
Scaling WebRTC video broadcasting using
partial mesh model with location based

signalling

MSc Research Project

Cloud Computing

Adesh Rohan D’Silva
Student ID: x18176097

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Adesh Rohan D’Silva

Student ID: x18176097

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 17/08/2020

Project Title: Scaling WebRTC video broadcasting using partial mesh model
with location based signalling

Word Count: 879

Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Scaling WebRTC video broadcasting using partial
mesh model with location based signalling

Adesh Rohan D’Silva
x18176097

1 Introduction

This User Manual gives detailed instructions on installation, configuration and execu-
tion/testing of the partial-mesh based WebRTC application artefact which is part of the
research project for this thesis. The instructions outlined here for testing the application
are provided for Amazon Web Services (AWS) but the same instructions can be followed
in any other cloud provider on any Virtual Machine (VM) but with the required soft-
ware installed. This guide assumes that the reader has knowledge in launching VMs on
cloud service providers like AWS or Microsoft Azure and is familiar with SSH and Linux
operating systems.

2 System Specification

2.1 Hardware requirements

The hardware requirements given here can be used to run at most 20 parallel sessions
(users) so if you want to run more than this number you may need more powerful hardware
or use multiple VMs with the same hardware.

Equivalent EC2 instance type t2.medium
No. of vCPU 2
Memory 4GB

2.2 Software requirements

The below software requirements are for both running WebRTC web application and the
test sessions. Apart from below requirements, to see the actual application, the user can
use any browser (Chrome preferred) on their computer.

• Ubuntu 18.04 LTS (latest recommended)

• Node.js

• Git

1



3 AWS EC2 environment setup

3.1 Launching EC2 instance

We will be launching a t2.medium instance with Ubuntu Server 18.04 LTS or the Amazon
Machine Image (AMI) ami-0bc556e0c71e1b467 using AWS EC2 launch instance wizard.

Figure 1: Choosing AMI image

Select the highlighted instance as shown in Figure 1, then select t2.medium as the
instance type and then continue clicking ”Next” keeping all options as default until you
reach Configure Security Group

Figure 2: Security rules

You need to add security rules as shown in Figure 2 so that the node application
can run and communicate in the network. After configuring the security group, you can
launch the instance.

2



3.2 Configuring EC2 instance

Connect to the launched EC2 instance with SSH using your private key file for the
launched instance. You can run below commands to configure and install all the require-
ments for running the test application.

Installing Node.js(Rahul; 2020) and test app:

1 $ curl −sL https://deb.nodesource.com/setup 14.x | sudo −E bash −
2 $ sudo apt−get install −y nodejs
3 $ git clone https://github.com/adeshrd/webrtc−test
4 $ cd webrtc−test
5 $ npm install

4 Launching WebRTC Application

4.1 Installing pre-requisites

You will be running these commands from your computer with Ubuntu installed. This
will install Heroku CLI which is required for deploying the application

1 $ sudo snap install −−classic heroku

4.2 Running the application

We will be launching the application to Heroku 1 platform as it offers SSL support by-
fefault which is required for WebRTC 2. You can optionally launch the app in a AWS
VM but you need to ensure that the application is being served over https protocol.

Run application 3:

1 $ git clone https://github.com/adeshrd/webrtc−scalable−broadcast
2 $ cd webrtc−scalable−broadcast
3 $ heroku login
4 $ heroku create
5 $ git push heroku master

These commands will first clone the code from the Github repository and initialize
the Node.js application in the Heroku platform.

1http://heroku.com/
2https://groups.google.com/g/discuss-webrtc/c/sq5CVmY69sc?pli=1
3https://devcenter.heroku.com/articles/getting-started-with-nodejs?singlepage=true

3



Figure 3: Application deployment output

After running above commands, you will see that the application is deployed to Heroku
to an url as shown in Figure 3. You need to save this url somewhere as it will be required
later.

4.3 Verify application

We can verify if the deployment was successfull by opening the url which you saved pre-
viously in any web browser by going to ”/scale.html”.
For example in this case you will visit: https://calm-reef-19703.herokuapp.com/scale.html

You should see the below page (Figure 4):

Figure 4: Application page

4



4.4 Launching broadcaster

We can now create a room and start the session as the broadcaster by clicking the button
”Open or Join Broadcast”. The Figure 5 shows the page when you create a room and
start broadcasting your video.

Figure 5: Broadcasting output

The video in image has been cropped so that only the relevant part of the application
is visible.

5 Test sessions and output

5.1 Launch test sessions

Connect to the launched EC2 instance with SSH and run the following commands to
start the test sessions using Pupeteer 4 to launch headless chrome browsers in parallel.

Launch parallel headless browsers:

1 $ cd webrtc−test
2 $ ./scale−par.sh N URL

In above command, replace N with the number of sessions you want to run in parallel
and replace URL with the deployment url that you saved previously in Section 4.2

4https://github.com/puppeteer/puppeteer

5



5.2 Verify statistics/output

The WebRTC application page keeps collecting statistics during an ongoing session and
will display updated statistics every 10 seconds. Once you have launched the test sessions,
if you go back to the Chrome browser where the broadcasting page was opened, you will
see the statistics as shown in the below Figure 6 after a few seconds.

Figure 6: Broadcasting output

References

Rahul, W. b. (2020). How to install node.js on ubuntu 18.04 / 16.04 lts.
URL: https://tecadmin.net/install-latest-nodejs-npm-on-ubuntu/

6


	Introduction
	System Specification
	Hardware requirements
	Software requirements

	AWS EC2 environment setup
	Launching EC2 instance
	Configuring EC2 instance

	Launching WebRTC Application
	Installing pre-requisites
	Running the application
	Verify application
	Launching broadcaster

	Test sessions and output
	Launch test sessions
	Verify statistics/output


