
Configuration Manual

MSc Research Project

Cloud Computing

Ghiridhar Iyer
Student ID: X18183468

School of Computing

National College of Ireland

Supervisor: Dr. Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ghiridhar Iyer

Student ID: X18183468

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Dr. Manuel Tova-Izquierdo

Submission Due Date: 17/8/2020

Project Title: Configuration Manual

Word Count: 4283

Page Count: 61

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 28th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Ghiridhar Iyer
X18183468

1 Introduction

The implementation of the artifact was done using the Amazon Web Services (AWS)
platform. This configuration manual guides in executing the artifact. The following
services were utilised during the implementation:

• Amazon S3

• AWS Athena

• AWS IAM

• AWS Sagemaker

• AWS QuickSight

The following sections are divided based on the implementation process.

2 Data Acquisition

Log in to the AWS Console at https://console.aws.amazon.com/

Figure 1: AWS Console Login

1



In the list of services, navigate to Storage section and click on S3.

Figure 2: Click on S3

Click on ’Create Bucket’ button in the page. Enter the bucket name as ’flood-
prediction-master-dataset’. Since S3 is Global, Region needs to be explicitly mentioned
while bucket creation. Ensure to have the S3 bucket in the same region where the rest
of the services like Sagemaker are deployed. This manual has deployed all the services
at the ’US East (N. Virginia)’ region. In the ML code, bucket name is explicitly
mentioned. If this bucket name is unavailable and different Bucket name is
being used, ensure to update the code with the new bucket name.

2



Figure 3: Create a bucket

Select the bucket and click on ’Edit Public access settings’.

Figure 4: Change Public Access Settings

Deselect ’Block all public access’ option. The reason for making bucket public will be
explained in the upcoming steps. Click on Save button

3



Figure 5: Unblock Public Access

Type ’confirm’ in the textbox and click on confirm.

Figure 6: Type confirm

Click on the bucket. Click on ’Create Folder’. Enter the folder name as ’raw-datasets’
and click on Save button.

4



Figure 7: Create Folder in Bucket

Create all the folders as shown in the below Figure. 8.

Figure 8: Create all these folders

Click on the Services drop down in the top left corner of the screen. Navigate to the
Machine Learning section. Click on Amazon SageMaker.

5



Figure 9: Click on Sagemaker

Click on Notebook instances from the menu on the left.

Figure 10: Click on Notebook Instances

Click on ’Create Notebook Instance’. Multiple Jupyter Notebooks can be created
within an instance.

6



Figure 11: Click on Create Notebook Instance

Enter the Instance name and type.

Figure 12: State the Name and Instance Type

Choose the IAM Role for the SageMaker instance. If not created choose create a new
role.

7



Figure 13: Select IAM Role

On clicking ’create a new role’, the pop up asks to specify a particular bucket to
provide access. Access can be provided to a single bucket, all buckets or no buckets.
Select ’Specify S3 buckets’ and enter ’flood-prediction-master-dataset’.

Figure 14: Specify S3 Bucket when creating IAM Role

Create Notebook instances as shown in the below figure 15. Ensure to provide
’ml.m4.xlarge’ for any one instance. This instance is required for GAN generation.
GAN generation is compute intensive process which is not possible in ’ml.t2.medium’
or ’ml.t3.large’ instances. Click on Open Jupyter link.

8



Figure 15: Click on Open Jupyter

Click on New and select ’conda python3’. This creates a jupyter notebook instance
with a Python 3 environment.

Figure 16: Create New Python3 File

Click on the title of the notebook stated as ’Untitled’. Pop up emerges to rename the
file. Rename the file to ’Data Acquisition’ and click on Rename.

9



Figure 17: Rename File

Import libraries. The Environment agency API is used to retrieve the sensor data
using pandas and saved as a CSV file. Public Access Rights is provided by the website
1.

Figure 18: Acquire Data from API and save as CSV

Boto3 SDK 2 is used to access the S3 bucket and store the CSV file.

Figure 19: Save to S3 using Boto3 SDK

1Public Access: https://environment.data.gov.uk/flood-monitoring/doc/reference
2Boto3 Documentation: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/

migrations3.html

10

https://environment.data.gov.uk/flood-monitoring/doc/reference
 https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ migrations3.html
 https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ migrations3.html


3 Data Transformation and Formatting

Click on the services drop down and navigate to the Analytics section. Click on Athena.
Athena provides SQL based data querying on S3 objects.

