[\
— 0. =

ey
—_y, -
W, N

National
College
Ireland

Eliminating the downtime faced by the IaaS
hosted web applications during vertical
scaling

MSc Research Project
MSc Cloud Computing

Tanya Chopra
Student I1D: x18177271

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland . National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Tanya Chopra

Student ID: x18177271

Programme: MSc Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 17/08,/2020

Project Title: Eliminating the downtime faced by the IaaS hosted web ap-
plications during vertical scaling

Word Count: 9548

Page Count: [20]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 14th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Eliminating the downtime faced by the [aaS hosted
web applications during vertical scaling

Tanya Chopra
x18177271

Abstract

In the computer world today, cloud computing is becoming a major division that
is evolving as a result of technological advancement. The scope of this technology
is also very broad. Even though Platform as a Service (PaaS) solutions are known
by a lot of people than IaaS, there is a lot of scope for personalized solutions with
Infrastructure as a Service (IaaS). The dynamic workload of any web application
becomes a problem for the end-users. As it is not predictable, the TaaS availability
is affected. One way to overcome this drawback is by using vertical scaling of the
VMs. While the VM is being up-scaled or down-scaled, the waiting time is avoided
for the end-users. The most crucial part of the solution to this problem is to cut
down the downtime with this method. This auto-scaling happens automatically,
depending on the workload faced when a web application is hosted in the IaaS.
Creating a VM’s image of a similar size is done by the 'MakeShift Cross Scale
Algorithm’. This algorithm is used to track the workloads as it changes. This
process is done without actually changing the existing VM. Cloning the existing
VM into the new machine helps in scaling up the existing VM, according to the user
requests. Once the process of cloning is completed, the old VM is decommissioned.
Thus, this project eliminates any downtime that occurs during the whole process.
With the help of vertical scaling, the performance of the system is improved through
high availability in this research project. This approach of vertical scaling of the
applications has resulted in high throughput. The average cloning time of the VM
is approximately 8.8 minutes and the average deletion time of the old VM and its
resources is approximately 4.5 minutes.

1 Introduction

Cloud Computing is an advanced technology, where many Information technology service
providers use this platform to access readily available data. Maintenance of the servers
is not done by the users in the environment that they use. Hosting applications happen
in cloud platforms and the users do not have to worry about the performance or storage.
These factors are taken care of, by the application providers. The users only manage the
data and the code in web applications.

Control over the installed applications remains with the user. They also have control
over the security, data, duration of a process, and the intermediate layer. The workloads
keep changing for the applications and they are not predictable. Distribution of resources
for applications that require higher performance and availability becomes a problem in
such instances. The users scale up or scale down the machine when the workload differs.

Scalability includes elasticity and high availability of the environment, which is the real
benefit while using laaS (Al-Said Ahmad and Andras (2019)).

There are two ways such as horizontal scaling and vertical scaling, with the help of
which differing workloads are managed. In this method of horizontal scaling, the existing
server is divided into new instances, which helps in handling the load by spreading it out.
This technique has a gap in which a specific process wherein spreading the workload across
the VMs cannot be done and it needs more computing power. Computing power and
the physical resources of a machine are increased with the help of vertical scaling (Shelar
et al| (2016)). This technique usually takes less computation time to handle a high
demanding single-threaded request. Downtime occurs only in vertical scaling whereas
horizontal scaling does not have that problem. When web applications are used in any
cloud environment, the major problem with vertical scaling is the downtime faced. Thus,
there is a restart depending on the application’s availability. This happens for various
reasons like switch over between the existing VM and the new VM that is requested with
differing configurations.

The high availability of applications is the main purpose of this project. This is
achieved by auto-scaling techniques, depending upon the requirement of the user. While
eliminating the downtime, the process also focuses on reducing maintenance requirements.
A simple explanation for this process is: with the change in the workload faced by the
CPU, a new instance of the machine will be created while the applications keep running
in the existing VM (Feng et al.| (2019)).

Microsoft Azure API is invoked by the ‘MakeShift Cross Scale Algorithm’ which rec-
tifies the issue. When the required configuration is created, a new VM is cloned with
a greater capacity. The old VM is still in use until the new VM is completely func-
tional. After this process, the old VM is decommissioned. As a result, the application
is made fully available even during the process of vertical scaling without any downtime
(Lorido-Botran et al.| (2014).

The main focus of the auto-scaling is to provide uptime with a good service quality
while handling the disruptions. This research is focusing on the downtime of [aaS hosted
web application and eliminates it with the help of vertical scaling. This research project
holds great importance as it focuses on the experience of the end-user.

1.1 Problem Addressed

Based on the research question "How to eliminate the downtime of web applications
hosted in TaaS during vertical scaling in Azure Cloud platform?”, the following research
project is rectifying the issue. The major problem arises with a dynamic workload is
solved by having a system that is ready to perform according to the requests received.
When the workload is high, the throughput will be affected in the form of downtime. This
is eliminated as the users will not wait for their application to run and they have instant
results despite the workload changes faced by the VM. The uptime, high availability, and
quality of service are achieved by vertical auto-scaling.

1.2 Objectives and Motivation behind the Project

The main objective of this research project is eliminating the downtime that affects the
throughput of any system. Using a horizontal scaling is not applicable for all instances
and this process is also not cost-effective as there is a need to have extra resources at all

times, regardless of the need for it. Whereas, vertical scaling is cost-effective while there
are problems with this method. One such major problem here is the downtime that is
faced by the end-user. It is because of this problem; people spend a lot of money and
choose horizontal scaling rather than going with a cost-effective solution.

The goal of every service provider is to satisfy their customer needs. Any problem
that results in unhappy customers is addressed immediately. This is the major motiv-
ation for this project for having satisfied end-users with the optimal throughput of any
system. When the efficiency of a system goes down, it becomes time-consuming and
rather unpleasant. So, this project works in eliminating this downtime. The usage of
resources is efficient at all times. This is achieved by carefully developing a system that
accommodates the changes in the workload efficiently. Vertical auto-scaling provides the
best results that are related to throughput and efficiency.

1.3 Structure of the Report

This research paper consists of the following segments which give a brief explanation of
each segment. It includes Related Work in Segment 2, Methodology in Segment 3 which
explains the techniques and equipments used in the project, Design Specification of this
project is given in Segment 4, Implementation is placed in Segment 5, Evaluation with
the results are given in Segment 6 along with Discussion and Conclusion and Future work
in Segment 6.5 and 7 respectively.

