
Honeypots to detect malware and mitigate
network traffic attacks using a Game Theory

based approach

MSc Internship

Cyber Security

Tanmay Nitin Shinde
Student ID: X18175830

School of Computing

National College of Ireland

Supervisor: Michael Pantridge

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Tanmay Nitin Shinde

Student ID: X18175830

Programme: Cyber-Security

Year: 2019

Module: MSc Internship

Supervisor: Michael Pantridge

Submission Due Date: 17/08/2020

Project Title: Honeypots to detect malware and mitigate network traffic at-
tacks using a Game Theorybased approach

Word Count: 7339

Page Count: 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA
the National College of Ireland’s Institutional Repository for consultation.

Signature: Tanmay Nitin Shinde

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Honeypots to detect malware and mitigate network
traffic attacks using a Game Theory based approach

Tanmay Nitin Shinde
X18175830

Abstract

The number of cyber-attacks taking place is increasing day by day in our society.
Malware attacks are one such type of attack which infects the system and can cause
some unwanted or unpredictable behaviour which may be harmful to its users.
DDOS (Denial of Service) attacks are also very common, and can cause a lot of
problems. To prevent such attacks and to maintain the integrity of data, some
guidelines or steps need to be followed. Implementing a Honeypot is one of such
network intrusion detection and prevention technique. There have been numerous
different strategies already implemented which identify malware with different ways
such as by analysing the system resources used or by simply using YARA rules.
In our research we have implemented a honeypot which can log all the connection
data received and have also integrated LaikaBoss framework which is a file centric
object scanning framework which detects malware by signature detection using
static analysis inside our honeypot. We have also implemented a game theory-
based technique which can mitigate network attacks such as DOS and DDOS in
our honeypot.

1 Introduction

In today’s environment, we hear a lot about malware attacks and its effects on an organ-
ization hit with a malware attack. Malware is that type of attack which is very dynamic
and can reinvent itself as time passes as new vulnerabilities are discovered due to the
ever-evolving computer field. There is malware, which is intended to do different tasks,
for example different types of malware are ransomware, trojans, worms, etc. All these
malwares are designed in a specific way to gain some information about the user or to
cause some harm to users. To detect and prevent malware from causing harm there
are antivirus programs but if the malware/virus is new and its signatures are not found
in the antivirus database then it isn’t registered as a virus. Therefore, to help protect
organizations and to safeguard their data there is a technique which uses honeypot. Hon-
eypots are basically a dummy copy of a real system or a server which contains valuable
information. This is used to attract hackers and to monitor their attack strategies so that
the real system could be prevented from such attacks. Honeypots are generally used in
big organizations to increase their defence against these hackers as they find newer and
newer ways to attack the system.

Honeypots can be used for malware detection by monitoring the system resources used
by a program and by keeping logs of the file system changes done by the program to the

1

system. If a honeypot detects that a program can change the file system functions and
could perform some malicious activity, it informs the real system so the proper security
action could be taken on the real system to improve the system against those attacks.
Honeypots could be used to prevent attacks from happening on the real system by warning
the real system when an attack takes place on the honeypot. Hence, honeypot works as
a type of security measure to safeguard the real system.

Our research uses honeypot basically as an intrusion detection as well as a type of
intrusion prevention system. Our implemented honeypot opens up some fake services
on specified ports to attract attackers and logs their activity, along with this we have
integrated LaikaBoss framework inside our honeypot which is the main part of our hon-
eypot which can detect malware and warns the system automatically whenever a user
downloads a malicious file. We have also implemented Zeek IDS inside our honeypot
which would add extra layer of preventive measure. To prevent network attacks such as
DOS and DDOS we have programmed a game theory script which logs all the activity
and uses iptables and implements it whenever an attack is detected.

The paper comprises of different sections, in section 2, critical analysis of the related
work, literature review is done, section 3 comprises of the research methodology we
approached while doing our research, section 4 comprises of the design specifications of
our system, section 5 consists of the implementation of the system, section 6 consists
of the evaluation and testing conducted on our system along with the discussion of the
testing and section 8 consists of the conclusion and future scope of our research.

