEST'))

Figure 120: Scripting the 1 hour time period Random Forest

parser.add_argument('--train-file', type-str, default="train_dataset.csv')
parser.add_argument(' --test-file', type=str, default="test_dataset.csv')

args, _ = parser.parse_known_args()

print('reading data")
train_df - pd.read_csv(os.path.join(args.train, args.train_file))
test_df = pd.read_csv(os.path.join(args.test, args.test_file))

print('building training and testing datasets')

#since only one file is accepted as a script parameter, the predictors and target are segregated here
y_train = train_df['river']

remove unrequired columns

train_df.drop(['river'],axis=1,inplace=True)
train_df.drop([‘Unnamed: @'],axis=1,inplace=True)
train_df.drop(['timerecorded'],axis=1,inplace=True)
train_df.drop(['source’],axis=1,inplace=True)

X_train = train_df

test_df.drop(["Unnamed: 8'],axis=1,inplace=True)
test_df.drop(["source’],axis=1,inplace=True)

X_test = test_df

Figure 121: Creating Script arguments and splitting dataset

train

print('training model’)

model = RandomForestRegressor(
n_sstimators=args.n_estimators,
max_leaf nodes =args.max_leaf nodes,
n_jobs=-1)

model.fit(X_train,y_train)

persist model

path = os.path.join(args.model_dir, "rfmodel.joblib™)

joblib.dump(model, path)

print('model persisted at ' + path)

predicting value. It will not predict from the below code when deployed to AWS ML EC2

but is required so that it can have @ code when predict is called. It analyses the no of test parameters gnd its dtypes

The print in this script are shown in CloudWatch

print(‘validating model")
predictions = model.predict(X_test)

Figure 122: Random Forest Training, Model Creation and Storage

51

In []: | # use of Estimator from the SageMaker Python SDK. stating the script and hyperparameters
from sagemaker.sklearn.estimator import SKLearn

sklearn_estimator = SKLearn(
entry_point="rftimeseriesihr.py’,
role = get_execution_role(),
train_instance_count=1,
train_instance_type="ml.m4.xlarge’,
framework_version="@.23-1",
base_job_name="randomforest-1-hr',
hyperparameters = {
‘n-estimators’: 2008,
‘max-leaf-nodes': 2@

ol

In []:|# Launch training job, with asynchronous call

sklearn_estimator.fit({ train’:trainpath, 'test’: testpath}, wait-False)

In []: # after training the model is created which is used for prediction. Mere the model is generated. The path is displayed.

sklearn_estimator.latest_training_job.wait(logs="None')
artifact = m_boto3.describe_training_job(
TraininglobName=sklearn_estimator.latest_training_job.name)['Modelartifacts']['S3ModelArtifacts']

print(‘Model artifact persisted at ' + artifact)

Figure 123: Random Forest for 1 Hour Time Period Training and Deployment

In []: |# An EC2 model is deployed based on the script and model

predictor = sklearn_estimator.deploy(instance_type="ml.m4.xlarge’,initial_instance_count=1})

In []: |# removing unrequired columns

test_dataset.drop(['source'],axis=1,inplace=True)

n []: rf_final has the datetime value for each prediction taken fro
ion values saved as a column. Alsc source col states the algorithm name.
r of predictions above flood Level, a better algorithm can be decided,

help analyze the delay between two algorithms.

By just counting the n

but the datetime column

outcome - pd.DataFrame(predictor.predict(test dataset))
outcome. rename(columns={@: "river"}, inplace=True)

rf_final = y_test['timerecorded'].to_frame()
rf_final.reset_index(drop=True,inplace=True)
rf_final['river'] = outcome['river'].astype(float)
rf_final['source’'] = 'RF'

saving as a csu
rf_final.to_csv("

file Locally
andom_forest_predictions_1 hr.csv™)
saving file to 53

sess.upload_data(

path="random forest predictions_1 hr.csv®, bucket=bucket,
key_prefix="predictions-1-hr')

print("Success!")

