~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Sumedh Gursale
Student ID: x18208592

School of Computing
National College of Ireland

Supervisor: Manuel Tova-Izquierdo

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sumedh Gursale
Student ID: x18208592
Programme: MSc Cloud Computing
Year: 2019-2020
Module: MSc Research Project
Supervisor: Manuel Tova-Izquierdo
Submission Due Date: 17/08,/2020
Project Title: Configuration Manual
Word Count: 711
Page Count: Bl

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sumedh Gursale
x18208592

1 Introduction

This configuration manual helps readers to understand the system requirements, setup,
specification of the software, hardware used for the research. It also includes detailed
explanation of required steps need to follow to implement research project: A Proactive
Mechanism To Improve Workload Prediction For Cloud Services Using Machine Learning.

2 System Configuration

2.1 Hardware Specification

e Model: HP Pavilion x360 Convertible 14-dg0Oxxx
e Processor: Intel(R) Core(TM) i5-8265U CPU @1.60GHz 1.80 GHz

Operating System: Windows 10

RAM: 8.00 GB (7.83 GB usable)
Hard Disk: 256 GB

3 Software Used

3.1 Python Installation

To run the proposed model, to perform necessary operations and get the results Python
Software is used. Downloaded python from https://www.python.org/downloads/

B Command Prompt - python

Microsoft Windows [Version 10.0.18362.1016]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\Sumedh>python
hPython 3.8.5 (tags/v3.8.5:58efbbe, Jul 2@ 2020, 15:57:54) [MSC v.1924 64 bit (AMD64)] on win32

Type “"help™, "copyright", "credits" or "license" for more information.
55> o

Figure 1: Python Version

https://www.python.org/downloads/

3.2 Loading python libraries

The figure below shows the libraries used in this research. To install all required libraries
please refer below commands.

python -m pip install —upgrade pip
python -m pip install tensorflow
python -m pip install matplotlib
python -m pip install numpy
python -m pip install sklearn
python -m pip install PyWavelets

matplotlib library is used to plot the curves. sklearn is used to model svr algorithm.
tensorflow keras is used to model ANN algorithm and PyWavelets library is used to
perform wavelet transformation.

1=

(%3]

from

E from
10 from
11 from
12 from
13 from

14 from

le from

import numpy as np
import matpleotlib.pyplet as plt
import tensorflow as tf

tensorflow. keras import Sequential
tensorflow import keras

tensorflow. keras import layers

sklearn.svm import SVR

sklearn.pipeline import make pipeline
sklearn.preprocessing import StandardScaler
data preprocess import *

15 import pickle

statistics import mean

17 import math
18 import pywt

Figure 2: Python Libraries Used

4 Data Generation and Pre-processing

4.1 Data Generation

For this research we have created synthetic data by combining periodic wave functions
and pseudo randomness. This data generation system can be tweaked to model any kind
of situation, high/low randomness, vary the period etc. File data_generator.py is used to
generate the load signal. This generated load signal represents the incoming load on the
system and this load can be anything ranging from user requests, processing load etc.

import math

import random

from statistics import mean
import matplotlib.pyplot as plt
import pickle

class CurveGenerator:
= def _ init_ (self):
— gelf.y = list()

#generate the sample data using a combination of pericdic functions
=] def generate(self N):
anglel = 0
angle2 = 0
incl = math.pi/fl180
inec2 = math.pi/30
=] for i in range(N):
#calculate the functions
wl = math.sin(anglel)
w2 = math.sin(angle2)
#wave formula
valus = abs (Wl+ (W2*0,3) *random.random())# -»change here to customize the curwve
self.y.append ((values))
#increment the angles
anglel += incl
— angle2 += inc2

#visualize the data generated by the system

=] def plot(self):

plt.title('input signal')

x = range(len(self.y))

vy = self.y

plt.plot(x,¥,label="the time seri nerated')
plt.legend()
plt.xlabel('t
plt.ylabel('n
— plt.show()

#store the data generated by the system inside a pickle file
=] def stors(self):

file = open('./raw_data/gensrate.pkl’,'wb')
pickle.dump(self.y, file)

— file.close()

=] def lozd(self):
file = open('./ra
pickle.load(file)
= file.close()

#iidiisddid i 4442 teat/driver code #iffffddisdidisisdisiaiiaiadasd
cg = CurveGenerator()

cg.generate (40000)

#cg.plct{}|

Figure 3: Data Generator

4.2 Data Loading and Pre-processing

For Data loading process, load.py is responsible for loading, generated data and splitting
it into rows of 100 values. In pre-processing using data_preprocess.py, data is loaded and
divided time series into chunks of 100 values and dividing the 100 values in 90 inputs and
10 output. This stage is pre-processing without wavelet transformation.