2 Related Work

The purpose of this research is to eliminate the downtime of the applications during
vertical scaling in TaaS hosted environment because of the instant workload changes.
There have been few similar research done in the past and gaps are identified from those
research papers. In this research, past approaches related to vertical scaling are discussed
to improve the high availability of the applications along with shortcomings.

In the previous studies, there were some research papers related to auto-scaling during
different kinds of workloads. In general, Cloud service providers manage the auto-scaling
in the case of PaaS based web hosting. But in the case of IaaS based web-hosting,
the Virtual Machines configurations are changed depending upon the workload, which
was done programmatically. In the case of horizontal scaling, the downtime does not
occur because VMs are added or deleted depending upon the workload changes. In
vertical scaling, the configurations of the VMs are changed depending upon the workload
changes, which requires a restart process to make the changes effective and this results
in downtime of the application. In the MakeShift Cross Scale Algorithm, continuous
monitoring is performed for the workload. Once the threshold is achieved, an alert is
triggered and vertical auto-scaling is performed along with cloning of the VM. Upon
cloning of the VM, resources are allotted appropriately.

2.1 TaaS based web server : Vertical scaling

According to (Ali-Eldin et al.| (2012))), the scaling up was quick within SLA constraints
whereas scaling down only happened when there was not much workload with the re-
sources present at that point of time. The scaling up and scaling down processes were
controlled using adaptive horizontal controllers for elasticity. The design of the controllers

was very efficient which managed flash crowds within defined timelines. A well-defined
event simulator was used to check on the performance of the controllers. An elasticity
engine was built using nine separate approaches in the first situation. The regression-
based controllers were used for comparison purposes in the second situation. As a result
of workload changes, the performance was evaluated in the third situation.

As a result of all these scenarios, it is concluded that the resources are not made free
immediately by the controller during the scale down operation in the case of a decrease in
the workload. It made sure that the changes are not immediate due to proactive scaling.
In the case of reactive scaling, the controller immediately makes the resources free in the
case of a decrease in the workload. The final outcome of the research suggested that for
scaling up, a reactive scale is used whereas for scaling down, a proactive scale is used.

The research has a clear gap wherein the amount of SLA violation increased and
the research majorly looked into horizontal elasticity controller than vertical elasticity
controller. So the algorithm ”MakeShift Cross Scale” uses vertical scaling with the clear
focus of downtime being eliminated when the scale-up or scale-down process happens.

In (Hwang et al|(2014))), it is mentioned that better performance was achieved with
fewer clusters in scale-up operations but it lowered the performance when the switch
over happened with higher or lower configuration. The gap in this paper indicated the
importance of the current research topic. In the paper (Jayasinghe et al.| (2014)), an
analysis was conducted using six [aaS platforms, which included private and public clouds.
The analysis mainly focused on scalability and performance aspect and for that reason,
similar configurations were maintained for all six platforms. The results were varied
between optimal results to the worst results in terms of performance. It gave a direction
to make the algorithm suitable for all platforms to be consistent.

2.2 Autoscaling and service model of IaaS

According to|Casalicchio and Silvestri (2011))), a set of techniques was defined, which were
considered for the designing and execution of auto-scaling. It also mentioned that Cloud
Providers implement the auto-scaling themselves, i.e., the Application Service Provider
(ASP) took care of the implementation where the services were leased from the IaaS
provider. A unique way was defined in this paper, which considered few requirements
functionally that were clubbed together as architectural components under auto-scaling.
It considered load balancer, monitoring, resource manager, planner, and analyzer as com-
ponents. The outcome in this paper suggested that these services were provided by cloud
service providers, there were gaps found in these services and they were automatically
provided for management of the plan, monitor, and analysis.

In (Hasan et al. (2012)), auto-scaling techniques were described wherein independent
metrics were considered for every step of scaling. They were aligned with all other
metrics. Three different heuristics were taken as three different parts of their proposed
algorithm. The first part was the cloud thresholding techniques; the second one was the
multi-domain metric and the third one was the resource integration. Few of the metrics
identified; CPU load, storage, response, network etc. But the scope was limited as there
was no clear definition in the scaling type and the resources were very limited. So, the
algorithm ”MakeShift Cross Scale” clearly works on vertical scaling for effectively and
efficiently allotting the resources according to the workload without any downtime.

2.3 IaaS platforms : Elasticity and Monitoring

[aaS, SaaS, PaaS, and hybrid clouds are various models that were evaluated in (Hwang
et al.| (2016)) for their performances. Various benchmarks that were used to check the
scaling techniques of various cloud providers were used to check the performance. There
were three different levels for performance metrics. The first level had utilization, speed,
efficiency, etc. The next level had network latency, data analytics, data throughput,
etc. which were covering the potential of cloud platforms. The last level had cost, SLA,
security, power, QoS, etc. which were covering the yield of the cloud platform.

The study oversaw EC2 and AWS and mainly focused on three approaches namely
vertical scaling, horizontal scaling, and mixed scaling (upscale and downscale in parallel).
There were good results in the mixed scaling. In the heterogeneous systems, it performed
better during unpredicted workload changes whereas in vertical scaling, the test was done
using 800 plus users with 10 GB data and the results were not encouraging. The key
inconsistency was, none of the single requests required more resources and as a result, the
analysis was not appropriate. As a result, the algorithm ”MakeShift Cross Scale” takes
extensive load requests as well as a single request which demands more resources.

According to (Han et al.| (2012)), a lightweight approach was proposed for cost re-
duction, where the cloud provider in the IaaS platform specified the resources consumed
and operating cost as the running cost of a single server. The Cloud platform had an
e-commerce data center for testing, where each server had a separate virtual machine
dedicated to its performance. Based on the browsing activity of the customers, such as
product ranking, searching, etc, browsing workload was calculated. Other actions such
as login, placing an order in the e-commerce site which required heavy database queries
were categorized as ordering workload. For this particular lightweight approach, another
platform that was used as a middleware was required. Emulators were used to generating
the requests that were sequence-based on the TPC benchmark.

The interactions from the emulators occurred with a random time interval and the
performance was monitored using monitoring service. User-specified the response time
requirement, which was used to notify the users when the system scaled up/down. The
incoming requests were monitored by the monitoring service and the resource utilization
in each server was monitored by the monitors. There were two major gaps in the research,
which included the reserving of the services approach that resulted only in scaling at the
resource-level. The other gap was, this approach had only one cloud provider, whereas
the real-time scenario had applications that were complex.