Figure 124: Random Forest Prediction and Upload to S3

Manifest file for visualizing the actual river level and algorithm predictions for 1 hour
time period is provided below. Follow the same process as above to generate a QuickSight
visualization.

"fileLocations": [
{
"URIs": [
"https://flood-prediction-master-dataset.s3.amazonaws.com/predictions-1-hi/actual_1_hr.csv",
"https:/flood-prediction-master-dataset.s3.amazonaws.com/predictions-1-
hr/random_forest predictions 1 hr.csv",
"https://flood-prediction-master-dataset.s3.amazonaws.com/predictions-1-hr/xgboost predictions 1 hr.csv"
]
3

I

"globalUploadSettings": {
"format": "CSV",
"delimiter™: ".".
"containsHeader": "true"

Figure 125: Manifest File for 1 hour prediction data visualization

52

7 Flood Trigger Evaluation

The Environmental agency also provides publicly the flood warning trigger level for each
river. Based on this value, the Evaluation of the prediction is assessed.

River level information for River = X + - X
&« C {} & flood-warning-information.service.gov.uk/station/5050 a 1 » E
i Apps G Google EBE MyAccount @) Schoolof Skill [[@ Rediffcom: Online.. € NSE - NationalStoc.. @) AccountAccess-L.. () Drivers and Downlo.. () Product Support|D.. [] Solve Programming... »

River level
River Mersey at Fiddlers Ferry

Check for flood warnings in this area

Latest recorded level 2.27m at 5:30am Saturday 15 August 2020.

River levels at this location in the last 5 days

Nowr
7.00m Y == [Measured level
When the water
6.00m level reaches
6.20mnere,
minorilooding is
N possible in this
5.00m area
Show highest
4.00m recorded level
3.00m
2.00m
12:00PM Tue,11Aug Wed,12 Aug Thu,13 Aug Fri, 14 Aug 12:00 PM Sat, 15 Aug 12:00 PM

12:25PM

| SR 15Aug20

Figure 126: Flood Trigger River Level Value

Create a Python3 file named ’Flood_Trigger Comparison_1_Hour’ inside the time-
series-algorithms instance. Import the libraries and stream the CSV files from the S3
‘predictions-1-hr’ folder.

In []: import pandas as pd
import numpy as np
from sklearn.metrics import r2_score,mean_absolute_error
import boto3

In []: | #importing predicted dota

s3 = boto3.client('s3")

bucket = 'flood-prediction-master-dataset’
key = 'predictions-1-hr/actual 1_hr.csv’
obj = s3.get_object(Bucket= bucket,Key= key)

actual = pd.read_csv(obj["Body'])

key = ‘predictions-1-hr/pxgboost_predictions_1_hr.csv’

obj = s3.get_object(Bucket= bucket,Key= key)

xgb_predict = pd.read_csv(obj['Body’])

key = 'predictions-1-hr/random_forest_predictions_1 hr.csv’

obj = s3.get_object(Bucket= bucket,Key= key)
rf_predict = pd.read_csv(obj['Body'])

Figure 127: Importing 1 Hour Time Period Files

Difference between actual and prediction values (can also be termed as Prediction
Error) is saved for both algorithms seperately. The sum and max of prediction error for

23

both algorithms is calculated. Also the first flood trigger time is calculated. If the value
is within 6 hours, then flash flood prediction is successful.