open('./raw_data
pickle.load(file)
np.array(data)

#print (type (data))

$44#44 create the dataset from the time series data ###F#####4EE44444
rt the time series data into small portions of 100 wvalues
def create_dataset(data):

17 rows = list()

I
1 L0 L B}
.
E
E
E
E
=

rows.append (data[i:1i+100])
0 return np.array(rows)
rows = create dataset (data)

SESSLLLILLLLLILSLEULEELLLY ooy SESLEEEEEEEEEEEE L

2
b
rA
2
2

4

print (rows.shape)

Figure 4: Data Loading

split the row into 2 parts first 90 wvalues used as input and rest 10 values as forecase
rows[:,:90]
rows[:,%0:]
orint (X.shape)

#
L4
¥

#split the data into training(%00) and testing sets (590)
¥ _train = X[:3000]
¥ _test = X[3000:]

y_train = ¥[:3000]
y_test = ¥Y[3000:]

BESLULLLLLLLLLLLLLELL oot code LEEEEELEEEHEELEEEEss

Figure 5: Data pre-processing

5 Proposed Model Implementation

5.1 Wavelet Transformation

In this step the input signal is divided into 2 components cA and cD using discrete
wavelet transformation. cA represents low frequency components where as c¢D represents
high frequency components. DW'T Haar is the simple way of implementing WT and we
have used the same in the process of wavelet transformation. wave_transform.py this is
the class to encapsulate the splitting operation. data_process with_wt.py this module is
responsible for the data pre-processing with the discrete wave transformation.

class WaveSpliter:
9 #split the original signal into 2 components
10 def split(self,signal):
11 ch,cD = pywt.dwt (signal, 'haar')
12 return ciA,cD
13
14 #join the 2 components of the system in order to re-construct the original wave
5 def join(self,ch,cD):
16 v = pywt.idwt (cA,cD, "'haar")
17 return y
18
19

Figure 6: Wavelet Transformation

wave transtorm

9 ch list = list()
10 cD_list = 1list()
11 ws = WaveSpliter()
12 for row in rows:
13 cA,cD = ws.split (row)
14 chA list.append(ch)
15 cD_list.append (cD)

17 #convert the cA into inputs(45) and outputs(5)
18 cA = np.array(cA list)

19 ch X = cA[:,:45]

ch ¥ = cA[:,45:]

= o

#split cA data into training(900) and testing sets(90)
ca ¥ train = cA X[:3000]
ca_x_test = cA X[3000:]

LR VS R o)

~ o

ca_y_train = cA ¥[:3000]
ca_y_test = cA Y[3000:]

o o

#convert the cD into inputs(45) and outputs(S)
cD = np.array(cD_list)

cD X = cD[:,:45]

cD Y = cD[:,45:]

Wk MR RN NN NN R

Wwow w
W= o

(0]
L=

#split cA data into training(900) and testing sets(90)
cd ® train = cD_X[:3000]
cd x_test = cD _X[3000:]

W oW w w
0 ~1 & Ln

]

cd y train = cD_Y[:3000]
cd y_test = cD_Y[3000:]

= o

A Y]

[o%]

print(cd x test.shape)

Figure 7: Data processing with Wavelet Transformation

5.2 Combining SVR + ANN

In this step, svr model is used to predict the low frequency variations in the system.
cA is applied to SVR algorithm. SVR kernel 'rbf’ is used and it is trained on the cA
component of the wave. SVR alorithm is defined in composite_svr.py.

alil FEESESHAEREF RS HAH4484444 define the model #EEHFE345E585 8554050800805 484
12 model_svr = make_plpellne (StandardScaler (), SVR(kernel='rbf',C=10.0, epsilon=0.01))
13

14 def predict(x_test):

15 predictions = list()

16 for x in x_test:

17 train = np.array([i for i in range(len(x))]) .reshape(-1,1)

18 model svr.fit(train,x)

19 test = np.array([i for i in range(len(x),len(x)+5)1).reshape(-1,1)

20 #get forecast from the model

21 prediction = list(model svr.predict(test))

22 predictions.append (prediction)

23 return np.array({predictions)

Figure 8: SVR module

In this step, ANN model is used to predict the low frequency variations in the system.
cD is applied to SVR algorithm. ADAM optimiser is used in this algorithm. Created the
ANN model using tensorflow 2x keras library and it is trained on ¢D component of the
wave. ANN algorithm is defined in composite_ann.py.