In (Herbst et al. (2015) based upon few metrics, a new technique was suggested re-
lated to elasticity in TaaS based cloud systems with three major parts in the experimental
setup which included infrastructure nodes, benchmark controller nodes, and load balan-
cing and management nodes. CloudStack (CS) and AWS were used to configure a defined
set of parameters for rule-based elasticity. The major metrics proposed were accuracy
and timing. Few presumptions were made on few platforms for scaling the virtual re-
sources, brackets of scaling for resources, etc. The benchmarks were provided using the
demand curve and the supply curve required by the metrics. Finally, the resources were
commissioned or de-commissioned depending upon timing and accuracy.

There were four processes namely Platform analysis, Measurement evaluation, Bench-
mark calibration, and Elasticity evaluation, which were included in Bungee elasticity
benchmarks and also they were executed on the private cloud, cloud-stack platform, and
public cloud AWS platform. These benchmarks were good but focused on horizontal

scaling and not vertical scaling and primarily focused on reactive scaling, which was not
required for many cloud requirements. As a result, a new technique is provided, which
monitors and subsequently depending upon various parameters, assigns, and re-allocate
the virtual machines accordingly.

Monitoring is an important procedure for cloud service providers. Elasticity, Migra-
tion, and Scalability are major cloud components that require monitoring. Based upon
workload variations, scalability helps in performance efficiencies by scaling up or scaling
down the resources as per requirements. To make Scalability more efficient, monitoring
systems were executed with more investigations. The purpose of Elasticity was to scale up
or scale down the resources as per varying user demands. The monitoring system helped
in Elasticity as it traced the availability of resources during and after scaling procedures
and helped it manage resource availability. Another component was Migration, which mi-
grated the resources depending upon application requirements and the monitoring system
made sure that the data was not lost during migration. In TaaS, few monitoring issues
were identified like integrated monitoring and energy efficiency as per (Rodrigues et al.
(2016))).

The paper (Singh et al| (2019)) discussed MAPE which was used in all auto-scaling
techniques. Through Monitoring, it collected information related to response mechanism,
CPU utilization, SLA deviation, etc. As the next step in Analysis, resource utilization and
the estimated workload were identified depending on the threshold level, which helped
in commissioning or de-commissioning of virtual resources. The next step of planning
helped in auto-scaling because of outcome from the analysis phase and this resulted in
execution using Cloud Service Providers APIs. This paper was useful in the decision
of using efficient monitoring kits and optimum technique of resource utilization using
vertical scaling.

In the paper (Nikravesh et al. (2015)), on the basis of the time-series prediction
algorithm, the prediction method was used in auto-scaling. The gaps in pro-active and
reactive methods were discussed for already developed methods. Under the I[aaS cloud,
a gap was identified related to reactive algorithm wherein boot-up time for VM was
ignored, and due to that under-provisioning of resources happened, which resulted in the
SLA penalty. On the other hand, due to a lack of support for unpredicted workloads in
the proactive algorithm, predictive auto-scaling was highly recommended. The resource
allocation was optimized using the predictive auto-scaling.

There were three kinds of workload patterns concentrated by the author in (Nikravesh
et al.| (2015)—) such as unpredicted workload, periodic, and growing. The algorithm used
Amazon EC2. The purpose of this research was to check various kinds of workloads with
perfection in predicting by using NN and SVM wherein NN is Neural Networks and SVM
is Support Vector Machines, which were required to look into learning techniques. Various
metrics like Root Mean Square Error, R2 prediction accuracy, Mean Absolute Percentage
Error, and PRED were suggested for algorithm evaluation. The key inconsistency in this
paper was that, which prediction technique was to be used with perfection. The final
outcome of the research suggested that SVM was better for periodic and growing patterns
of workload whereas NN was better for workloads, which were unpredictable. It was also
suggested that one prediction method cannot be used in all cases.

Various metrics were described in (Qu et al.| (2018))) which were useful as performance
indicators used in the monitoring. Hybrid metrics utilize both low level (uses server
details) as well as high-level metrics (at the application level generally used by auto-
scalers). Resources were estimated using a few methods. The most common method

was based upon setting up the parameters for triggering scaling operations on a certain
threshold. The second method was application profiling wherein the threshold was tested
during the execution of application but the gap identified here was, manual intervention in
setting the parameters. In the last method, a manual setting of rules and parameters were
done. The machine learning technique had a major gap wherein the time consumption
was found to be huge, and this impacted the performance of the scaling operation. It was
discussed in this paper that vertical scaling had advantages in comparison to horizontal
scaling because there were few services that were not copied and executed during runtime,
but they continued in the same state during scaling vertically.

To overcome monitoring issues that were discussed in previous paragraphs, it was
focused on monitoring the changes in workloads and provide scalability solutions accord-
ingly.

According to (Bauer et al.| (2019)), the Chameleon method was described which had
two components reactive and proactive controller. The reactive controller continuously
monitored, and based upon stored data, took the action for scaling. The proactive
controller performed on the basis of forecast data estimated from the historical data
and did the scaling process accordingly. Elasticity, which is a system-oriented metric,
and metrics like the average amount of VMs, median and average response time, which
were grouped as user-oriented metrics were taken into consideration. The outcomes were
very much configuration dependent. This was not used for the applications, which were
CPU intensive. The 'Makeshift Cross Scale Algorithm’ is inspecting continuously the
different loads on the VM, and the resources are allocated appropriately.

2.4 Vertical Scaling and Resource Management

In (Ahmad et al.| (2017)), many testing methods on empirical basis were evaluated but
without any statistical testing scope. They were used in partial scope without checking
real-time applications and varied situations. In the current research, these aspects are
very well considered and a sample application is built that increases or decreases the load
to check vertical scaling on few real-time situations. These scenarios underlie a path for
testing the application’s performance in cloud platforms.

The experiment discussed in the paper (Sotiriadis et al. (2019)), considered the VMs
as the main focus, and their performance was analyzed based on two infrastructures,
which included OpenStack and VMWare VCloud platform. The VM deployment was
based on default sizes, which were duplicated in OpenStack and VMWare. Two different
platforms were used in order to demonstrate the inter-cloud notion. Six experiments
were conducted, and load balancing solutions were analyzed. Using REST APIs, both
horizontal and vertical scaling were performed and for real-world scenario demonstration,
Cassandra was used, which is an open-source search engine.

In (Sotiriadis et al. (2019)), there was an optimization scheme, which discussed an
issue during the VM resizing or migration experienced in this particular analysis. From
the results of the analysis, it was found that the scale-out/in the process did not work
well when compared to the scale-up/down process in terms of handling the number of
requests. Based on this, there was a clear insight that vertical scaling’s efficiency was
more while handling the requests. Thus, in this research, vertical scaling is relevant. It
works for resource management in cloud services.