In [1:|#dropping unnexessary columns
actual.drop(['Unnamed: 8", source'],axis=1,inplace=True)

xgb_predict.drop(['Unnamed: 8", 'source’],axis=1,inplace=True)
rf_predict.drop(['Unnamed: @', source’],axis=1,inplace=True)

In []: actual
In []: xgb_predict

In []: rf_predict

In [1: # saving difference between actual and predicted river value
xgb_difference = pd.DataFrame(actual['river'] - xgb_predict['river'])
rf_difference = pd.DataFrame(actual['river'] - rf_predict['river'])

print("Sum of Prediction Error in XGBoost: "+str(xgb_difference['river'].sum())+
" Highest Errer in Prediction in XGBoost: "+str(xgb_difference['river']l.max()))

print("sum of Prediction Error in Random Forest: "+str(rf_difference['river'].sum())+
" Highest Error in Prediction in Random Forest: "+str(rf_difference['river’].max()))

print("Flood Triggered by XGBoost within "+str(xgb_predict[xgb_predict["river”]>=6.2600].index[8])+" Hours."+
" Flood Triggered by Random Forest within "+str(rf_predict[rf_predict["river"]>=6.2060].index[@])+" Hours.")

Figure 128: Assessing Prediction Error

All three datasets are joined without any join condition since all datasets have the
same number of records and timestamp. Columns, either actual or prediction greater
than 6.2 are retrieved and stored to a different variable. Status column is added to define
the validity of the trigger by the predictions.

In []:|# CREATING TABLE OF TRIGGERS. filtering columns/instances with river Level above flood Level

actual flood = actual[['timerecorded’, 'river']]

In []:|# joining xgboost and random forest columns with same index to compare the triggers
xgb_compare = actual_flood.join(xgb_predict,lsuffix="_actual’,rsuffix="_xgboost")
all_combined = xgb_compare.join(rf_predict)

all_combined.drop(['timerecorded_xgboost', 'timerecorded'],axis=1,inplace=True)
all_combined = all_combined.rename(columns={"river":"river_rf"})

In [1:|# creating table that has either actual, xgboost prediction or random forest prediction greater than flood threshold value

possible_flood = all_combined[(all_combined["river_actual’]»=6.28@) | (all_combined[river_xgboost’]>=6.20@)
| (all_combined["river_rf']>=6.208)]

In []: possible_flood['xgb_status'] = "NONE'
possible_flood['rf_status’] = 'NOME®

Figure 129: Extracting the Flood Triggered Records

Status is set to HIT, MISS or FALSE. HIT means the prediction triggered rightly,
MISS means prediction missed the flood trigger and FALSE means the Trigger is erro-
neous.

o4

In []:|# HIT means triggered rightly MISS means not triggered FALSE wrongly triggered

possible_flood['xgb_status'] = np.where((possible flood['river actual']»>=6.280) & (possible_flood['river_xgboost']»=6.208),
"HIT", possible_flood['xgb_status'])

possible_flood[‘xgb_status'] = np.where{ (possible flood['river_actual']»>=6.2080) & (possible_flood['river_xgboost']<6.208),
"MISS', possible_flood['xgb_status'])

possible_flood['xgb_status'] = np.where((possible flood['river_actual’]<6.20@) & (possible_ flood['river_xgboost']>=6.200),
"FALSE', possible flood['xgb_status'])

possible_flood['rf_status’] = np.where((possible_flood[' river_actual']»>=6.28@) & (possible_flood[river_rf']>=6.288), HIT',
possible_flood['rf_status'])

possible_flood['rf_status’] = np.where((possible fleood[river_actual']»=6.28@) & (possible flood[river_rf']<6.208), MISS',
possible_flood['rf_status'])

possible_floed['rf_status'] = np.where((possible_fleod['river_actual']<6.28@) & (possible flood['river_rf']»>=6.208), 'FALSE’,
possible_flood[‘rf_status'])

In []: possible_flood.reset_index(drop=True,inplace=True)
possible_flood

Figure 130: HIT, MISS and Flase Triggers

This status column for both algorithms is assessed using PASS evaluation to determ-
ine the performance of the algorithms. Precision, Accuracy, Specificity and Sensitivity
(PASS). R-Square value is also calculate to assess its value with respect to the PASS
performance.