Figure 20: Click on Athena

Choose the Data source as S3 and metadata as AWS Glue. Click on Next.

Figure 21: Choose S3 as Data Source

Choose to enter table schema manually and click on ’Continue to add Table’.

11



Figure 22: Choose to enter Table Structure Manually

Enter the Dataset name, Table name and S3 path to the raw datasets. The path
should be a folder. Athena extracts all the data from the files as a single file. Click on
Next.

Figure 23: Enter Dataset and Table Name and provide path

Choose Datatype of the Data source as CSV and click on Next.

12



Figure 24: Set Datatype as CSV

Enter the schema of the table. Since the schema of all the three files is same, it does
not affect the table schema process. In case the schema of each file differs, additional
steps would be involved. Click on Add column to add new column schema. After entering
the schema as per the figure below click on Next.

Figure 25: Enter Table Structure

Click on Create Table since Partitioning is not essential.

13



Figure 26: Create Table

In every tab, queries can be executed based on the tables created. Click on the ’+’
tab to add new tab. The code in the below figure selects the created table which contains
all the raw data.

Figure 27: Show all Data

Selects data based on station. This provides five categories as output since there are
five sensor data.

14



Figure 28: Group Data by sensor type

Creates a River level table based on sensor station value.

Figure 29: Create River level Table

Creates a Rainfall table based on sensor station value.

Figure 30: Create rainfall Table

Creates a Temperature table based on sensor station value.

15



Figure 31: Create temperature Table

Creates a Wind Speed table based on sensor station value.

Figure 32: Create Wind Speed Table

Creates a Wind Direction table based on sensor station value.

Figure 33: Create Wind Direction Table

Creates a table by applying a Join between River level table and rainfall table based
on timestamp column.

16



Figure 34: Joining River level and rainfall

Creates a table by applying a Join with the above table and temperature table based
on timestamp column.

Figure 35: Joining Temperature

Creates a table by applying a Join with the above table and Wind Speed table based
on timestamp column.

Figure 36: Joining Speed

Creates a table by applying a Join with the above table and Wind Direction table

17



based on timestamp column. This creates a table with 6 columns - one timestamp column
and five sensor data columns with a time period of 15 minutes.

Figure 37: Final 15 minutes dataset

Aggregating the above table based on hour. Aggregate wind speed, wind direction
and temperature to their average values. Aggregate rainfall to its sum value and river
level to its max value.

Figure 38: Aggregated Dataset

Navigate to the S3 bucket inside the ’ml-sensor-data-15-min’ folder. The table will be
stored in a .gz format. Select the file and go to Actions. Click on ’Make Public’ option.
Although bucket was made public, objects are not public unless explicitly made public.

18



Figure 39: Making 15 Minute dataset public

Click on ’Make Public’ to confirm the action. Do the same action for 1 hour dataset
in the ’ml-sensor-data-1-hr’ folder.

Figure 40: Confirming

Create jupyter python 3 file with file name ’Source Dataset gz to csv’ inside the CT-
GAN instance. Retrieve both the .gz files and save them as CSV files.

19



Figure 41: retrieve file using pandas

Using Boto3, save the CSV files to their respective folders in S3. This Format con-
version was done by making the bucket and the .gz file as public, as Boto3 faces issues
while streaming and decoding the .gz file.

Figure 42: Save CSV format to S3

Navigate to the S3 bucket and inside the ’ml-sensor-data-15-min’ folder. Since the .gz
and .csv have the same name, a no named folder is created within which the CSV file is
saved.

Figure 43: Go inside Empty Folder

20



Click on the folder. Select the CSV file and go to actions. Click on Move.

Figure 44: Move File

Click on the ’flood-prediction-master-dataset’ S3 bucket. Do not choose the bucket,
but click on the bucket name.

Figure 45: Click on Destination S3 bucket

Choose the folder to move the file. Here select the ’ml-sensor-data-15-min’. Click on
Choose.

21



Figure 46: Choose the destination folder

Click on Move to confirm the action.

Figure 47: Confirm Move Action

Ensure the process was successful. The no named folder is deleted by itself. Do the
same process for the 1 hour CSV file.

22



Figure 48: Ensure both files are inside the same directory.

Choose the bucket and click on ’Edit Public Access Settings’.

Figure 49: Edit Bucket Public Access

Check on the ’Block all public access’ option and click on Save.