2 Related Work

2.1 Honeypots

The growing quantity of cyber-attacks taking place is increasing day by day in our society.
To prevent such attacks and to maintain the integrity of data, some guidelines or steps
need to be followed. Implementing a Honeypot is one of such prevention techniques.
Honeypots are basically a dummy copy of a real system or a server which contains valuable
information. This is used to attract hackers and to monitor their attack strategies so that
the real system could be prevented from such attacks. Honeypots are generally used in
big organizations to increase their defence against these hackers as they find newer and
newer ways to attack the system.

There have been numerous researches on honeypots and how they could be helpful
in preventing malware as well as network attacks. [1] Liang Huang et al. proposed an
approach of DDOS defending strategy using game theory, where they considered the op-
timal defending strategy by considering the attacker and the defender as two players. The
attacking and defence affects are calculated and stored in a GMDCS model. The new
defending strategies are formed based on the existing defensive strategies and then the
Nash equilibrium is calculated to select the optimal defending strategy. To validate the
proposal, they conducted the experiment on a network simulator SSFNet. [2] Whereas
Hrishikesh Arun Deshpande proposed the use of virtualized honeypots to prevent distrib-
uted denial of service attacks. In their research, the author proposes of having honeypot
to mimic a real machine on a single server, have multiple virtual honeypots on a single
server. This will reduce the cost as the resources are shared on virtual machines as well
as decrease the maintenance cost. He proposes that instead having one honeypot with
all the servers, have multiple honeypots with different running servers such as file server,

2

web server, etc. This would be much beneficial than having all the running services on
one server but is more resource demanding and harder to setup. In our research we would
be using a honeypot on an internal network to log the connection data and integrate it
with a malware detection framework to detect malware and any malicious files.

Figure 1: Hrishikesh’s HoneyMesh Architecture

Roman Jasek et al. [3] proposed that different types of honeypots such as high-level
honeypots, low level honeypots and production honeypots which can be used to detect
APTs (Advanced Persistent Threats). These different level honeypots all have their
advantages and disadvantages. The research gives a brief description of the process but
is hard to implement practically. The basic concept of detection of the APTs is similar
to our research. We have also implemented a low interaction honeypot which starts fake
services on specified ports to attract attacker.

As per the testing performed by Roman Jasek, over a period, the incidents which are
marked in blue are captured by traditional antivirus and anti-malware software, while
the ones marked in green are the incidents which are detected by just the honeypots.
Also, the incidents marked in red are the incidents which are captured by both the
conventional antivirus software s and the honeypots. The research concluded that there
is type of malware which could bypass the common solutions i.e. antivirus and can only
be captured by honeypots. Such type of malware is the most dangerous.

2.2 Intrusion Detection Systems

Intrusion detection system is a device or an application which monitors a system or a
network for malicious activity. If a malicious activity is detected the intrusion detection
system informs the administrator of the same. Honeypots are used as intrusion detection

3

Figure 2: Incidents captured overtime

systems. [4] David Wagner et al. proposed a host-based intrusion detection system which
works by static analysis of application behaviour. Static analysis is used to derive a
model of application behaviour. This model is used to detect atypical affects such as
buffer overflow caused by the attacking application. This research basically focusses on
the working of application as they are supposed to be performed with benign intent. The
disadvantage of this approach is that it takes a lot of time and analysis to form a base
model used for the detection. [5] The research conducted by Simo Kemppainen et al. used
a honeypot Kippo to detect malware and attack behaviour of malware in Finland. The
research focused on medium level honeypots and its functionality. The gathered research
says that the attack consisted of dictionary attack login attempts, attacker location and
actions after successful login. The data gathered is helpful for us to use similar strategies
to detect and identify malware and its attacks.

The research conducted by [6] Abdullahi et al. proposes a method to properly de-
tect crawler attacks and generally all types of intrusion attacks using honey CAPTCHA
which is a framework. The proposed system can be considered as a replacement to the
CAPTCHA based IDS which has many issues regarding detection of various forms of
intrusion. The proposed research solves those issues. HoneyCaptcha was designed as a
means of tricking intruders into thinking it was a web-based application.