In []: # variables are used to avoid making print statement Llong and complex

xgb_hits = possible_flood['xgb_status'].loc[possible_flood['xgb_status'] == 'HIT'].count()
xgb_misses = possible flood['xgb_status'].loc[possible_floed['xgb status'] == "MISS'].count()
xgb_false = possible_flood["xgh_status’].loc[possible_flood['xgh_status'] == 'FALSE'].count()

rf_hits = possible_flood['rf_status’].loc[possible flood[rf_status'] == 'HIT'].count()
rf_misses = possible_flood["rf_status'].lec[possible_flood['rf_status'] 'MISS'].count()
rf_false = possible flood['rf_status'].loc[possible flood['rf_status’'] == "FALSE'].count()

actual_triggers = xgb_hits + xgb_misses

print(” Total Actual Flood Triggers are "+ str{actual_triggers)+ ".\n Out of which XGBoost Triggered "+ str(xgb_hits)+
",missed " + str{xgb_misses)+ " and false positives are "+ str(xgb_false) + ". "+
" XGBoost Efficiency in triggering is " + str(round(xgb_hits/actual_triggers*10@,2))+"%.\n"+
" Random Forest Triggered "+ str(rf_hits) + ",missed "+ str(rf_misses) + " and false positives are "+ str(rf_false)+ ". "+
" Random Forest Efficiency in triggereing is "+ str(round(rf_hits/actual triggers*186,2)) +"%.\n"
" Total Time saved by XGBoost by better prediction and triggering is: "+
str(xgb_hits-rf_hits) +" Hours."
)

In [1: print("r2 score is: "+str(round(r2_score(actual["river"].values,xgb_predict["river”].values),4)*188))

In []: print("r2 score is: "+str(round(r2_score(actual["river"].values,rf_predict["river"].values),4)*10@))

Figure 131: PASS Evaluation

Create a Python3 file named ’Flood_Trigger_Comparison_15_Min’ inside the time-
series-algorithms instance. Import the libraries and stream the CSV files from the S3
‘predictions-15-mins’ folder. The below figures examine the predictions for 1 hour time
period as performed above.

95

In []:|import pandas as pd
import numpy as np
from sklearn.metrics import r2_score,mean_absolute_error
import boto3

In []: #importing predicted data
s3 = boto3.client('s3")
bucket = 'flood-prediction-master-dataset’
key = 'predictions-15-min/actual_15_min.csv'
obj = s3.get_object(Bucket= bucket,Key= key)
actual = pd.read_csv(obj['Body'])
key = 'predictions-15-min/xgboost_predictions_15_min.csv
obj = s3.get_object(Bucket= bucket,Key= key)
xgb_predict = pd.read_csv(obj['Body'])
key = ‘predictions-15-min/random_forest_predictions_15_min.csv

obj = s3.get_object(Bucket= bucket,Key= key)
rf_predict = pd.read_csv(obj['Body'])

Figure 132: Streaming 15 Minutes Time Period Files

In []: #dropping unnexessary columns
actual.drop(['Unnamed: @', source'],axis=1,inplace=True)

xgb_predict.drop(["Unnamed: @', 'source'],axis=1,inplace=True)
rf_predict.drop(['Unnamed: @', 'source’],axis=1,inplace=True)

In []: actual
In []: xgb_predict

In [1: rf_predict

Figure 133: Prediction Error in 15 Minutes Predictions

In []: |# saving difference between actual and predicted river value
xgb_difference = pd.DataFrame(actual[‘river'] - xgb_predict['river'])
rf_difference = pd.DataFrame(actual['river'] - rf_predict[river’])

print("Sum of Prediction Error in XGBoost: "+str(xgb_difference['river'].sum())+
" Highest Error in Prediction in XGBoost: "+str(xgb_difference['river’].max()))

print("Sum of Prediction Error in Random Forest: "+str(rf_difference['river’].sum())+
" Highest Error in Prediction in Random Forest: "+str(rf_difference['river']l.max()))

print("Flood Triggered by XGBoost within "+str((xgb_predict[xgb_predict["river"]>=6.2000].index[6])//4)+" Hours."+
" Flood Triggered by Randem Forest within "+str{(rf_predict[rf_predict["river"]>=6.208088].index[0])//4)+" Hours.")

