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Kubernetes

Anjalee
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Abstract

The computing systems and networks commonly uses resource allocation stand-
ards and protocols to secure efficiency and fairness when allocating resources among
different users. A problem arrives while selecting allocation rules when resources
are limited and not enough to fully meet the demand on its entirety. It is signific-
ant to consider their QoS in Kubernetes when designing resource allocation rules.
By fairness, it means that all users obtain impartial amount of system resources.
Instead of providing fairness to users with good channel conditions, a trade-off is
required between maximising the fairness between users and maximising the sys-
tem throughput. Previous works in the literature of resource allocation algorithms
overlook the fairness criteria and enables users possessing good channel conditions
to acquire most of the resources. In this research CPU and Memory requests and
limits are configured at the time of creation in case of Kubernetes default sched-
uler. When using Fully Fair Multi-Resource Allocation (FFMRA) algorithm, the
resource limits will be applied after the scheduling for better resource allocation.
Using this custom scheduler improves the resource utilization when two web applic-
ations are considered as proved in the results. The Grafana is used for monitoring
the nodes and pods activities.

1 Introduction

Cloud Computing has been uniformly undertaken as one of technological solution for
various problems in multiple businesses and areas. The technology presents a pool of
computing storage and several other resources that can be obtained over network. Fur-
thermore, cloud applications have become part of everyday lives and are composed from
cloud services which are generally built on essence of service-oriented architecture(Joseph
and Chandrasekaran; 2020).

Kubernetes is widely used open source technology that manages containerized applic-
ations in distributed environments and provides scaling, maintenance and deployment of
applications (Beltre, Saha, Govindaraju, Younge and Grant; [2019). The smallest deliver-
able unit of computing that can be managed and created are termed as Kubernetes pods.
These pods are used to bind together the containers that belong to same application.
The resources utilised by pods are controlled by settings of requests and limits; requests
being the guaranteed amount of resources that can be achieved and limits being the
maximal resources that can be obtained. There is a mechanism called cpu-shares which



happens during resource contention in a node, resulting in resource allocation among the
pods as per the relative weight of their requests. Additionally, scaling is another way
to manage the available resources in an application. Kubernetes presents default auto-
scalers namely, Vertical Pod Autoscaler (VPA) and Horizontal Pod Autoscaler (HPA).
Nevertheless, VPA comes across various limitations that curbs its real time usefulness
(Verreydt et al.; 2019).

In a Kubernetes(k8s) cluster, KubeSphere serves as middleware component that ac-
cepts various users’ tasks and transmits them to a connected k8s cluster based on fairness
metrics and custom defined policy. A conventional k8s cluster allows users to submit tasks
directly to Kubernetes control plane and permits k8s master to launch the tasks appropri-
ately. Contrarily, KubeSphere comes up with another control layer where cluster admin
introduces fairness policies to control and dispatch various tasks for the users (Huang
et al.; 2019). FFMRA, the advanced version of DRF is used for allocating of resources
with Nginx Ingress Controller in Kubernetes to provide better efficiency (NGINX; |0009).

For the regular work at constant workloads, the default scheduler works great. They
also supports feature like pod affinity, priority, tolerations, predicates, and taints that
will allow various scheduling principles. With the advancement in cloud computing, the
requirement for dynamic allocation and mapping the newly created pods to nodes were
needed. Therefore, from Kubernetes 1.6, the multiple and custom scheduler concept were
developed. In this study, in case of multi-cluster environment default scheduler is not as

effective as the scheduler developed based on FFMRA.

The Research question is :- Can the resource allocation while scheduling of pods
can be improved with FFMRA?
The objective is to enhance allocation strategy in kube-scheduler by using efficient load
balancer and a better scheduler. For this study, small scale application is considered with
two submitted pods with different CPU and Memory resources. On the basis of CPU
and Memory requests and limits, scheduling is done on nodes. The concept of fairness
that is already used in Hadoop, Mesos, Kube-batch and YARN (Hamzeh, Meacham and
Khan; |2019). The scheduler is developed in Go language assuming the pods are of equal
priority so the decision is made based on the requests and limits allocated. This means
calculating the accurate and definite resource requirement at any particular time. The
comparison is made between default scheduler and the proposed custom scheduler. The
limitations of this research is that scheduling of pods on nodes are done on a single
cluster. The theory has proved that the proposed scheduler will work effectively in a
multi-cluster environment, but practically not proven. Although, multi-container and
multi-node scenarios are covered in this study.