3 Methodology

Agile methodology is chosen for the implementation of this particular project. Agile
methodology helps in eliminating the problems and overcoming the gaps by implementing
this project phase by phase. For a detailed explanation, please refer to the Config Manual.

As per (Podolskiy et al.| (2018))), depending upon the varied workloads, the automatic
management of virtual resources was done, which is known as auto-scaling. The research
was focused on the changes in the configuration of the virtual resources or defining the
situations when the scaling was required, based upon varied requirements. On the basis
of this, a new design was developed for auto-scaling wherein the main focus was to remove
the downtime in vertical auto-scaling.

In a Cloud platform, the allocation of resources plays a major role in performance.
When the number of requests increases or decreases, the workload varies suddenly. Hori-
zontal scaling creates VM with the same configuration, and the workloads are distributed
across VMs. When a single workload costing many resources cannot be distributed across
VMs, in such cases, vertical scaling is done, where the memory and other configurations
of a VM are increased to accommodate the new workload. The main disadvantage in
vertical scaling is the downtime during the resource allocation. This is one prevailing
issue in cloud architecture and most cases, PaaS and IaaS are used. In IaaS, the re-
source allocations are not automatically managed and hence, the combination of manual
management of resources is targeting the downtime in vertical scaling.

In the research paper (Podolskiy et al. (2018))), three different cloud service providers
(AWS, GCE, and Azure) were compared with the same type of workloads to understand
the performance of each platform. Workloads were simulated based on various types like
linear increase, linear increase, and constant, random, and triangle, and the simulation
was for 20 minutes and the request timeout was set to 6.5 seconds. The VM config-
urations were same for the three service providers and the performance was monitored.
Based on the results, it was found that Azure showed slowest scaling behavior among the
three, which further enhanced the research idea’s challenge. So, by modifying the scaling
methodology, the idea is to enhance the scaling performance of Azure which is lagging.

The algorithm ”MakeShift Cross Scale” is used in eliminating the downtime in the
applications with the help of vertical scaling. This is an auto-scaling process that detects
the workload automatically and changes the resources of the VMs accordingly. With
the rapid change of workloads, various alerts are triggered and the VMs along with the
resources are cloned for better throughput and performance. This makes the application
user-friendly and very efficient.

The auto-scaling process used in this project ensures that the applications are running
smoothly. This is experienced by the end-user directly, so they do not have any knowledge
about the VM being scaled up or down in the background. This process is increasing
the high availability of the VM in use resulting in better response time without any
disruptions.

3.1 Techniques used in the Project

The techniques used are scaling up and scaling down the VM. This depends on the
workload faced by the VM, with all the requests received. When the number of requests
received is low and the CPU resources are not currently used i.e., the CPU resources are
used below 20%, this triggers the process of scaling down, which happens automatically.

It avoids the use of resources that are not necessary for the requests in hand.

Scaling up is a process where new resources are required for the VM due to the large
number of requests received. So, once the CPU usage goes beyond 80%, an alert is
triggered and a new VM is created by cloning the old VM so that it can accommodate
the workflow, that is experienced by the VM. The old VM along with its resources, such
as network interface and disk are deleted to avoid any unwanted usage of the resources.

3.2 Equipment used in the Project

e Azure VM is the system that is used by the end-user.

e Azure monitoring metric alerts has all the conditions. This helps in monitoring all
the processes that are happening under the VM.

e Traffic manager which is known as the load balancer in the backend logic. This has
a unique URL. This URL is the place where the user views the application.

e This URL points to the current IP in use.

e The endpoint has the IP of the cloned VM.

e App services are the platform that hosts the algorithm.

e Image of the VM which has all the running applications, and other information of
the VM, that is initially in use. This is the most important equipment as this is used for
cloning the new VMs. This is similar to a copy of a VM.

4 Design Specification

When it comes to the workload of applications which is experienced by the end-users,
dynamic changes are something that can never be avoided. During such situations, alloc-
ating the resources are done properly, so that the resources are used effectively. Allocating
the right resources is the main strategy in using any machine to its full potential. When
the workload of a particular application is increased, the instances of the system increase
the resources. Managing the resources based on the workload is done by a process called
scaling. Scaling can be differentiated as scaling up or scaling down. This shows if the
resources are allocated to a higher degree or if the allocation of the resources is cut short
according to the need.

When the changes in the workload are unpredictable in a web application, the work-
load cannot be checked at all times to allocate the right resources. Here, the process
should be done automatically. This is done with the help of auto-scaling. In this method,
managing resource allocation is done dynamically, based on the workload. This project
uses the ‘Makeshift Cross-Scale Algorithm’, which constantly checks the workload being
faced, and whenever a threshold is met, vertical scaling happens automatically. Once
vertical scaling is initiated, cloning of the VM occurs subsequently and the resources are
allocated accordingly.

4.1 Architecture Design : Scaling Alerts

The following is the architecture of the Azure platform. This helps in explaining the
distribution of the objects used in the project. This architecture also explains how each
object is being deployed in the cloud environment. Whenever a process is built on any
platform, it consists of different objects to perform different functions. This is a common

feature of any process in any platform. The architectural design of this particular project
is explained in detail as follows with an example:

A user is operating in the cloud environment and invokes a new request. This new
request is then sent to the webserver. The request invoked alone requires 100% CPU for
the process to run for 10 minutes. In this scenario, the Azure monitor is monitoring the
VM. VM is being cloned where an alert is created and triggered. This alert is sent to the
algorithm indicating that the CPU has reached 80% of its operational efficiency. After
this step, the algorithm that is hosted in the form of a PaaS solution (App Services),
is placed in the Azure data center. This algorithm is now fetched and is working in a
particular way according to the request, which is received for scale-up or scale-down.

After this process is done, the current configuration of the CPU is checked. Once
this step is completed, the next task of the algorithm is to fetch the next configuration,
which is higher/lower from the configuration file. This is calculated according to the
current demand for CPU. Once the configuration is fetched, the appropriate ARM API is
called in a sequence, where it provisions or de-provisions the VM according to the CPU
percentage in the Azure platform. All these processes happen in accordance with the
algorithm.