14 model = tf.keras.Seguential ()

15 inputs = keras.Input(shape=(45,), name='digits')

16

17 % = layers.Dense (16, activation='relu', name='d ") (inputs)
18 ® = layers.Dense (28, activation='relu', name: ") (=)

20 outputs = layers.Dense (5, name='predictions') (x)

21 model = keras.Model (inputs=inputs, outputs=outputs)

23 model.compile (optimizer=tf.keras.optimizers.Adam(0.001),

24 loss=tf.keras.losses.mse,)

26 history = model.fit(cd x train, cd y train,validation split=0.1,
27 batch_size=l6,

28 epochs=20)

Figure 9: ANN module

5.3 Inverse Wavelet Transformation

To reconstruct the predicted signal to the original signal this step is followed. reconstruc-
tion is done in wave_transform.py.

class WaveSpliter:

9 #split the original signal into 2 components
10 def split (self,signal):

11 cA,cD = pywt.dwt (signal, 'haar')

12 return cA,cD

13
14 #join the 2 components of the system in order to re-construct the original wave
5 def join(self,chA,cD):
16 ¥y = pywt.idwt (cA,cD, "'haar")
17 return y
18
19

Figure 10: ANN module

5.4 Results

Prediction is done on split data after Wavelet transformation and MSE and RMSE is
calculate using predicting and test data that we have. Refer benchmark_composite.py
where we have calculated results and plotted original and prediction curve.

=

=] s WM +

SRt ss]

(=S (N] -

0 =] 5y LN

v

(=SS (N] -

0 =] &y L

sBts]

h o

(=N VS I (N]

o =] &y L

A i A A A A A i i i i i LU LT LT WavT LT LD
fcombine the prediction with input to get
cA predictions = predict(ca x test)

LA g b b i i
cD component for inverse wave transformation

cA combine = np.concatenate((ca_x test,cA predictions) , axis=l)

cD predictions = model.predict(cd x test)

cD combine = np.concatenate((cd _x test,cD predictions) ,axis=1)

ws = WaveSpliter()
wave list = list()

wave = ws.join(cA combine[il,cD combine[il])

Tfor i in range (cD_combine.shapel[0]) :

wave list.append(wave)
wave_list = np.array(wave_list)

final pred = wave list[:,-10:]

error= final pred - y test
error = np.sguare (error)
mse = np.mean(error)

rmse =

#plot a curve for svr for first 200 values

orithm is:',mse)
Srithm is:',rmse)

#as plot more values will clutter the graph

predictions=final pred.reshape([-1]) [:200]

real_values = y_test.reshape([-1]) [:200]

plt.title('predicted 2l')
® = range (len(predictions))
vl = predictions

¥2 = real values
plt.plot(x,vl,label="pr
plt.plot(x,y2,label="1rez
plt.legend()
plt.xlabel('time in hours')
plt.ylabel ("normalized cpu
plt.show()

Figure 11: SVR 4+ ANN Results

6 Simple SVR Model

The generated data after loading and pre-processing without applying to the wavelet
transformation phase, directly being used and applied to the simple svr module. Predicted
values using original input signal and calculated MSE and RMSE is calculated using
prediction and test data that we have used. Refer benchmark svr.py where we have
calculated results and plotted original and prediction curve.

#loop through the test data and find the rmse error

-1 @ 0o

predictions = predict(x_test)
error = np.square (predictions - y test)
<] mse = np.mean(error)
9 rmse = np.sdgrt (mse)
10 print('mse of svr algorithm is:',mse)
11 print('rmse of svr algorithm is:',rmse)
12
13 #plot a curve for svr for first 200 values
14 fas plot more walues will clutter the graph
15 predictions=predictions.reshape([-1]1)[:200]
1lé real values = y test.reshape([-1])[:200]
17
18 plt.title('predicted signal')
19 ®x = range (len(predictions))
vl = predictions
y2 = real values

plt.plot(x,vl,label="predicted/fc
plt.plot(x,v2,label="real valuss
plt.legend()

plt.xlabel('time in hours')
plt.ylabel('normalized cpu powsr')
plt.show()

Figure 12: Simple SVR model Results

References

	Introduction
	System Configuration
	Hardware Specification

	Software Used
	Python Installation
	Loading python libraries

	Data Generation and Pre-processing
	Data Generation
	Data Loading and Pre-processing

	Proposed Model Implementation
	Wavelet Transformation
	Combining SVR + ANN
	Inverse Wavelet Transformation
	Results

	Simple SVR Model