This research is divided into various sections describing the significance of the research
done. The Section 2 specifies the research work done in this field, where different al-
gorithms proposed by the scholars are compared and analyzed to identify the best one.
Section 3 methodology describes the steps performed in the research with the description
of specifications used. Section 4 design depicts the underlying the framework or architec-
ture along with the specifications used for implementing. The practical implementation
is briefed in Section 5 with languages and tools used for the research and also the models



developed. In Section 6, the results and the output from the implementation section is
analyzed. The last section 7 include the conclusion and future work is discussed.

2 Related Work

In Cloud Computing, obtaining efficient and fair resource allocation is always required
along with resource mapping, provisioning, and adaption. This research paper focuses on
the fair resource allocation. The methods for distribution of resources among the users
with distributed demands have been researched a lot. The fairness is one of the different
quality parameters that has been introduced and is still a challenging issue. Therefore,
more research is required in this area (Lopez-Pires and Baran; 2017)). The equality and
fairness are two different concepts, the quality is maintaining the same quantity whereas
the fairness is the quality of having an unprejudiced condition (Fleurbaey; 2012).

The growth in containerization has modified the developing, maintaining, and deploying
of software. The main features of containers are flexibility and are lightweight. With
this approach, different application services are packaged into different containers, and
these containers are deployed over physical or virtual machines. Therefore, there was a
requirement of container orchestration tool, that will automate and manage deployment,
improves scalability and networking of container-based applications ([Yegulalp; |2019).

Kubernetes, an open source framework that is widely used for managing, deploying
and scaling of containerized applications in a distributed environment. The smallest
computing unit that is created and managed is referred as pod. The containers associated
with same application containers are assembled in pods. There can be a limitation in
resource utilization while setting its limits and requests. The request is the resource
amount that is certain to get and the limit is the maximal resource amount a pod can
obtain. In case of resource conflict in any node, then there is a division of resources
among the pods on the basis of their relative weight as the requests. This technique is
referred as cpu-shares. The other way of resource management is scaling of resources and
the default scalers are Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler
(VPA) (Verreydt et al.; 2019).

The main components of Kubernetes are master and nodes. The master equipped com-
ponents are Master and with node components are referred as Node. The Master, which
consist of Kubectl, Controller manager, Api-Server, Scheduler and Etcd as described in
the Fig controls the complete operation of the platform. The Api-server maintains inter-
faces for resources to perform various operations, Etcd act as a storage for the data in a
cluster, Scheduler governs the scheduling of resources, Kubectl act as an administrative
tool to manage all the components, Controller-Manager is accountable for implement-
ing different controllers. Node component coordinating with Master in managing the
resources. The Kubelet and Kube proxy are the components of the Node. The respons-
ibility of Kubelet is operating and maintaining the pods. The responsibility of Kube
proxy is to monitor information transmission between pods in the particular cluster(pods
that are linked to same Master) (Huang et al.; 2019).
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Figure 1: Kubernetes Architecture

The challenges in kubernetes are to position resource limit based on node information
and resource requests after scheduling. And Kubernetes cannot perform dynamic resource
management. So, there is a problem when two nodes has a single container and the
resources are allocated as there resource requests. In case the pods consume less than the
capacity assigned to node by default, there is a wastage of resources. Also, the resource
limits for scheduling time is not considered by the scheduler. Therefore, after scheduling
of pods in particular node, the fair resource limits should be determined on the basis of
the participation of pods in that node. (Hamzeh, Meacham and Khanj 2019)

2.1 Kubernetes vs. Docker

Kubernetes is not an alternative or substitute for Docker but is a replacement of tech-
nologies developed around Docker. That technology is Docker Swarm. Kubernetes is
more complicated than Swarm but in long run, it provides better resilient and managed
application infrastructure. Docker Swarm can be preferred while working with the small
container clusters (Marathe et al.; 2019). A swarm is a group of machines merged with
operating Docker, that are handled by swarm administrator. The Docker Swarm is re-
sponsible for clustering along with scheduling of Docker containers. The request execution
is based FIFO strategy. The Docker Swarm selects the suitable machine on the basis of
their CPU cores usage. The strategies used are: (i) Speed strategy, that is by default
used, where a node is selected with least containers, (ii) Random strategy, where node
is determined randomly, (iii) Binpack strategy, choose node with overloaded containers

(Cérin et al.; [2017)).




Manager

Figure 2: Swarm Cluster

The research has proved that Kubernetes performance and flexibility is much better
than Docker Swarm. One more advantage with Kubernetes is that it is fault tolerant and
self-healing.