In addition to this process, the Azure monitor continuously checks the requests that
are received and communicate the right message to the end-users at all times. Throughout
this process, the VM is placed under a load balancer which is the Azure Traffic Manager,
which helps the algorithm to switch according to the requests received from the end-
users. This in turn makes sure that there are no requests drops whenever there is a
switch between the VMs. The VMs mentioned here are the present VM that is being
used and the new VM which is being created. Once the new VM is cloned and created,
the old VM and the resources associated with it are decommissioned.

. pa Users accessing the web application
Azure Monitor \\\ B e
: 4
2. Triggers the algoritﬁh \\
S g ™
when condmonl!lsmet 1. Continuously n\m\ﬂitors v
the VM load

Load Balancer

. 3. Invokes Appropriate AP|

N
‘\ !
The Makeshift Azure Resource Manager

Cross-Scale algorithm Developer API Webserver VM

Figure 1: Architecture Design

4.2 Make Shift Cross Scale Algorithm

MakeShift Cross Scale Algorithm is implemented in this project. It detects the workload
according to the new requests and triggers the alerts based on it. In order to scale
up the machine, the old VM is cloned. Once the new VM is created, the old VM is
decommissioned along with its resources.

Step 1 : In order to create a new VM, it is necessary to first create a network
interface. This is a service that is necessary to start the VM every single time. The
virtual network and network services are required to run the VM.

Step 2 : Once this network interface is created, the new cloned VM is created and
it waits until the cloned VM starts working. This is done to check if all the necessary
applications are loaded into the cloned VM and also if the VM is working. Only if the
VM is working, the IP address of the VM is updated in the traffic manager. This process
diverts the users and the requests to the cloned VM.

Step 3: Upon the completion of all the above steps, the old VM and the resources are
allocated to that particular VM are deleted. Some of such resources deleted are the old
VM itself, its disk, and its network interface. The process gets completed after this stage
and when a new alert is created the same process is executed again, for either scaling
up/down the VM. The coding part describes the process that happens when the alert is
created. Two static IPs are created manually. This is useful when the VM is cloned.

All the predefined information is stored in the coding part. Information like the
subscription ID, resource group, virtual network, and network safety group that are
related to the Azure subscription is available in the coding section. All the network
information is set manually and then is configured for further use.

Instead of creating a new IP every time, the static IP is used for the cloned machine.
Azure VM has different sizes. Only when different sizes are available, it is possible to scale
up or scale down the VM. These different sizes are fixed and defined in the beginning and
this acts as the master data. There is another file that has the properties of the current
VM like its name, network interface, and the disk name along with its size and the IP
address.

Creating alerts or the VM happens dynamically and that information is populated
in the JSON file. Information stored such as VM being scaled up or down is needed for
future reference. Once the new VM is cloned, the old VM and its resources are deleted
to avoid unwanted usage of resources. When a new VM is cloned, the information of that
particular VM is updated automatically to the JSON file. After this step, conditions to
set up the parameters for scaling up and scaling down are given. A VM cannot be scaled
down to a size lesser than the VM size (Basic A0) available to a user. This is the same
for scaling up (Standard Al v2).

A Boolean value ‘true’ is used in the next step to allow only one cloning process to
happen at any given time. This is done to ensure that the cloning process is done, and
completed without any conflicts even when new requests for scaling up or down are being
received. Here, the JSON file is updated indicating that there is currently no-cloning
happening and a new request is received. After this step is done, a unique name for the
new VM that is cloned is allocated. The name is pre-defined along with a dynamic size
for the VM. This is the current size of the VM that is in use plus 1 if the process is to
scale up. The other pre-defined values that are required for creating new resources are
the VM name, network interface, and the name for the new disk. This part also has
the image of the VM in use. This is available in a file format and is used to create any

11

number of VMs. This is the most important part of having an image of the VM that
allows new VMs to be cloned.

The next step in the coding part is to denote which endpoint is currently in use when
a VM is scaled up/down. The conditions are set as ‘true’ for scale-up and ‘false’ for scale
down. The size of the new VM is defined based on this value. This helps in fetching the
right size for the new VM from the array of sizes that are predefined in the beginning. In
the two IP addresses declared earlier, one IP is already in use by the existing VM. This
information is available in the VM config along with all the properties of the current VM.
All the above steps are used to provide the information that is necessary to create a new
VM. The next step is authentication which connects the process to the Azure platform.
Once the authentication is checked the next step is to delete the old alert. If the deletion
is not done in this stage, numerous alerts are sent to the Azure portal consecutively. In
order to avoid this, the old alert is always deleted once the request is received and the
process of cloning is initiated.

The following steps are done when actual cloning takes place. After this, a network
interface for the new VM is created. This name is also predefined and mentioned in
the coding during the first few stages. For a VM to be created in an Azure portal,
network interface, network security group and virtual network are essential. Since the
virtual network and network security group are predefined, only the creation of a network
interface takes place here. The virtual network and the network security group remains
the same for any number of VMs that are cloned. Only the network interface gets changed.
The new IP is given when the network interface is being created. This is the IP that is
not allocated to the old VM at this stage. Here, an access token is passed along with the
name of the network interface and the size of the VM, so that permission is received to
use the MS portal.

This process of creating a new VM is asynchronous. Once the above API is called,
the status changes to ‘VM is being created’. The completion of the process is not known
and changing the IP address before knowing if the VM is created, can cause problems in
routing the new requests to the new VM that is being cloned. This is because the VM
cannot be started. Here a while loop is used to check if the process of creating the VM
is completed. This loop keeps running until the VM is created. This helps in knowing if
the process of creating the VM is stopped in between because of some error. This process
is continued until the new VM runs in the portal and the application in the old VM is
running in the VM that is cloned.

The major goal of the above step is to know if the new VM is created. Once this
is done, the new IP is updated in the traffic manager. After this, the applications are
pointed to the new cloned VM. During this stage, both the VMs are running while the
applications are being pointed to the new VM, and the web application has no downtime
and is up and running at that point in time. The next step is to delete the properties of
the old VM that are stored in the JSON file. This is also an asynchronous process. A
while loop is used here to keep checking if the deletion is completed. This is important
in order to delete the network interface and the other resources that are related to the
old VM.

Once the old VM is deleted, the network interface and the VM disk are also deleted.
Then the alerts to the new VM are created. There are two alerts to indicate that the
CPU usage is below 20% and above 80%. Once all these steps are completed the Boolean
value is set to ‘false’ informing that the VM has the capacity to take up the incoming
requests. When the workload is increased or decreased beyond the alerts that are set,

12

the whole process is repeated. This completes the coding process of this project.