In []: |# CREATING TABLE OF TRIGGERS. filtering columns/instances with river Level above flood Level

actual_flood = actual[['timerecorded’, river’']]

In []: |# joining xgboost and random forest columns with same index to compare the triggers
xgb_compare = actual_flood.join{xgb_predict,lsuffix="_actual’,rsuffix="_xgboost")
all_combined = xgb_compare.join{rf_predict)

all_combined.drop([‘timerecorded_xgboost', "timerecorded’],axis=1,inplace=True)

all_combined = all_combined.rename(columns={"river":"river_rf"})

Figure 134: Extracting Flood Triggered Records

56

In []: | # creating table that has either actual, xgboost prediction or random forest prediction greater than flood threshold value

possible_flood = all_combined[(all_combined[river_actual’]»=6.280) | (all_combined[river_xgboost’]>=6.28@)
Mallicombined[‘PiuePﬁrf'])=6.2@B]]

In []: possible flood['xgb_status'] = "NOME
possible_flood['rf_status’'] = "NONE'

In []: | # HIT means triggered rightly MISS means not triggered FALSE wrongly triggered

possible_flood["xgb_status'] = np.where((possible_flood[' river_actual’]>=6.280) & (possible_flood['river_xghoost']»>=6.208),
'HIT', possible_flood['xgb_status'])

possible_flood['xgb_status'] = np.where((possible flood[river actual’]>=6.280) & (possible flood['river_xgboost']<6.208),
'MISS', possible_flood['xgb_status'])

possible_flood['xgb_status'] = np.where((possible_flood['river_actual']<6.208) & (possible flood['river xgboost']»=6.208),
'FALSE", possible_flood[‘xgb_status'])

possible_flood['rf_status'] = np.where((possible_flood['river_actual']»>=6.208) & (possible flood['river rf']>=6.200), 'HIT',
possible_flood[rf_status'])

possible_flood['rf_status'] = np.where((possible_flood['river_actual']>=6.208) & (possible_flood['river_rf']<6.208), 'MISS',
possible flood['rf_status'])

possible_flood['rf_status'] = np.where((possible_flood['river_actual']<6.200) & (possible_flood['river_rf']»>=6.208), FALSE',
possible flood['rf_status'])

In []: possible flood.reset_index(drop=True,inplace=True)
possible_flood

Figure 135: HIT, MISS and FALSE triggers

In []: # variagbles are used to avoid making print statement Long and complex

xgb_hits = possible_flood['xgh status'].loc[possible flood['xgh status'] == "HIT'].count()
xgb_misses = possible_flood[‘xgb_status'].loc[possible_flood['xgh_status'] "MISS'].count()
xgb_false = possible_flood['xgb_status'].loc[possible_flood['xgh status'] == 'FALSE'].count()

rf_hits = possible_flood['rf_status'].loc[possible flood['rf_status'] == 'HIT'].count()
rf_misses = possible_flood['rf_status’].loc[possible_flood['rf_status'] "MISS’].count()
rf_false = possible_flood['rf_status'].loc[possible_flood['rf_status’'] == 'FALSE'].count()

actual_triggers = xgb_hits + xgb_misses

print(" Total Actual Flood Triggers are "+ str(actual_triggers)+ ".\n Out of which XGBoost Triggered "+ str(xgb_hits)+

“,missed " + str(xgb_misses)+ " and false positives are "+ str{xgb_false) + ". "+
" XGBoost Efficiency in triggering is " + str(round(xgb_hits/actual_triggers*108@,2))+"%.\n"+
" Random Forest Triggered "+ str(rf_hits) + ",missed "+ str(rf_misses) + " and false positives are "+ str(rf_false)+ ". "+

" Random Forest Efficiency in triggereing is "+ str(round(rf_hits/actual_triggers*106,2)) +"%.\n"

" Total Time saved by XGBoost by better prediction and triggering is: "+
str(round((xgb_hits-rf_hits)/4,2)) +" Hours."