2.2 Kube-scheduler

Kubernetes default scheduler kube-scheduler, that will allocate pods on nodes. For se-
lection of destination node, it follows a two- step process. First step is to identify the
worker nodes on which the pods will be running based on certain filter set (predicates).
As an instance, if a pod is identified as key-value pair, then scheduler will choose nodes
which matches the pair. Therefore, not matched nodes are discarded. The second step
is to rank the unused nodes by the priority set functions. Each of this function attach a
score with every node and the summation of these scores is calculated as a final score.
This way each of the remaining node is assigned a score and the one with highest score
is selected to execute the pod. In case the same score is achieved by many nodes, then
selection process is random (Rossi et al.; 2020).

2.3 Scheduling of Pods

Scheduling of pods includes identifying the pods that is needed to be run on the nodes in
a cluster. The basic steps for scheduling of pods on a node is shown in the below figure.
Kubernetes scheduler is the process that works beside different components as API server
and observe API for the pods to be scheduled. First, to find an appropriate node for pod
scheduling, then schedule one pod at a particular time. Scheduling is decided by the

policy that includes priority and predicates function (Vohraj 2017)).
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Figure 3: Pod Scheduling Steps

The research has also shown that there is three ways to scheduling:
1. Default Scheduler.
2. Custom scheduler implementation along with the default scheduler.

3. “scheduler extender” implementation which is called by standard scheduler at a last
step while taking decisions.

2.4 Resource Allocation

The dynamic resource allocation algorithm can be described as five below steps:
1. Collect the requirement of cluster’s resource, memory and CPU.

2. If the utilization is smaller than the threshold, then proceed with step (3) else with
step (5).

3. Additional pods and nodes are calculated based on the basis of the ratio and the
least number of nodes added.

4. The present pods and worker nodes number are added with the additional ones
calculated in step (3).

5. The final count of pods and worker nodes are returned (Surya and Imam Kistijan-
toro; |2019).

2.5 Max-Min Fairness

A well-admired policy termed as Max-min fairness is an approach for defining fairness in
resource allocation by assigning shared resources among conflicting demands. The policy
focuses to assign as many resources to low demand jobs and then equally allocate resources
among the remaining jobs with high or competing demands.With some refined properties
of Max-min fairness such as sharing-incentive, pareto efficiency, strategy-proofness and
envy-freeness, the policy is always attainable on a single machine. These properties are
traditional notions of fairness. Sharing incentive indicates that every job should thrive
on sharing resources, rather than statically splitting the resources. Pareto efficiency
denotes that in order to increase the allocation of a specific job, allocation of another
job needs to be decreased. Strategy-proofness property allows incentive compatibility by
not increasing allocation for a job with misleading demands. Envy- freeness interprets

common need of fairness which says a job would not favour allocation of another job
(Shafiee and Ghaderi; [2020)).



2.6 Dominant Resource Fairness

In computing systems, sharing of resources among multiple users are an elementary re-
search area. DRF is an extension to max-min fairness when it comes to variety of re-
sources. Another concept on fairness is Proportional Fairness (PF). DRF fairness policy
is far better than PF as they can be represented as « -fairness family member (a rep-
resents fair resource allocation which indicate optimization. The highest the value of «
indicates the fairer allocation of resources. For PF, a = 1 and for DRF a = oo and
therefore, it can be concluded that DRF is fairer than PF (Youngmi Jin and Hayashi;
2016).

The dominant share of resources is defined as the maximum ratio of the resources
distributed in a server per user and are equalized. But with heterogeneity of the servers,
dominant resource solution is imprecise. The improved version is DRFH, transitioning
from single server to many heterogeneous servers, where resource in the form of storage,
processing, and memory are pooled by heterogeneous servers (Wang et al.; 2014).

Dominant resource fairness (DRF) is a multi-resource fairness policy and called to be
successful tool in terms of an effective resource allocation (Zhao et al.; 2018). The better
mechanism where secondary resource are used along with dominant one which supports
efficiency greater than DRF, but only pareto-optimal and envy-freeness are achieved (Ji-
ang and Wu; 2018)). Kubebatch allows Kubernetes to create scheduling decisions based
on DRF. Although, DRF does not include other fairness metrics of a shared cluster, but
considers its usage along with resource demand and average waiting time for a task. An-
other policy driven meta-scheduler has been developed for a Kubernetes cluster, termed
as KubeSphere. The policy enables efficient scheduling of individual user’s tasks based
on respective user’s resource consumption and overall resource demands.