5 Implementation

According to the workload changes in the web application, a new request is triggered in
the Azure platform. There is a change in the load on the CPU. This is because different
applications and operations use the CPU differently. When there is a sudden increase in
CPU usage, the speed of the VM goes down naturally. This is because the CPU allocates
its resources for the completion of the application that are received. A problem does
not arise until there is a huge change in the load given to the CPU. But, when the new
request triggered, uses up a lot of CPU resources all of a sudden, the VM becomes slow.
This is a problem as the end users experience a downtime in executing their applications.
To avoid this, the machine is to cope up with the requests that are being sent. If the
processes or requests just need only 20% of the CPU resources, the VM is scaled down
and this happens automatically without any problem when the right alert is received.
Scaling down is a rather easy process as the same system can just be used as it is.

When scaling up a VM is necessary, there are a few steps to be followed. Scaling
up is done when a request needs 80% or more of the CPU resources for itself. During
such instances, the new requests are routed to a different machine so that there is no
lag in the performance of the system. This explains the need for scaling up a VM. Once
a new request with a heavy workload is received, the alert for scaling up is sent out to
the algorithm. There is an image that is a copy of the existing VM along with all the
applications and the resources of that particular VM. Once the alert for scaling up is
received by the algorithm, the next step is to use the image that is available already to
create a new VM. This new VM has all the same applications and properties of the old
VM with higher efficiency. This new VM also has a different static IP address. This IP
address is updated in the traffic manager, once the process of scaling up is completed.
After the process of scaling up is done as explained earlier, the new requests are sent to
the VM that is cloned while all the other applications in the old VM are being transferred
to the cloned one.

In the Azure portal, a person creates their own VM. This is also used to see various
information like CPU percentage, network, request in, request out in the subscription. In
this portal, there is a tab for size where a person can change the size of the VM according
to the usage. The number of CPU, size of RAM, and Disc are different for different
sizes of VM. Changing this size of the RAM according to VM’s load using PaaS solutions
(App Services) is part of the project. In Azure, there is a VM that has alerts that are
configured in the portal itself. This alert is available in the load balancer. This is the
place where the required alerts are created and depends on the load of the CPU. The
alerts are also customized according to a specific need. Makeshift alerts can either denote
scale up or scale down depending on how much load is assumed to be handled by the
CPU without any downtime. Scope mentions the name of the VM and the condition has
a clause with which the alert is created. Once these alerts are created they keep running
in the background at all times in order to check the load of the CPU. There are usually
two alerts for a VM where one can either upgrade or downgrade.

In this process, the CPU stability for scale-up stays for 1 minute, and scale down it
stays for 15 minutes. In the vertical scaling method, the alert is triggered, when the CPU
percentage goes up or down. When the system is upgraded or downgraded according

13

to the needs, the efficiency is increased along with balancing the load. This is necessary
when there is more number of users or applications requiring more resources as the system
has to be automatically upgraded. To avoid the downtime here, two alerts are used for
the same system. When an TAAS service is purchased from a service provider, it is always
better to have the right configuration of the system, that a person wants, so they do not
have to pay unnecessarily.

In this project, a sample application is hosted inside the VM that is used, so that
availability of the machine is known. This application is open at all times and is hosted
inside the VM. The IP address of the VM is viewed. This helps in denoting the VM
which is currently in use.

Azure monitor
continuously monitors VM
If alert is triggered

Yes —P| Invoke Makeshift algorithm
for scaling operations

Create network

Get the current Get the current ’I)
¢ If new VM is
traffic manager Yes

Send out email notification

if the VM is already in its
minimum/maximum size
Invoke MS de-provision If old VM is
l VM API for the old VM deleted
; No

interface
and lower VM and next higher
Microsoft

Nlo @ Yes Invoke Microsoft VM API with new size
config VM config Update new IP address in
authentication Yes

¢ Delete network interface
Delete VM OS Disk

Delete old alerts

Figure 2: Workflow Diagram

There is also a load balancer named traffic manager which helps in managing the traffic
that is routed to the new VM. The traffic manager has one endpoint. The endpoint is
nothing but the IP address of the VM which is currently in use. The endpoint inside a
traffic manager helps in routing the processes to the desired VM. This endpoint can also
be an IP or a URL based on the user’s need. Having a single endpoint calls for a change
in the IP address when a new VM is being created by cloning the old VM. The URL of
the traffic manager is default and received when a VM is created. This URL checks for
the available endpoint when an application is being initiated and routes the process to
the preferred VM.

When the URL that is given, automatically reaches the IP that is mentioned in the
endpoint by the traffic manager. In this project, there is a logic similar to an API and
that is hosted in the Azure platform. Based on the alerts that are set previously, if the
CPU usage exceeds or goes below the mentioned level, it triggers an URL. This URL is
generally known as an HTTP request or a webhook. When the URL is triggered, the
algorithm or the back end logic is called. This is a major part of the whole project. There
are two endpoints in the API depending on the alerts that are created.

The back end logic comes into play once the alert is triggered, depending on the

14

list of VM sizes available. There are two IPs by default which works for upgrading or
downgrading the machine. An image is created at the beginning which is a copy of the
VM. With the help of this image, any number of VM can be created. The image is kept
ready along with two static IP addresses right from the start. The VM which is running
automatically takes up an IP and there is another IP that becomes free at the moment.
Scaling down and Scaling up are done depending on the size of the VM. Before each
cloning process, the system checks for the next available size of the VM. The end-user
is sent an email notification if the existing VM is already in the minimum or maximum
configuration. This informs the user that the system cannot be scaled down or scaled up
respectively, as it is already in its lowest or highest configuration.

The information that is required here is available in a form that is similar to an array
and it is saved in a configuration file. This helps to know the configuration of the VM that
is currently in use. It becomes easier to scale up or scale down once this configuration
is known. Each VM size has a different array of elements and when a certain VM size
is called, that particular array of elements are taken into account. In order to find the
second element, a simple formula of VM size + 1 is used. This determines if the machine
that is already in use has to be scaled-up or scaled-down. After finding this out, a network
interface is created along with a new VM which is then being created with the help of
the image of the old VM available. The new VM that is created has all the applications
and the data that are available in the VM that is being scaled up or down. Once this
process of cloning is done, the new VM has all the existing applications along with the
new [P address created for it. Once this IP allocation is done the same gets automatically
updated in the traffic manager. By doing this the existing VM and its applications are
retained in the new VM which is scaled up/down.