2.3 Malware Analysis

Malware analysis is one of the important sections in cyber-security and it has numerous
research available for it. Also, there has been an increasing number of major malware
and ransomware attacks. Malware is a malicious software which is designed to harm the
system in some way. There are different types of malware which affects the performance
of the system or injects into the file system. Malware can be detected using analysing
the system resources such as the CPU usage, Memory allocation, processes running, etc.
Malware can also be detected by analysing the file system for unwanted changes to the files
in the system. [7] Yaser Alosefer et al. proposed a method for malware analysis by roaming
client honeypots. The roaming honeypots would visit a malicious website or a system
and note its effect on the system. A state machine is used to represent the activities done
by the malicious web pages on the machine. The states are then passed to a clustering
algorithm to summarize the effects of different malicious sites so that solutions could be
found to safeguard the real system against such attacks. In our research, we have used [8]

4

LaikaBoss framework which uses Yara rules and signatures to identify malicious files. We
have integrated LaikaBoss in our honeypot such that whenever a user downloads any
file through the network, LaikaBoss framework automatically scans the file for malicious
signatures. [9] Miros law Skrzewski et al. have researched and presented the effects of
malware from a long-time running honeypot as well as its working and how it spread in
the network. The research talks about the importance of selection of proper honeypots,
different malware distribution models, malware activity analysis as well as host activity
analysis they recorded in a certain amount of time. This research helped us model our
honeypot so that it performs the intended tasks and detects malware and keeps its logs
safely.

There have been many ransomwares attacks these past years. [10] Chris Moore pro-
poses a method to implement a honeypot to detect ransomware using the honeypot as
an intrusion detection system. The research proposes to detect ransomware attack by
manipulating Windows Security logs using the services Microsoft File Server Resource
Manager feature and EventSentry. While the research done by [7] Dhruvi Vadaviya et
al. proposes a simpler technique for malware detection as well as prevention. The re-
search conducted uses a threshold value to detect malicious date on the nodes created on
the server. The research combines honeypots, intrusion detection systems and malware
analysis in Windows platform. We would not be using the threshold value method in
our research rather we would be using a combination of different IDS systems like Zeus
integrated with the [8] LaikaBoss framework in our honeypot which would be deployed
on the internal network.

There are some types of malware which can spread autonomously. The research
conducted by [11] Jianwei Zhuge et al. proposes an integrated toolkit Honeybow which
is able to collect autonomous spreading malware in an autonomous manner. Honeybow
uses a high interaction honeypot. High interaction honeypots have their advantages and
disadvantages. High interaction honeypots have more risk and if exploited the attacker
could gain complete access to the system and could perform malicious activities. In our
research we would be using a low interaction honeypot which does not allow the attacker
to have much interaction with the honeypot as well as the system, but it deceives them
into thinking that they are connecting to a real system.

2.4 Game Theory

Game theory is the study of mathematical models which are used for decision making
for complex decision-making problems. In cyber-security field it can be used for making
proper decisions when a malicious activity occurs in a system. In game theory, the
attacker and defender are considered two players and each player makes a move to counter
the opponents move. When the counter move is successful, we could say that the game
theory had a positive result. Game theory would be used to detect and mitigate network
attacks and anomalies such as DDOS, sniffing, etc. [12] Mohammad Hossein Manshaei
et al. described in their research the different advantages, disadvantages, and future
direction of game theory. Also, the research described future direction of using game
theory for cyber security purposes. In our research we would be using game theory to
prevent network attacks such as DDOS from happening by using a game theory and an
IPtables script which is activated when an attack is detected. [13] J. Markos proposed a
system to detect low and high rate DDOS attacks on SDN by analysing the network traffic
and by using game theory. Game theory is a modelling technique where the attacker is

5

considered as one player and the defence is considered as another player. Each player
acts as per their own strategy. The result of a game theory-based system must be the
best possible outcome. In the research conducted by J. Marcos, [13] they propose an
approach to mitigate low and high rate DDOS attacks using game theory.

In the research conducted by [14] Sajjan Shiva et al. propose a game theory inspired
defence architecture which they called GIDA. They considered the interaction between
the attack and defence mechanism as a game played between two players and the actions
of one player directly affect the actions of the second player. The research also described
a learning algorithm for the game theory to adapt and make it more reliable. In our
research we would be taking a simpler approach in game theory and try to apply it to
prevent network traffic attacks. The research conducted by [12] Behzad Zare Moayedi et
al. proposed a game theoretical approach and use Markov chains to model the system
and compute the transition rates between the states based on the skill and preference
distributions of hacker classes. The Markov chain then can be used to get the desired
safety measures. Using this research, we would get a better understanding of how game
theory works and how we should apply it to our own research for maximum result.