The ks8 default scheduler is well informed with task queues and cluster resources in
order to include the custom fairness policy. In addition to the default scheduler, the main
goal of KubeSphere is to include another layer of scheduling mechanism. However, an
alternative could be modifying the Kubernetes allocation module, but that demands per-
sistent community support for building and managing the code. Therefore, KubeSphere
can be utilised as an elective module along with off-the-shelf Kubernetes (Beltre, Saha
and Govindaraju; 2019).

DRF is very efficient for single server and not much effective for multiple servers be-
cause it may result to inefficient allocation. As a result, considering the problems from
multiple servers and as a generalisation of Max-min fairness algorithm, a multi-level fair
resource scheduling and allocation algorithm (MLF-DRS) could be a solution. MLF-DRS
provides allocation in the same rate for dominants and non-dominants as set of resources.
Additionally, this solution seeks dynamic allocation policy relative to server specifications

such as resource capacity pool and users total requested resources (Hamzeh, Meacham,
Virginas, Khan and Phalp; [2019).



2.7 FFMRA

FFMRA works for both dominant and non-dominant type of resources. The dominant is
the user’s maximum allocation of resources and the non-dominant is the user’s minimum
resource share. The allocation is done without interfering the other users. The fairness
properties met by FFMRA algorithm are pareto efficient (user cannot increase its alloc-
ation by reducing the other user’s allocation), envy-free (user can’t select other user’s
allocation), strategy-proof and sharing incentive (Hamzeh, Meacham, Khan, Phalp and
Stefanidis; 2019).

DRFH also assures the properties mentioned. While using multi-server environment,
the users are assigned dominant type resources on various servers and total resource for
each user is calculated. DRFH equalizes each user’s dominant resource share, that is the
highest ratio of any type of resources allocated to the user in the complete resource pool.
DRFH is proved to pareto-optimal and envy-free. It also supports bottleneck fairness,
single-server DRF and resource fairness (Wang et al.; 2014)).The existing problems in
DRF can be solved by increasing per-server resource functions implementing classes by
which the efficiency and fairness can be fulfilled. This research included virtual dominant
type of resources also. Overall, it will increase the efficiency but still not full utilization
is achieved (Khamse-Ashari et al.; [2018)).

The other algorithm in this field is the combination of Nash-Bargaining (NB) and
Lexicographically-Max-Min-Fair (LMMF). They support maximum resource usage and
fair allocation when more than one tasks are submitted by the user. There combination
satisfies pareto-optimality, envy-freeness and the max-min fairness (Zarchy et al.; 2015).

In order to provide better efficiency, Ant Colony algorithm (ACO) along with Particle
Swarm Optimization (PSO) (Wang et al.; n.d.) mechanism was introduced to schedule
pod for better results. The ACO works on distributing the containers and balancing the
resource on docker. The latter mechanism works parallel with the weight and the random
factor to lower the total cost (Kaewkasi and Chuenmuneewong; 2017).

The Improved version of ACO, where the ants were assigned to the node for which
pheromone concentration are maximum and after that become inactive. In this, few
ants receive the highest of the pheromone and the remaining one receives some random
value that are accessible locally. That is how random nodes are selected for deployment.
There is also an improved version of PSO, where for every repeating particle weight ratio
calculation is done based on that allocation is determined. The weight of the particles
will determine its next iteration. The information is moved between the particles. On
integrating these mechanism the overall cost is reduced with efficient scheduling and speed
(Wei-guo et al.; 2018).

2.8 Conclusion

The algorithms that are introduced in this research are combination of ACO and PSO,
DRF, DRFH, integration of NB and LMMF, MLF-DRS and FFMRA. The table 1 below
depicts the fairness property supported by each algorithm. The definition of the properties
is already there in the above paragraphs.As for ACO and PSO, do prevent the faults of



the local inspecting of the pods and provide cost effective solutions. The drawback is
when there is increase in load, then maintaining the efficiency with reduced cost becomes
difficult. When considering fairness, it didn’t support SI and EF. The NB and LMMF
integration support only EF and PO, that means the user have the permission to run the
programs that require higher resources than the allocated one and there is a chance of
incorrect resource allocation. DRF can easily be replaced by DRFH that provide a better
efficiency in heterogenous environment. The SI property well supported by DRFH where
user can dynamically change the resource allocated based on the requirement. The MLF-
DRS and FFMRA are better than other algorithms as they work for both dominant and
non-dominant type of resources and also supports multi-server environment. They also
provide full resource utilization and the better performance. But, the implementation of
FFMRA is quite simpler when compared to MLF-DRS and therefore, considered for this
research.