In []: print("r2 score is: "#str(round(r2_score(actual["river”].values,xgb_predict[“river”].values),4)*168))

In []: print("r2 score is: "+str(round(r2_score(actual["river"].values,rf_predict["river"].values),4)*18@))

Figure 136: PASS Evaluation on 15 Minutes Predictions

8 Results

The visualization of GAN and sensor data is presented below. It shows that the distri-
bution of the values is similar to that of the sensor dataset. The GAN values are not
similar but near enough to mimic the sensor values.

o7

Sum of River by Source and Timerecorded
SHOWING TOP 200 IN TIMERECORDED AND BOTTOM 2 IN SOURCE

Source

GAN

\ P = A # SENSOR

river (Sum)
L
~
-
S

timerecorded (MINUTE)

Figure 137: GAN and Sensor Values Comparison for 15 minutes time period

The below graph displays the graph between sensor and GAN data with a time period
of 1 hour. These two graphs show good ability of the GAN to imitate the data. But
there is one improvement that is yet to be addressed in GAN.

sum of Temperature by Source and Timerecorded
SHOWING TOP 200 IN TIMERECORDED AND BOTTOM 2 [N S0U

temperature (Sum)

timerecorded (HOUR)

Figure 138: GAN and Sensor Values Comparison for 1 hour time period

The below graph shows the comparison between actual and prediction values for 15
minutes time period. The predictions by both algorithms is very close to the actual
value. From the graph it can be concluded that the accuracy of both the algorithms is
very high. The trend of the graph is not smooth as the sensor data. The GAN can imitate
the distribution of the source data but could not really mimic the trend or smoothness
of the sensor data.

98

Sum of River by Timerecorded and Source
SHOWIMNG TO# 200 IN TIMERECORDED AND BOTTOM 4 IN SOURCE
Source
001
ACT

rd L f f A ! ‘-. / { ~ R

XGB

0.006¥ J \ \'. [-‘I 3 ! COther
;r. \‘]];’ .-,. \

river (Sum)
(..-'
=
i
Cr_
-~
-

timerecorded

Figure 139: 15 Minutes Predictions and actual values

The below graph is the visualization between actual and prediction values for 1 hour
time period. This graph shows distinct gap between actual and prediction values. The
accuracy is high but is not that high as in 15 minutes time period. This can be due to less
trend details - for 2 hours of data, 1 hour time period has 2 records whereas 15 minutes
time period has 8 records. Probably more historical data can assist in understanding the
trend and improving the performance of the models.

Since this dataset has all the required parameters like rainfall, temperature, wind,
etc. and also a desirable time period, it was an ideal dataset for this research. Since

the dataset download was restricted to 1 month by the API, more data could not be
obtained.

Sum of River by Timerecorded and Source

AL AL =
jj \\/\\/‘ " '\/ \ \ \

||||||||||||||||||||||||

s

timerecorded

Figure 140: 1 Hour Predictions and actual values

A mission critical prediction model cannot be judged solely based on Statistical Tests.
The extent of fit between the forecast and prediction conveys least on the errors and
achievements of the prediction model.

39

Accuracy is the extent of error in the prediction. This is assessed by finding the sum
of the difference between actual and predicted values (can be termed as Prediction Error).
Sensitivity /Efficiency in this scenario is assessed based on the number of flood warnings
triggered correctly. An algorithm can be efficient to trigger the flood warning but should
not be erroneous. Specificity/Reliability is assessed based on the number of erroneous
flood warnings triggered. Precision is the number of accurate warnings triggered divided
by the actual number of warnings. Influenced by [Furquim et al. (2018), the below table
summarises these details for both algorithms on both time periods. As per |[Hagen et al.
(2020), although the statistical tests indicate that the model is a very accurate fit, but
the hit and miss rates of the algorithm conveys room for improvement.

