
Configuration Manual

MSc Research Project

MSc in Cloud Computing

Surya Kumar Govindan
Student ID: 19103883

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Surya Kumar Govindan

Student ID: 19103883

Programme: MSc in Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 17/08/2020

Project Title: Configuration Manual

Word Count: 925

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 26th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Surya Kumar Govindan
19103883

1 Introduction

This document details the necessary steps involved to set up, configure and use the pro-
posed Deep Learning based Serverless (DLS) framework. Additionally, steps to execute
a Python-based function on both the DLS framework and Apache OpenWhisk have been
detailed and instructions on how to validate and compare these results have been ex-
plained as well. The tables below show the details of implementation components and
the purpose of each artefact used in the implementation and evaluation.

Table 1: Components and corresponding Products needed for DLS Framework

Component Product
Virtual Machine Amazon Web Services (EC2)
Operating System Ubuntu 18.04.4 LTS
Serverless platform Apache OpenWhisk 0.9.0
Cache manager Redis 4.0.9
Containerization Docker* 19.03.12
Docker image Python:rc-alpine3.12
Programming language Python 3, Bash
Database CouchDB* 2.3.1

Table 2: Details of artefacts and their purpose

Artefact Purpose
evaluation/* Data and visualization file used for evaluation experiments
wsk comp/helloWorld.zip Test Python script with ‘sql’ library to execute on OpenWhisk
wsk comp/whisk Script to trigger a function using Apache OpenWhisk
dataset.csv Original dataset generated for 10 days to gather logs
forecast.csv File with times at which new containers are to be started
formatted dataset.csv Cleaned dataset for training the deep learning model
function Custom Python script of DLS framework
helloWorld.py Test Python script with ‘sql’ library
install.sh DLS & OpenWhisk installation script
model.py Python script to train the deep-learning model

1



2 Configuration

This section details the steps to be followed to configure the DLS framework and Apache
OpenWhisk on two individual Virtual Machines respectively.

2.1 Ordering VM

For the implementation, as mentioned in last section, we will be using two AWS EC2
‘t2.medium’ instances. For running the framework without any memory hiccups, a min-
imum of ‘t2.medium’ size is recommended. Any size below this creates performance issues
in accommodating all the components.

Step 1

Login to AWS Management Console Amazon Web Services [n.d.] and create the first
EC2 ‘t2.medium’ instance and the configuration of the same should look as shown below
in Figures 1 and 2 below. The below shown values are the recommended configuration
that are to be changed in the AWS EC2 instance launch wizard. Rest all values can be
chosen as per AWS defaults. The user will have to choose an existing key pair or create
a new key pair to logon to these servers via ssh using tools like putty (recommended) or
any compatible bash terminal.

Figure 1: AWS EC2 instance launch review showing image and resources info

Step 2

Two such EC2 instances as shown in Step 1 are to be created. Once done, on the
first machine (Machine 1), ensure that the ‘git’ tool is installed as shown below in the
Figure 3, if it is not already installed. NOTE - Most Ubuntu images will come with ‘git’
installed already.

Step 3

Use the command ‘git clone https://github.com/suryakumargovindan/dls.git’ to clone
the code of the DLS framework from GitHub. Output of the same is shown in the Figure
4. This will create a directory named ‘dls’ in the current working directory and the
installation scripts of the framework will be present inside it, as shown in the Figure 5.

2



Figure 2: AWS EC2 instance launch review showing security group and storage

Figure 3: Check whether git is installed on the VM

Figure 4: Command showing cloning the given GitHub repository

3



2.2 Run installation scripts

Once the GitHub repository is configured successfully, switch to the ‘dls’ directory and
the installation of DLS framework could be started with the command - ‘sudo nohup bash
install.sh > installation.log &’, as shown in the Figure 5. This will start installing the
prerequisites Apache OpenWhisk [n.d.a], Dale Lane [n.d.] (Docker, Docker-Compose,
Python, Redis etc.) for DLS framework automatically in the background and the logs of
this can be checked in the file ‘installation.log’. Once triggered, the directory should look
as shown in the Figure 6.

Figure 5: Starting the installation of DLS framework

Figure 6: The current working directory with logs of installation

2.3 Verify installation

Check whether the installation has been successful by using the DLS framework’s ‘func-
tion’ script to execute a Python based simple ‘helloWorld’ program. The output of the
same could be seen in the Figure 7. A similar output will show that all the components
have been properly configured and installed.