Table 1: Different Algorithm Comparison

ACO | pry | prru | B &

& PSO LMME MLF-DRS | FFMRA

Property

Sharing
incent-
ive

(S)

NO NO YES NO YES YES

Envy

freeness NO YES YES YES YES YES
(EF)

Pareto
optim-
ality
(PO)

YES YES YES YES YES YES

Strategy
proof-
ness

(SP)

NO YES NO NO YES YES

3 Methodology

This research methods revolves around the scheduling of pods. In the pod scheduling
lifecycle, first step is the pod creation after which it will look for other component to
get started and the state is stored in etcd along with the name of node unfilled. The
scheduler will detect that a new pod is created without any node attached. It will find
the best fitted pod. The apiserver will bind the pod to node and then save the state
to etcd component. Kubelets with apiserver administers these pods and then start the
containers. The logic to identify the best node can be customized. The components shown
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in the figure 4 are loosely coupled. The unbound pods inside the cluster are watched in
a loop by the apiserver. The best node is selected for a pod. The request is made to
connect endpoint to the apiserver.
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Figure 4: Pod lifecycle

3.1 Digital Ocean Kubernetes (DOKS)

E| The containerized app are run with DOKS, that supports cluster autoscaling, tokenized
authentication, minor version upgrades, and the latest Kubernetes release. User can
connect to DOKS clusters using your DigitalOcean API access token, in addition to the
previously supported certificates. The Kubernetes cluster are created from the control
plane in DOKS. The Docker is used for containerization. And the comparison is done
with respect to the Kubernetes default scheduler performance and resource utilization.

https://www.digitalocean.com/products/kubernetes/
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3.2 DockerHub

HWith DockerHub, the installation of Docker on VM is quite simpler and also the set up
of repositories and tags. The latest docker version is available providing networking with
containers and the security with built in scheduling property.

3.3 Nginx Ingress controller

E|As shown in the below figure 5, a component named as Ingress is passed between the
different services and the loadbalancer. In this scenario only single loadbalancer point is
used to connect to the clients. In case there is traffic on the loadbalancer, then Ingress
will back up and will be used as a host. The path attached with the request will route it
to the appropriate service. This is quite better than the default loadbalancer as in case
of traffic different loadbalancer will be added for every service. The other approach is to
use Traefik, which is simpler to implement but doesn’t support complex projects.

E e l
o -
. i - ~| Poa |[ Poa || Poa |
et | (Exterral) -
' -l s - ‘ Pod | Pod | Poa l
— - - [ Pt | Froct |  Poa |

Figure 5: Nginx Ingress

3.4 Monitoring Tool

E|The DOKS provide many software for monitoring, Kubernetes dashboard is available
without any extra set up to be done. Grafana and Prometheus, both are open-source can
be set up in the cluster to analyze the pods and nodes activities as seen as the graphs.
The information can be pulled over http and data can be viewed in a timely manner for
the resources like CPU and Memory, schedulers, clusters, nodes, pods and different views
are selected. Grafana is accessed only by port forwarding and not available publicly. The
Prometheus will show the logs for CPU, or Memory. The alert can also be set on specified
mail.

Zhttps://hub.docker.com/editions/community/docker-ce-server-ubuntu
3https://kubernetes.io/docs/concepts/services-networking/ingress/
‘https://grafana.com/docs/grafana/latest/features/datasources/prometheus/
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4 Design Specification

To perform this research, oracle virtual box 6.1 is used for setting up the virtual machine
with Ubuntu 20.04 LTS. The virtual machine with 2 CPUs and 4GB RAM is created on
virtual box. Digital Ocean (DO) is used as cloud server and for containerisation, Docker
is used. Docker Hub is used for creating The two web applications appl and app2 are
deployed. Kubernetes cluster is created on DO with 2 nodes. The kubectl version v1.18.3
and doctl tools are installed in the local virtual machine. With doctl, DO controls can
be accessed. With kubectl, pods status and names, cluster information can be checked.
The below table will show the design specifications used for this research set up:

Table 2: System Configuration

Tool /Platform Specification
Oracle Virtual Box 6.1
Ubuntu 20.04 LTS
Docker 19.03.12
Kubernetes 1.18.3
Ngnix 30.0
Doctl 1.46.0-release
Grafana 6.7.3
Prometheus Operator 0.38.1
Code Language Used GO
Manifest Language YAML
Application Container Node.js

4.1 Proposed Design

After the cluster is set up on DO, kubectl and doctl is installed to manage the cluster
from local machine. For getting the access, one api token was generated in the control
panel that needs to be set while installing it.