23



Figure 50: Block access

Type ’confirm’ in the textbox and click on Confirm. This converts all the public
objects inside the bucket as private.

Figure 51: Confirm Action

4 GAN creation and Merging

Create a Python3 file named GAN generator 15 min in CTGAN instance. Go to Kernel
and go to Change Kernel and Choose ’conda mxnet p36’. This Kernel enables installing
Third Party libraries in AWS SageMaker environment.

24



Figure 52: Change Kernal

Install the ctgan library using the pip command.

Figure 53: Install CTGAN library

Change the kernel back to ’conda python3’.

Figure 54: Change Kernal to Python3

Import all the required libraries. Stream the 15 minutes file from S3 and specify the
column names.

25



Figure 55: Retrieve file and mention columns

Declare the CTGAN, train the model and generate records.

Figure 56: Train and Create samples.

Save the Generated file as CSV and using Boto3 save it to S3.

Figure 57: Convert to CSV and save to S3

Create a python3 file named GAN generator 1 hr in CTGAN instance. Repeat the
same process as in the above figures 52 to 55. Stream the 1 hour dataset and train the
model.

26



Figure 58: GAN generation for 1 Hour data

Generate sample records, save the file as CSV and stream it to S3 using Boto3.

Figure 59: Create sample and upload to S3

Now create a Python3 notebook named Sensor and GAN merger 15 min in ’gan-and-
sensor-data-merge’ instance. Import libraries and Stream the 15 minutes sensor and GAN
data.

27



Figure 60: Retrieve both files

Add DateTime column and source column. Source column states the source of the
record - GAN or sensor. Combine both files

Figure 61: Add Time and source column

Find the mean of each column for sensor and GAN data to assess how close the values
are. Save the file as CSV.

Figure 62: Mean comparison and convert to CSV

Using Boto3, save the file to S3.

28



Figure 63: save to S3 folder

Similarly, create a Python3 notebook named Sensor and GAN merger 1 hr in ’gan-
and-sensor-data-merge’ instance. Import libraries and Stream the 1 hour sensor and GAN
data.

Figure 64: 1 hour data import

Create DateTime column and source column. Combine both files.

Figure 65: Adding source and time columns

Save the file as CSV and save the file to S3.

29



Figure 66: Save 1 Hour Final dataset to S3

Find the mean for each column in Sensor and GAN file to assess how close the values
are.

Figure 67: Mean comparison for 1 Hour Data

5 QuickSight configuration and Visualization

QuickSight expects a JSON file named as ’manifest.json’ which states the list of files to be
extracted along with Upload Settings for the same. The below figure states the manifest
file for generating a QuickSight visualization for sensor and GAN data for the 15 minutes
time period.

Figure 68: manifest file of 15 minutes sensor and GAN data

Upload the file by navigating to the ’final-dataset-15-min’ by clicking on Upload.

30



Figure 69: S3 Folder of 15 minutes data

The below figure shows the manifest file for 1 hour time period file.

Figure 70: Manifest file for 1 hour time period for sensor and GAN data comparison

The ’final-dataset-1-hr’ should seem like the figure below.

Figure 71: S3 folder of 1 hour data

Click on Services and navigate to the Analytics Section. Click on QuickSight.

31



Figure 72: QuickSight Menu

The following screens appear only once. A different account has been used to guide
the process. Click on ’Sign Up for QuickSight’. The AWS Account number is unique for
every account.

Figure 73: Sign Up to QuickSight

Click on Standard. Choose Enterprise in case you plan to avail those additional
services. Click on Continue.

32



Figure 74: Choose Plan

Enter the account name and email address. Check the Amazon S3 to select the buckets
to be provided access to QuickSight.

Figure 75: Set Account Name and email address

A Sample Bucket has been selected. Click on ’flood-prediction-master-dataset’ and
click on Finish. This process was already executed by the main account. Since this
cannot be reiterated, another account was used for showing these steps.

33



Figure 76: Choose S3 buckets to provide access

Click on Go to Amazon QuickSight.

Figure 77: Go to QuickSight Page

The below figure shows the QuickSight Analyses tab.

34



Figure 78: QuickSight main page

Click on Datasets tab to the left.

Figure 79: Click on Datasets

Click on ’New dataset’.

Figure 80: Adding a New Dataset

Click on ’S3’ to enter the manifest path.

35



Figure 81: S3 as data source

Enter a name for the visualization process. Provide the path for the manifest.json
file.