Once this is done, the new application that is received by the traffic manager is
automatically routed to the new VM. This enables the application to be running at all
times thus eliminating downtime. Since the VM is being cloned, the application hosted
on the user end keeps running in the new VM with the same configuration as before.
Once the whole process is completed, the resources of the old VM are deleted since the
old VM is not used at all after the new VM is hosted. This has only a single VM at the
end of the day. In this whole process, only the alert is set manually.

6 Evaluation

The research project aimed at reducing the downtime that was faced because of varying
workloads on a cloud platform. When horizontal scaling was used, there was no problem
with the availability and throughput. This was because numerous resources were used
if one machine was already operating to its full efficiency. But, in vertical scaling, there
was only one machine and the scaling up or scaling down was needed to be done in that
machine to accommodate the workload. This was the reason for the presence of downtime
in the method. This problem was rectified by cloning a VM and configuring it into a
machine with a higher-level or a lower level configuration. The cloning process used the
image of the existing VM that had all the properties and applications of the existing
VM with a different configuration. This was done by creating alerts that informed if the
machine had reached its maximum efficiency or was being operated with a very little
workload. Once the alert was created, it was used to call the algorithm that was used in
the project.

15

The algorithm that was used here is the ‘Makeshift Cross Scale Algorithm’. Once the
algorithm was called, it decided if the VM had to be scaled-up or scaled-down. Depending
upon the CPU usage, the VM was scaled down if the CPU percentage was less than 20%.
Similarly, when the CPU reached 80% or more of its capacity, an alert for the cloning
process was called and a new machine was cloned. This new machine was given the static
IP address that was unused. Once the cloning process was completely over, the same IP
address was updated in the traffic manager. The old VM along with its resources was
deleted once the cloning process was over.

6.1 Test Case 1: Scale-up process

This process happened when the CPU reached more than 80% of its efficiency. After a
minute of operating at its full efficiency, a scale-up alert was triggered, and the cloning
process started happening in the background. In the below-given image, the CPU reached
its maximum efficiency of 87.85% at 01:39 pm, and the scaling up alert was triggered.
This began the cloning process of the existing VM. The process of cloning took 9 minutes
to complete and the new VM was created. Once the new VM was created, the old VM
along with its resources were deleted and this deletion process took 4 minutes.

I Metrics X
LLL N Monitoring
+ New chart () Refresh |2 Share \/ () Feedback \/ Local Time: Last 30 minutes (Automatic - 1 min...
CPU (average) &~
% Add metric *y |&= Line chart \/ [, Drillinto Logs \s () New alert rule * Pin to dashboard - -
Il MakeShift-VM-01, Percentage CPU, Max @
0%
0%
80%
70%
6% N
50% >
40%
30%
20%
10%
0%
1:10 115 1:20 125 1:30 1:35
Percentage CPU (Max)
makeshitvm-01

87.8500 %

Figure 3: Scale-up process

6.2 Test Case 2: Scale-down process

Scaling down is a process that happened when the usage of CPU and its resources fell
below 20%. Scaling down was necessary for this situation so that the unwanted resources
will not have been in use until needed. In the graph shown below, the CPU usage went
down below 20% (2.54%) during 01:49 pm and it stayed for 15 minutes. After that scale
down alert was triggered and the scaling down part of the algorithm was called. It took
a whole of 8 minutes for the process to be completed. Once this was done, the old VM
and its resources were deleted which took about 5 minutes.

16

I Metrics X
Il ure Monitoring

~+ New chart | () Refresh | Share ./ (Z) Feedback \/ Local Time: Last 30 minutes (Automatic - 1 min...

CPU (average) ¢~

% Add metriic *y |~ Line chart \/ [, Drill into Logs ., () New alert rule > Pin to dashboard - -

I3 MakeShift-VM-11, Percentage CPU, Max @

110%
100%.

Aug 04 1:49 PM UTC+04:00
Percentage CPU (Max)
makeshiftm-11

2.5400+

Figure 4: Scale-down process

6.3 Test Case 3: No scale-up or scale-down

This scenario can also be mentioned as the basic flow in this project. This is a place
where the CPU usage remained constant without any drastic changes in the workload.
When the CPU usage was at 73.15% there was no requirement of scaling up or scaling
down the VM. The process remained in a stable state during 01:52 pm. During such
instances, the algorithm was not triggered and the VM in use remained to be in use until
there was a change in the workload. The same is mentioned in the figure below:

M Metrics X

Azure Monitoring

~+ New chart | () Refresh |2 Share \/ () Feedback \/ Local Time: Last 30 minutes (Automatic - 1 min...

CPU (average) ¢

% Add metric *y | Line chart /[, Drill into Logs \, () New alert rule 5> Pin to dashboard - - -

[CH MakeShift-VM-11, Percentage CPU,Max @

110%
100%.
90%
80%

70%

10%

0%

1:25 1:30 1:35 1:40

Aug 04 1:52 PM
Percentage CPU (Max)
makeshiftvm-11

73.1500%

Figure 5: No scale-up or scale-down

6.4 Timeline Graph

The below image is the result that was obtained from testing the project. The first scale-
up occurred at 5 minutes where the CPU usage reached 80% and stayed that way for
1 minute. Microsoft Azure API triggered the Scaling up alert and the cloning process
and the deletion of the old VM along with its resources were performed. After that, the
workload was changed to normal and the graph stayed stable for a while. The first scale

17

down happened at 20 minutes where the CPU usage reached below 20% and stayed the
same for 15 minutes. The API then triggered the Scaling down alert and the configuration
of the VM was scaled down. The next process was a scale-up that happened at 40 minutes
when the CPU was more than 80% and the final scale down occurred at 55 minutes where
the usage of the CPU went below 20% again. This image shows the scaling up and scaling
down process that took place in a VM for 1 hour.

100 @ scaewe

90 - @ scALEDOWN
80 -
70

60 -

00:20 00:55

40~ 00:05 00:40
30|

20

CPU USAGE PERCENTAGE

10+

ol ! | | | | | | I
00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55 1hr

TIMELINE

Figure 6: Timeline Graph

6.5 Discussion

The research project efficiently used vertical scaling. This was done by eliminating the
downtime that occurred due to varying workloads. This downtime was a result of the
CPU usage going up and down dynamically. During such changes, the CPU usage was
monitored by the Azure monitor continuously. ‘Makeshift Cross Scale Algorithm’ was
then called, which triggered the alert. The Azure platform was used to host this API.
After the algorithm called the API, the process of cloning and deletion of the VMs was
carried out at the backend by Microsoft. As the new VM was cloned, with the help of the
existing VM, the downtime was eliminated here. Thus, the availability of the application
was increased along with efficiency. The results from the above processes were:

The application was up and running during the cloning and deletion process of the
VMs without any downtime. The average cloning time was approximately 8.8 minutes
and the average time is taken to delete the old VM and its resources were 4.5 minutes.