Kubectl is used as a client for configuring the cluster from the local virtual machine

as a REST API command line tool. Kubectl search for config file in $HOME/.kube
directory. The kubernetes Master and Node is configured with the DO and the local
virtual machine. The important yaml used for intercommunication are:

1. secret.yaml: This file is created inside k8s directory. Kubernetes uses this to fetch
the images from the pods created.

2. deployment.yaml The deployment.yaml and service.yaml are created for both the
apps appl and app2.

3. service.yaml The name mentioned in the secret.yaml is used while deployment and
in service.yaml.

4. ingress.yaml and cloud-generic.yaml for creating a load balance service.

12



5. scheduler.yaml for implementing the FFMRA scheduler in GO language.

4.2 Proposed Architecture

The activity diagram depicts a sequential steps taken for the research. First the cloud
provider is set up, following with configuring the pod and next phase is scheduling and
determining the efficient and fair resource utilization. This depends on the CPU and
memory resources requests and limits assigned to the pods to be scheduled. The API
server functions as cluster gateway. All the cluster configuration and information are
accessed through API server. The kubectl act as a client and is then attach to API server

as sown in the figure.

Install Docker in
virtual machine

l Containerize the
app
| TestApp1 ‘

‘ Push the docker

‘ TestApp2 |

image to the
repository

_ v

—>

Create Kubernetes |
cluster with Master-
Worker node

Figure 6: Activity Diagram of the Architecture

5 Implementation

When a pod is scheduled, the containers must have sufficient resources to proper exe-
cution. If a large application is scheduled with the insufficient resources then there can be
out of resources problem and the node will stop functioning. There is also a possibility
for applications to use resources more than they asked for. This can be due to many

Using kubectl
the yami file
are submitted

.

Pods are created with
the requests and
limits mentioned

Scheduler

are sent to API server

Scheduler get
PodSpecs

pods to nodes and
the information is

to Kubelet and

information is sent to
Kernel

Pods that are created

.

(" Scheduler assigns )

Fair

\_updated APl Server )

(These specs are sent|

i

Resource limit

Policy broker get
information from API
Server
create and apply the

scheduler job for the
app

v

| Allocation of each
pod is calculated and
new resource limits
are updated with API
Server

replicas or the poor configuration that lead the application to perform unexpectedly.
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Kubernetes control resources with limits and requests mechanisms. The container
resources that are assured to get are defined as the requests. Kubernetes will schedule
the container on node only if it has sufficient resource. Limits are to assure that container
should not exceed certain value. The container can use resource upto the limits defined
and after that it is deprived. The relation between requests and limits is that request are
always greater than limit. If not, then there is an error and the container will stop. Pods
generally include single container, but there can be multiple containers. Every container
has its own request and limit, as every time pods are scheduled in a group, requests and
limits of each container are added to get an combined value. For handling the requests
and limits, quotas are set at namespace and container level.

DOKS is used to deploy and manage Kubernetes clusters avoiding the complexity of
administrating containerized applications. These clusters will be integrated with DO
block storage and Load balancers. The cluster created on DO with the CPU resource as
4vCPUs and memory resource as 8 GB as shown in the below figure:

g% k8s-1-18-3-do-0-lon1-1595187552910
°

LON1-1.18.3-do.0

Overview
4vCPUs 8 GB 160 GB
CPU Memory Disk

Figure 7: Kubernetes Cluster
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To check the health of Kubernetes component- controller, etcd and scheduler, following
command should be used: kubectl get cs and As shown in the figure all the components
are installed properly and are healthy to use.

STATUS MESSAGE ERROR
Healthy {"health":"true"}

ontroller-manager Healthy ok
cheduler Healthy ok

Figure 8: Kubernetes Component Status

The two TestAppl and TestApp2 web app are created in which appl.yaml and app2.yaml
are there where CPU and memory requests and limits are assigned. The CPU is described
in millicores and the memory in bytes. To containerize the app, “Dockerfile” is created.
Also, “Makefile” is created to automate the docker commands. As seen in the Figure 9,
the CPU and memory resources used for the experiment are:

Table 3: Resources

Appl CPU Memory
Requests 200m 400Mi
Limits 350m 650Mi
App2 CPU Memory
Requests 100m 300Mi
Limits 400m 300M1i

The aggregate of CPU and memory is less than that of cluster including the replica.
So, no issue will be there in resource management and proper scheduling is done.
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Figure 9: Pod Configuration

The class diagram below depicts the connections and flow of all the entities used in the
study. As shown in the figure, Digital Ocean is the cloud provider which will create the
cluster and ubuntu will interact with Kubernetes kubectl. The resources specifications
and limitations used in the experiment is already described above. The default scheduler
kube-scheduler is used where Node CPU capacity and Node Memory capacity is greater
than Total Requested CPU and Total Requested Memory respectively.