Figure 82: Provide Manifest file path

Click on Visualize.

Figure 83: Visualize

36



Click on the line chart from the list at the left bottom. Drag and Drop ’timerecorded’
column to the X-Axis, ’river’ to Value and ’source’ to Color. The visualization is created
below. QuickSight extracts all the file mentioned in the manifest.json and dumps the
data into the SPICE storage (storage of QuickSight). Hence a differentiating column
is required. Hence, source column was created. The same process is to be followed for
obtaining a visualization for sensor and GAN data with a time period of 1 hour. Click
on Print at the top right to print/save the visualization.

Figure 84: Select Visualization and columns

Click on ’Go to Preview’.

Figure 85: Preview Print

Click on ’Print’.

37



Figure 86: Preview Print

A pop up opens which provides an option to print or save as PDF.

Figure 87: Print Visual

Print or Save the file as PDF.

38



Figure 88: Save the Visual as PDF

6 Model Creation, Prediction & Visualization

Create a Python3 file named ’Random Forest Prediction 15 min’ inside time-series-algorithms
instance. Import libraries and stream the dataset.

Figure 89: Stream 15 Minutes dataset for Random Forest

Remove the index column and rearrange the column order. GAN and sensor data are
stored into two files. GAN data’s timestamp is incremented by month and appended to
the sensor data.

Figure 90: DateTime conversion and GAN timestamp Incrementation

39



Time Features are added to the dataset. Dataset is splitted in a ratio of 95:5.

Figure 91: Data Splitting for Random Forest of 15 Minutes Time Period

Training and testing files are saved as CSV and bucket name is provided to Boto3.

Figure 92: Saving Files as CSV

Training and Testing datasets are uploaded to S3. SageMaker ML either accepts
streaming data or S3 path as input.

Figure 93: Uploading files to S3

Random Forest is Scripted based on SageMaker Python SDK 3. Libraries are imported
and a model is loaded if already present. Arguments are defined for the script.

3https://sagemaker.readthedocs.io/en/stable/frameworks/sklearn/using_sklearn.html

40

https://sagemaker.readthedocs.io/en/stable/frameworks/sklearn/using_sklearn.html


Figure 94: Scripting the Random Forest algorithm - Model Loading

The environmental variables are used to retrieve the Datasets and models within
the AWS EC2 ML Instance. The datasets are retrieved and unnecessary columns are
removed.

Figure 95: Using Environmental Variables to retrieve the required files for prediction

Training and prediction is defined in the script. Model is saved to a ML Instance
Folder.

41



Figure 96: Training, Prediction and Saving Model

The Sagemaker estimator is provided the script, instance type and script argument
values. Datasets and Training is executed. Estimator is passed the Environment Folder
where the model persists.

Figure 97: Random Forest Model Deployment

The model is deployed to an AWS Endpoint. Test dataset is passed to get the pre-
dictions. The timestamp column values from the test dataset and predictions from the
algorithms are saved as a dataframe. A source column is created with value ’RF’ to
identify the prediction source. The file is saved to S3.

42



Figure 98: Prediction and saving it to S3

Create a Python3 file named ’XGBoost Prediction 15 min’ inside time-series-algorithms
instance. Import libraries and stream the dataset.

Figure 99: Stream 15 Minutes Data for XGBoost

The below figures shows the process of streaming the data, imcrementing the GAN
timestamp value, feature generation and splitting the file in a 95:5 ratio.

Figure 100: DateTime conversion and GAN Timestamp incrementation

43



Figure 101: Feature Generation and File Splitting

Import libraries, set the source bucket and select an AWS container comprising of XG-
Boost algorithm. AWS provides containers with preloaded XGBoost algorithm. Training
and deployment processes are not benefitted but the scripting time is saved.

Figure 102: Choose AWS XGBoost Containers

Instance type, Hyperparameters and path to the datasets are provided.

44



Figure 103: Uploading Datasets to S3 and defining the estimator

The model is trained and deployed.

Figure 104: XGBoost Training and Deployment 15 Minutes Time Period Data

The prediction is obtained which is combined with the test dataset timestamp. The
’source’ column is created with value ’XGB’. The test dataset is added a ’source’ column
with value ’ACTUAL’. Both files are saved to S3.

Figure 105: Predicting and Uploading the file to S3

Manifest file for visualizing the actual river level and algorithm predictions for 15
minutes time period is provided below.