7 Conclusion and Future Work

This research was successful in answering the research question in hand, where the down-
time was eliminated during the process of vertical auto-scaling. The major objective of
this project was to eliminate the downtime that was faced during the switching process
between the VMs. This was successfully achieved by using vertical scaling in the Azure
platform, where the VM in use was cloned with the help of the alerts generated. The
written algorithm ’Makeshift Cross Scale’ scaled up or down depending upon the work-
load that was generated by the new requests received. The results obtained from the
above processes were:

18

The application had no downtime during the cloning and deletion process of the VM.
Time taken for the cloning process was approximately 8.8 minutes and it took 4.5 minutes
for the deletion of old VM along with its resources.

Even though the downtime is successfully reduced with the help of this project, there
are still some places where the process can be improved. The whole alerting mechanism
of the project that is taking place inside the Azure monitor can be improved in terms
of its efficiency. As a part of improving this process, we can use third party solutions or
custom coding in the future, which will be placed in the window service of a VM, and that
will monitor the CPU of that specific VM. Another way to improve this whole project
is to use services inside the VM itself, to take care of the alerting mechanism. This will
improve the monitoring speed greatly, and the alerts will be sent out to the algorithm
much quicker with this method. It can be evaluated in other cloud service providers and
can extend the algorithm to support multi-cloud.

References

Ahmad, A. A., Brereton, P. and Andras, P. (2017). A systematic mapping study of em-
pirical studies on software cloud testing methods, 2017 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C), pp. 555-562.

Al-Said Ahmad, A. and Andras, P. (2019). Scalability analysis comparisons of cloud-
based software services, Journal of Cloud Computing 8.

Ali-Eldin, A., Tordsson, J. and Elmroth, E. (2012). An adaptive hybrid elasticity control-
ler for cloud infrastructures, 2012 IEEE Network Operations and Management Sym-
posium, pp. 204-212.

Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A. and Kounev, S. (2019). Chameleon: A
hybrid, proactive auto-scaling mechanism on a level-playing field, IEEE Transactions
on Parallel and Distributed Systems 30(4): 800-813.

Casalicchio, E. and Silvestri, L. (2011). Architectures for autonomic service management
in cloud-based systems, 2011 IEEE Symposium on Computers and Communications
(ISCC), pp. 161-166.

Feng, D., Wu, Z., Zuo, D. and Zhang, Z. (2019). Erp: An elastic resource provisioning
approach for cloud applications, PLoS ONE 14.

Han, R., Guo, L., Ghanem, M. M. and Guo, Y. (2012). Lightweight resource scaling for
cloud applications, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), pp. 644-651.

Hasan, M. Z., Magana, E., Clemm, A., Tucker, L. and Gudreddi, S. L. D. (2012). In-
tegrated and autonomic cloud resource scaling, 2012 IEEE Network Operations and
Management Symposium, pp. 1327-1334.

Herbst, N. R., Kounev, S., Weber, A. and Groenda, H. (2015). Bungee: An elasticity
benchmark for self-adaptive iaas cloud environments, 2015 IEEE/ACM 10th Interna-

tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pp. 46-56.

19

Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W. and Wu, Y. (2016). Cloud performance
modeling with benchmark evaluation of elastic scaling strategies, IEEE Transactions
on Parallel and Distributed Systems 27(1): 130-143.

Hwang, K., Shi, Y. and Bai, X. (2014). Scale-out vs. scale-up techniques for cloud per-
formance and productivity, 2014 IEEE 6th International Conference on Cloud Com-
puting Technology and Science, pp. 763-768.

Jayasinghe, D.; Malkowski, S., Li, J., Wang, Q., Wang, Z. and Pu, C. (2014). Variations
in performance and scalability: An experimental study in iaas clouds using multi-tier
workloads, IEEE Transactions on Services Computing 7(2): 293-306.

Lorido-Botran, T., Miguel-Alonso, J. and Lozano, J. A. (2014). A review of auto-scaling
techniques for elastic applications in cloud environments, Journal of Grid Computing
12: 559-592.

Nikravesh, A. Y., Ajila, S. A. and Lung, C. (2015). Towards an autonomic auto-scaling
prediction system for cloud resource provisioning, 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 35—
45.

Podolskiy, V., Jindal, A. and Gerndt, M. (2018). Iaas reactive autoscaling performance
challenges, 2018 IEEE 11th International Conference on Cloud Computing (CLOUD),
pp- 954-957.

Qu, C., Calheiros, R. N. and Buyya, R. (2018). Auto-scaling web applications in clouds:
A taxonomy and survey, ACM Comput. Surv. 51(4).
URL: https://doi.org/10.1145/3148149

Rodrigues, G., Calheiros, R., Guimaraes, V., Santos, G., De Carvalho, M., Granville,
L., Tarouco, L. and Buyya, R. (2016). Monitoring of cloud computing environments:
concepts, solutions, trends, and future directions, pp. 378-383.

Shelar, M., Sane, S. and Kharat, V. S. (2016). Enhancing performance of applications in
cloud using hybrid scaling technique, International Journal of Computer Applications
143: 43-48.

Singh, P., Gupta, P., Jyoti, K. and Nayyar, A. (2019). Research on auto-scaling of web
applications in cloud: Survey, trends and future directions, Scalable Comput. Pract.
Exp. 20: 399-432.

Sotiriadis, S., Bessis, N., Amza, C. and Buyya, R. (2019). Elastic load balancing for
dynamic virtual machine reconfiguration based on vertical and horizontal scaling, IEFE
Transactions on Services Computing 12(2): 319-334.

20

	Introduction
	Problem Addressed
	Objectives and Motivation behind the Project
	Structure of the Report

	Related Work
	IaaS based web server : Vertical scaling
	Autoscaling and service model of IaaS
	IaaS platforms : Elasticity and Monitoring
	Vertical Scaling and Resource Management

	Methodology
	Techniques used in the Project
	Equipment used in the Project

	Design Specification
	Architecture Design : Scaling Alerts
	Make Shift Cross Scale Algorithm

	Implementation
	Evaluation
	Test Case 1: Scale-up process
	Test Case 2: Scale-down process
	Test Case 3: No scale-up or scale-down
	Timeline Graph
	Discussion

	Conclusion and Future Work