Policy Broker
DRF MNode Information
FFM «— node()

]
RA()
AllowedPod()

Requested CPU

Kubernetes Cluster RequestedResource()

Cloud Provider + record_resourceuse

AllocatedResource()
Kubelet
Kemel O3S

Kubectl

Digital Ocean

+ monitor

Reguested Memon

+ analyse API| Server

+ min_deploymenttime Modes
Pods

+ getUtilization

Services
Container Host Ubuntu T
+ask +VM_list | Scheduler |
+ start() | ram Kube-batch
+end() +Storage + TotalRequestedCPU=NodeCPUCapacity
+Network + TotalRequestedMemory<=NodeMemoryCapacity

Figure 10: Class Diagram

Each and every container that exist in the pod are configured to have unique port and
IP addresses (called as ClusterIP). Every node has its private and public IP addresses and
the ports assigned to the nodes are referred as NodePort, from where these pods can be
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accessed. As it can be seen in the output, the address 10.245.230.192 and 10.245.147.108
are the ClusterIPs assigned to appl and app2 respectively. With these address, the

applications are available internally at port 80. The traffic will be forwarded to container
Port to 3000 and 3001 on the selected pods.

TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
Eervice/appl ClusterIP 10.245.230.192 <none= BO/TCP

Eervice/app2 ClusterIP 10.245.147.108 <none= BO/TCP
kervice/kubernetes ClusterIP 18.245.0.1 <none= 443 /TCP

Figure 11: Class Diagram

The default scheduler in Kubernetes as described guarantees that nodes with sufficient
resources will only be placed for pods to deploy. For efficient resource utilization, DRF
and FFMRA scheduling algorithm that are established on the fairness principle. The
custom scheduler code is written in go language and also the default scheduler. The
experiment shows the full resource management with fairness in case of scheduling of
multiple pods and containers in the node. It equalizes the resources that are dominant
and non-dominant to provide fairness in multi-tenant environment. This is done by taking
total resource capacity, consumed resource and user’s dominant and non-dominant share
as an input. The allocations are done by mapping of jobld with the resource capacity.
If there is no node that fulfills all the described demands of the pod, then preemption
principle activated for the remaining pod. With this principle, preemption will try to
locate a node and remove the pods with lower priority. If the node is found, lower
priority are removed from node.

From Digital Ocean Kubernetes dashboard, the details of pods, nodes and resource util-
ization that are deployed on the cluster can be analyzed and for graphical representation,
Prometheus and Grafana are deployed on Kubernetes.

6 Evaluation

To illustrate the practical usage of FEFMRA scheduler and if the resource allocation can
be improved this experiment was performed. The two Node.js application containers
were deployed with their different pod configuration in yaml file on the nodes. As dis-
cussed above the aggregate of CPU and Memory requests should be less than that of the
Kubernetes cluster CPU and Memory respectively. The proper analysis is done when
compared to the default Kubernetes Scheduler. Grafana and Kubernetes dashboard is
used for graphical representational of usage of the resources. Prometheus is set up to get
the logs.

6.1 Using Default Kube-Scheduler

In this set up no extra implementation is done. Only the Nginx Ingress load balancer is
added and no change in the scheduler component. Therefore, pods are chosen randomly
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and Node.js application are deployed as shown in Figure 12, where every pod will be
started. Figure 10 below depicts that 25% of the Requests are allocated for CPU and
26% for the Memory when considered for one of the application.

NAME : STATUS RESTARTS
appl-78bd6éc6c9b-scxtv 1/: Running 5]

appl-78bdéc6cob-zkogf i Running 0
app2-565bd4b94f-n7279 i Running 0
app2-565bd4ba4f -wjBxx 1/: Running (¢]

Figure 12: Default Scheduler Deployment

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits

512m (25%) 202m (10%)
memory 832M1 (26%) 125M1 (4%)
ephemeral-storage @ (0%) 0 (0%)
hugepages-2Mi 0 (0%) 8 (0%)

Figure 13: Default Scheduler Resource Allocation

The CPU and Memory usage for the particular node as shown by the Grafana dash-
board is as:

10.106.0.4:9100

CPU Usage Load Average

Figure 14: Node Utilization

6.2 Using Fair Scheduler

The Kubernetes clusters favours various schedulers, default scheduler can be used along
with custom scheduler that can be used for special pods. The custom scheduler for this
research is implemented in Go language that will find a node for every new pod. With
Nginx Ingress load balancer and the scheduler the resource utilization can be improved.
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When compared with the default scheduler, the CPU Requests allocation increased to
60% and the Memory increased to 26 %. However, with FFMRA resource limits are also
changed. The CPU limits is now 40% and Memory limits is increased to 19%.