45



Figure 106: 15 Minutes Prediction Manifest File

Below figure shows the ’predictions-15-min’ folder wherein three datasets and manifest
file is present.

Figure 107: S3 bucket folder of 15 minute predictions

Provide QuickSight the manifest file’s link and configure the QuickSight as shown
below.

46



Figure 108: Visualization of 15 Minutes predictions

Create a Python3 file named ’XGBoost Prediction 1 hr’ inside time-series-algorithms
instance. The below code predicts the river level based on 1 hour dataset and follows the
same flow as in the above XGBoost file.

Figure 109: Streaming the 1 hour time period datasets for XGBoost

Figure 110: DateTime conversion and GAN Timestamp incrementation

47



Figure 111: Feature Generation and Splitting

Figure 112: Choosing the AWS XGBoost Containers

Figure 113: Defining the estimators, uploading the files and training the model

48



Figure 114: Deploying the XGBoost model

Figure 115: Predicting and uploading the file to S3

Create a Python3 file named ’Random Forest Prediction 1 hr’ inside time-series-algorithms
instance. The below code predicts the river level based on 1 hour dataset and follows the
same flow as in the above Random Forest file.

Figure 116: Streaming the 1 hour time period dataset for Random Forest

49



Figure 117: DateTime conversion and GAN Timestamp incrementation

Figure 118: Feature Generation and Dataset Splitting

Figure 119: Uploading file to S3

50



Figure 120: Scripting the 1 hour time period Random Forest

Figure 121: Creating Script arguments and splitting dataset

Figure 122: Random Forest Training, Model Creation and Storage

51



Figure 123: Random Forest for 1 Hour Time Period Training and Deployment

Figure 124: Random Forest Prediction and Upload to S3

Manifest file for visualizing the actual river level and algorithm predictions for 1 hour
time period is provided below. Follow the same process as above to generate a QuickSight
visualization.

Figure 125: Manifest File for 1 hour prediction data visualization

52



7 Flood Trigger Evaluation

The Environmental agency also provides publicly the flood warning trigger level for each
river. Based on this value, the Evaluation of the prediction is assessed.

Figure 126: Flood Trigger River Level Value

Create a Python3 file named ’Flood Trigger Comparison 1 Hour’ inside the time-
series-algorithms instance. Import the libraries and stream the CSV files from the S3
’predictions-1-hr’ folder.

Figure 127: Importing 1 Hour Time Period Files

Difference between actual and prediction values (can also be termed as Prediction
Error) is saved for both algorithms seperately. The sum and max of prediction error for

53



both algorithms is calculated. Also the first flood trigger time is calculated. If the value
is within 6 hours, then flash flood prediction is successful.

Figure 128: Assessing Prediction Error

All three datasets are joined without any join condition since all datasets have the
same number of records and timestamp. Columns, either actual or prediction greater
than 6.2 are retrieved and stored to a different variable. Status column is added to define
the validity of the trigger by the predictions.

Figure 129: Extracting the Flood Triggered Records

Status is set to HIT, MISS or FALSE. HIT means the prediction triggered rightly,
MISS means prediction missed the flood trigger and FALSE means the Trigger is erro-
neous.

54



Figure 130: HIT, MISS and Flase Triggers

This status column for both algorithms is assessed using PASS evaluation to determ-
ine the performance of the algorithms. Precision, Accuracy, Specificity and Sensitivity
(PASS). R-Square value is also calculate to assess its value with respect to the PASS
performance.

Figure 131: PASS Evaluation

Create a Python3 file named ’Flood Trigger Comparison 15 Min’ inside the time-
series-algorithms instance. Import the libraries and stream the CSV files from the S3
’predictions-15-mins’ folder. The below figures examine the predictions for 1 hour time
period as performed above.

55



Figure 132: Streaming 15 Minutes Time Period Files

Figure 133: Prediction Error in 15 Minutes Predictions

Figure 134: Extracting Flood Triggered Records

56



Figure 135: HIT, MISS and FALSE triggers

Figure 136: PASS Evaluation on 15 Minutes Predictions

8 Results

The visualization of GAN and sensor data is presented below. It shows that the distri-
bution of the values is similar to that of the sensor dataset. The GAN values are not
similar but near enough to mimic the sensor values.

57



Figure 137: GAN and Sensor Values Comparison for 15 minutes time period

The below graph displays the graph between sensor and GAN data with a time period
of 1 hour. These two graphs show good ability of the GAN to imitate the data. But
there is one improvement that is yet to be addressed in GAN.