Once verified, repeat the steps defined in sections (2.1) and (2.2), to create the ma-
chine 2 and install OpenWhisk components on it. The same script ‘install.sh’ will also
perform the installation of Apache OpenWhisk and the logs for the same could be checked
in file ‘whisk install.log’. Below pictures show how to validate the installation of Apache
OpenWhisk components. To verify whether the OpenWhisk components are installed
and running, enter the command ‘sudo dps | grep -i openwhisk’ which shows the list of
corresponding Docker containers running for OpenWhisk. ‘dps’ is a manual command
created and installed by the DLS framework from section (2.2). This can be seen in the
Figure 8 and there should be 10 OpenWhisk related containers running.

4



Figure 7: Verifying the successful installation of DLS

Figure 8: List of OpenWhisk components running on Machine 2

Once OpenWhisk components are verified, validate that the OpenWhisk engine com-
ponents are properly read by the OpenWhisk client (wsk) Apache OpenWhisk [n.d.b]
by executing the command as root - ‘wsk -i property get’, as shown in Figure 9.

Figure 9: Verification of OpenWhisk engine and client

3 Validation

In this section steps to call a sample Python script with ‘sql’ as the dependent library is
given. The sample script for the same are given along with the GitHub repository.

5



3.1 Function execution in DLS

Execute the command ‘sudo python function helloWorld.py’ to run the Python script hel-
loWorld.py using the DLS framework’s ‘function’ command, shown in the Figure 10. The
logs of the execution can be found in Figure 11 in the file ‘functions list.csv’

Figure 10: Executing a Python script using DLS framework’s ‘function’ command

Figure 11: Logs of script execution using ‘function’ of DLS framework

3.2 Function execution in OpenWhisk

Switch to the directory ‘whisk’ and then execute the command ‘sudo python function hel-
loWorld.py’ to run the Python ZIP file helloWorld.zip using Apache OpenWhisk’s ‘wsk’
cli tool, as shown in the Figure 12. When Python scripts have dependent libraries, they
have to be packaged in a ZIP file and then are to be run by creating and invoking actions
OpenWhisk [n.d.] using ‘wsk’.

The customized ‘whisk’ command created for this automates these tasks. The output
of the execution using OpenWhisk can be found in Figure 13 in the file ‘whisk list.csv’.
The activation list of Apache OpenWhisk could be found in the Figure 14.

6



Figure 12: Executing Python script on Apache OpenWhisk with custom ‘whisk’ command

Figure 13: Output of executing Python script in Apache OpenWhisk

Figure 14: Log of function activations in Apache OpenWhisk

7



3.3 Validation of results

From the files ‘functions list.csv’ and ‘whisk list.csv’, compare the total duration taken for
executing the same script on DLS (on machine 1) and Apache OpenWhisk (on machine
2), right from the call of the script till completion of execution. A similar comparison
could be seen from the figures 15 & 16.

Figure 15: Log of test script execution using ‘function’ command for DLS

Figure 16: Log of test script execution using ‘whisk’ command for Apache OpenWhisk

3.4 Forecast

To use the forecast option of the DLS framework’s to schedule containers at given times,
run the command ‘sudo python function forecast helloWorld.py’, which will schedule the
containers to start at given times from file ‘forecast.csv’, as shown in figure 17.

Figure 17: Output of using ‘forecast’ feature of DLS framework

References

Amazon Web Services [n.d.]. AWS EC2 Instance Launch Wizard, https:

//eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#

LaunchInstanceWizard:.

Apache OpenWhisk [n.d.a]. Installing Apache OpenWhisk, https://github.com/

apache/openwhisk#quick-start.

Apache OpenWhisk [n.d.b]. OpenWhisk Client Releases, https://github.com/apache/
openwhisk-cli/releases.

Dale Lane [n.d.]. Getting started with OpenWhisk and Kafka , https://dalelane.co.
uk/blog/?p=3741.

OpenWhisk [n.d.]. OpenWhisk Documentation, https://openwhisk.apache.org/

documentation.html#actions-creating-and-invoking.

8

https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#LaunchInstanceWizard:
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#LaunchInstanceWizard:
https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#LaunchInstanceWizard:
https://github.com/apache/openwhisk#quick-start
https://github.com/apache/openwhisk#quick-start
https://github.com/apache/openwhisk-cli/releases
https://github.com/apache/openwhisk-cli/releases
https://dalelane.co.uk/blog/?p=3741
https://dalelane.co.uk/blog/?p=3741
https://openwhisk.apache.org/documentation.html#actions-creating-and-invoking
https://openwhisk.apache.org/documentation.html#actions-creating-and-invoking

	Introduction
	Configuration
	Ordering VM
	Run installation scripts
	Verify installation

	Validation
	Function execution in DLS
	Function execution in OpenWhisk
	Validation of results
	Forecast