Sum of Prediction Error (Accuracy): XGBoost: -7.98 Random Forest: 21.58
Highest Prediction Error: XGBoost: 0.38 Random Forest: (.74
Total Number of Flood Warning Triggers: 103

Total Correct Flood Warnings Triggered (Sensitivity): XGBoost: 102 Random Forest: 94
Total Flood Warnings missed: XGBoost: 1 Random Forest: 9

Total Erroneous Flood Warnings Triggered (Specificity): XGBoost: 0 Random Forest: 0

Precision: XGBoost: 99.03 Random Forest: 91.26
R-Square Score: XGBoost: 99.4 Random Forest: 98.75

Table 1: 15 Minute Time Period

Sum of Prediction Error (Accuracy): XGBoost: -1.86 Random Forest: 24.79
Highest Prediction Error: XGBoost: 1.32 Random Forest: 1.60
Total Number of Flood Warning Triggers: 29

Total Correct Flood Warnings Triggered (Sensitivity): XGBoost: 27 Random Forest: 21
Total Flood Warnings missed: XGBoost: 2 Random Forest: 8

Total Erroneous Flood Warnings Triggered (Specificity): XGBoost: 1 Random Forest: 1

Precision: XGBoost: 93.10 Random Forest: 72.41
R-Square Score: XGBoost: 94.01 Random Forest: 85.75

Table 2: 1 Hour Time Period
Figure 141: PASS Evaluation Table

From the above table it is clear that XGBoost has outperformed Random Forest in
all aspects. It has saved time and lives of the people. As evident from the graph, the
accuracy of 15 minutes time period is greater than the 1 hour time period. Hence, with
increasing time period, the accuracy decreases possibly due to less detail of trend. Neural
Networks were not implemented due to time and complexity issues. Also a historical
dataset with more number of records would enable better accuracy of models. Use of
Data assimilation would be required. As mentioned in |[Hu et al.|(2019), as the number
of historical records increases with a small time period, there would be instances where
river level has least to no change which distort the trend. Hence removal of those field
and using Data Assimilation would be required. Also, use of ensemble data in [Hagen
et al.| (2020) enabled prediction beyond one week.

Flash Flood Prediction as well as flood prediction for about 3 days was achieved.
Also, XGBoost was implemented for the first time in flood prediction domain which has
outperformed Random Forest, a popular algorithm used for flood prediction.

60

References

Furquim, G., Filho, G. P. R., Jalali, R., Pessin, G., Pazzi, R. W. & Ueyama, J. (2018),
‘How to improve fault tolerance in disaster predictions: A case study about flash floods

using iot, ml and real data’, Sensors 18(3). Impact Factor = 2.475.
URL: https://www.mdpi.com/1424-8220/18/3/907

Hagen, J. S., Cutler, A., Trambauer, P., Weerts, A., Suarez, P. & Solomatine, D. (2020),
‘Development and evaluation of flood forecasting models for forecast-based financing
using a novel model suitability matrix’, Progress in Disaster Science 6, 100076. Impact
Factor = 2.1.

URL: http://www.sciencedirect.com/science/article/pii/S2590061720300152

Hu, R., Fang, F., Pain, C. & Navon, 1. (2019), ‘Rapid spatio-temporal flood prediction
and uncertainty quantification using a deep learning method’; Journal of Hydrology
575, 911 — 920. Impact Factor = 3.73.

URL: http://www.sciencedirect.com/science/article/pii/S0022169419305323

61

	Introduction
	Data Acquisition
	Data Transformation and Formatting
	GAN creation and Merging
	QuickSight configuration and Visualization
	Model Creation, Prediction & Visualization
	Flood Trigger Evaluation
	Results