Figure 138: GAN and Sensor Values Comparison for 1 hour time period

The below graph shows the comparison between actual and prediction values for 15
minutes time period. The predictions by both algorithms is very close to the actual
value. From the graph it can be concluded that the accuracy of both the algorithms is
very high. The trend of the graph is not smooth as the sensor data. The GAN can imitate
the distribution of the source data but could not really mimic the trend or smoothness
of the sensor data.

58



Figure 139: 15 Minutes Predictions and actual values

The below graph is the visualization between actual and prediction values for 1 hour
time period. This graph shows distinct gap between actual and prediction values. The
accuracy is high but is not that high as in 15 minutes time period. This can be due to less
trend details - for 2 hours of data, 1 hour time period has 2 records whereas 15 minutes
time period has 8 records. Probably more historical data can assist in understanding the
trend and improving the performance of the models.

Since this dataset has all the required parameters like rainfall, temperature, wind,
etc. and also a desirable time period, it was an ideal dataset for this research. Since
the dataset download was restricted to 1 month by the API, more data could not be
obtained.

Figure 140: 1 Hour Predictions and actual values

A mission critical prediction model cannot be judged solely based on Statistical Tests.
The extent of fit between the forecast and prediction conveys least on the errors and
achievements of the prediction model.

59



Accuracy is the extent of error in the prediction. This is assessed by finding the sum
of the difference between actual and predicted values (can be termed as Prediction Error).
Sensitivity/Efficiency in this scenario is assessed based on the number of flood warnings
triggered correctly. An algorithm can be efficient to trigger the flood warning but should
not be erroneous. Specificity/Reliability is assessed based on the number of erroneous
flood warnings triggered. Precision is the number of accurate warnings triggered divided
by the actual number of warnings. Influenced by Furquim et al. (2018), the below table
summarises these details for both algorithms on both time periods. As per Hagen et al.
(2020), although the statistical tests indicate that the model is a very accurate fit, but
the hit and miss rates of the algorithm conveys room for improvement.

Figure 141: PASS Evaluation Table

From the above table it is clear that XGBoost has outperformed Random Forest in
all aspects. It has saved time and lives of the people. As evident from the graph, the
accuracy of 15 minutes time period is greater than the 1 hour time period. Hence, with
increasing time period, the accuracy decreases possibly due to less detail of trend. Neural
Networks were not implemented due to time and complexity issues. Also a historical
dataset with more number of records would enable better accuracy of models. Use of
Data assimilation would be required. As mentioned in Hu et al. (2019), as the number
of historical records increases with a small time period, there would be instances where
river level has least to no change which distort the trend. Hence removal of those field
and using Data Assimilation would be required. Also, use of ensemble data in Hagen
et al. (2020) enabled prediction beyond one week.

Flash Flood Prediction as well as flood prediction for about 3 days was achieved.
Also, XGBoost was implemented for the first time in flood prediction domain which has
outperformed Random Forest, a popular algorithm used for flood prediction.

60



References

Furquim, G., Filho, G. P. R., Jalali, R., Pessin, G., Pazzi, R. W. & Ueyama, J. (2018),
‘How to improve fault tolerance in disaster predictions: A case study about flash floods
using iot, ml and real data’, Sensors 18(3). Impact Factor = 2.475.
URL: https://www.mdpi.com/1424-8220/18/3/907

Hagen, J. S., Cutler, A., Trambauer, P., Weerts, A., Suarez, P. & Solomatine, D. (2020),
‘Development and evaluation of flood forecasting models for forecast-based financing
using a novel model suitability matrix’, Progress in Disaster Science 6, 100076. Impact
Factor = 2.1.
URL: http://www.sciencedirect.com/science/article/pii/S2590061720300132

Hu, R., Fang, F., Pain, C. & Navon, I. (2019), ‘Rapid spatio-temporal flood prediction
and uncertainty quantification using a deep learning method’, Journal of Hydrology
575, 911 – 920. Impact Factor = 3.73.
URL: http://www.sciencedirect.com/science/article/pii/S0022169419305323

61


	Introduction
	Data Acquisition
	Data Transformation and Formatting
	GAN creation and Merging
	QuickSight configuration and Visualization
	Model Creation, Prediction & Visualization
	Flood Trigger Evaluation
	Results