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits

1262m (60%) 802m (40%)
memory 829Mi (26%) 618Mi (19%)
ephemeral-storage © (0%) e (0%)
hugepages-1Gi 0 (0%) 0 (0%)
hugepages-2Mi 0 (0%) 0 (0%)
Events: <none:=

Figure 15: FFMRA Scheduler Resource Allocation

The above figure shows the allocation for one of the app. Using Grafana, both "appl”
and ”app2” can be analyzed by the figure, where CPU usage for app2 is around 60% and
that of appl is 28%.

CPU Usage

Figure 16: CPU Usage for the Application

The Memory Usage for the Node.js applications "appl” and "app2” is shown as:
The Kubernetes dashboard supported by the DO also shows that ffmra-scheduler is

running along with "appl” and "app2” and their replicas as described in the pod config-
uration.
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ga Kubernetes / Compute Resources / Namespace (Workloads) & =3

app1 - deployment

O

87fb0d919ecOeasf6543124e16c42a5/kubernetes-compute-

Figure 17: Memory Usage for the Application

Memory Usage

Pods

Name

ffmra-scheduler-5944764
Q tdzgz

&  app2-565bdab94f-wjsxx

&  app2-565bd4b94f-n7279

&  appl1-78bdéecheIb-scxtv

&  app1-78bd6c6cob-zkoaf

Namespace Labels

Bet- default

default

default

default

default

Figure 18

app: ffmra-scheduler
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6.3 Discussion

As described in the experiment of resource allocation using default and custom scheduler,
there is an increment of utilization for CPU resources request as well as for limits. But,
in case of Memory, there is no change for resource request but the limits are changed.
Kubernetes’s Kube-batch has drf as plugin and is used for providing the fairness among
the pods. That means it is already proven that drf practically provides fairness. But
the drawback of DRF as described in the literature review is overcome by FFMRA. So
theoretically, it is proven that FFMRA is better than drf and in future can be replaced
in the Kube-batch implementation as it provides full utilization of resources. However,
when implemented practically on two Node.js application container and deployed on
Kubernetes environment, the resource utilization was not 100% as expected.

When using the default scheduler, the pods are deployed randomly by this Kubernetes
component. As shown in Figure 9, "appl”, "app2”, and their replica set are deployed
and their status is changed from ”Pending” to ”Running”. The only criteria that is
fulfilled by the pods to be scheduled are that the aggregate of the resource requests of
CPU and Memory should be less than that of the Kubernetes cluster. The limits defined
in the YAML file is the amount after which the pod will stop running. The difference
between the Figure 10 and Figure 12 of resource allocation is that, with ffmra-scheduler
(this name is defined in the fimra.go file) CPU Requests utilization is incremented by
35% while the Memory remains the same. The resource limits for CPU is increased by
30% and for Memory by 15%. The Figure 15 prove that ffmra-scheduler is working as
expected. Figure 13 and Figure 14 provides information for the comparison of the CPU
and the Memory usage of the appl and app2. The light green colour is for the app1l usage
and the yellow is for app2. Figure 11 determines the whole activity of the Kubernetes
node. Overall, FFMRA is efficient than Kube-Scheduler.

7 Conclusion and Future Work

The kube-scheduler starts automatically after all the other components are initiated. But,
for implementing the custom scheduler, there require a design change. The above study
do satisfy the objective of this research. And, it has been proved that resource allocation
can be improved by using custom scheduler: ffmra-scheduler in Kubernetes. Although,
there was no full utilization of resources but there is an improvement in the allocation
policy and thus the efficiency. Through this research it has been highlighted that FFMRA
scheduling algorithm runs effieciently with Nginx Inress loadbalancer. Kubernetes default
scheduler is implemented using Go language and also, the ffmra-scheduler. The results
shows that there is some limitation in case of Memory resource type, but overall the
efficiency is improved.

Generally, the containers with some dependencies are meant to be allocated on same
node, so that latency is reduced. Working with this pattern require further research where
dependant containers will run on same node. The algorithm can be implemented in case
of multi-cluster environment and can be analyzed. Also, it can added in kube-batch
plugin where already drf is running successfully.
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