2.5 Network Attacks

There have been a lot of network-based attacks on system nowadays. These attacks
include but are not limited to Distributed Denial of Service attacks, Botnets, cookie
stealing, man in the middle attack and so on. To eliminate some types of these attacks
there have been many research proposals. [15] Sherif M. Khattab et al. have proposed a
roaming honeypot scheme to mitigate service level distributed denial of service attacks.
The honeypots drop connection to an attack machine when it detects unusual traffic and
stops acting as a honeypot and acts as an active server. We would be considering a
similar approach where we scan the network traffic for some unusual activities and drop
traffic if necessary.

The Internet is filled with threats to online security. Many of these threats are basic-
ally productive things turned evil. A botnet is an example of a good thing turned evil.
Botnets are a bunch of compromised systems in a network. They are controlled by a
central bot. These botnets could perform malicious activities like DDOS on a system,
sending spam, etc. The basic working of a botnet is that it connects the user’s system
to the network with many bots which could then perform all types of network malicious
activities. [16] Rajab Challoo et al. proposed in their research a solution to detect bot-
nets using Honeypots and P2P botnets. They propose a method to detect the infected
honeypot by using a peer to peer structured botnet and using that infected honeypot to
detect the original botnets used by the attacker.

DDOS is one of the main attacks conducted frequently. [17] Xupeng Luo et al. in
their research they proposed a technique to mitigate DDOS on honeypots. They used a
combination of SDN (Software defined networking) and MTD (Moving target defence)
architecture to increase uncertainty because of ever-changing attack surface. In the ex-
periment they conducted they were able to prove that SDN based honeypots and MTD
can mitigate DDOS attacks. In our research, we would be making the use of IPtables
using a game theory-based approach to mitigate DOS and DDOS attacks. [18] Dr. R.
Venkatesan et al. conducted a research and proposed a system with virtual honeypot to
mitigate DDOS attacks. They also conducted an experiment where they compared and
analysed the working of virtual honeypots as compared to physical honeypot systems.

6

The table below shows the percentage of different types of DDOS attacks. This research
is useful for analysing the attacks and creating a proper defence mechanism.

Figure 3: Percentage of DDOS attacks by count and traffic

3 Research Methodology

The research has been conducted after referencing papers, journals, and articles from
reputed websites like IEEE, ACM and google scholar.

The research conducted by [13] J. Marcos shows a way to mitigate high level and
low-level DOS attacks using game theory. Nash Equilibrium is calculated based on the
attack, defence values and the best possible move is calculated. The best move could
be whether to block the IP completely, drop packets, or drop the connection completely.
We would be using a similar approach and integrate it with a honeypot so that we could
add another layer of protection to the real system. We also have another shell script
which uses a connection monitoring approach to list the number of connections and if a
threshold is reached a particular action is performed to mitigate DDOS attacks. As per
the calculations illustrated by J. Marcos, 2017, Below is the equation formed.

Figure 4: Game Theory Equation

In the equation above, Patk is the payoff of the attack vector, Pdef is the payoff of
the defence vector, Watk and Wdef are the weight of attack and defence respectively. BC

7

is the bandwidth consumed and AC is the attack cost calculated. After calculating the
payoff of attack and defence, the best possible move is calculated and performed.

We also have a separate script which contains iptables rules which would be deployed
whenever the user wants it to be deployed on the system. [19] This script will not only
mitigate attacks as well as prevent any future attacks on the system. These rules are
discussed in detail in the following sections. In our research, we have multiple virtual
machines which would have different roles such as attacker and the victim. The honeypot
will be deployed in our internal network which is inside our firewall.

For Malware detection, we would be using LaikaBoss Framework to scan and detect
malware whenever the user downloads any malicious file. [8] The Lockheed Martin Com-
puter Incident Response Team has developed and deployed the LaikaBoss framework for
many different organizations. The advantage of LaikaBoss is that it is extremely scalable
and can be used for big organizations. We decided to use LaikaBoss framework because
there was not much research done on LaikaBoss and being such a powerful tool, it could
help organizations protect themselves from different types of attacks. LaikaBoss frame-
work is largely dependant on the YARA rules it has integrated inside of it. YARA rules
are the de facto standard signature language to detect and identify malware. They are
basically user crafted rules to detect malware based on their functionality or some string.
The way Yara works is that it decomposes the file and searches for a particular string
or conditions which are specified in the rule and if the condition is satisfied the file is
flagged.

YARA is basically a swiss knife to detect and classify malware samples. It uses a set
of custom rules which are written by the administrator to detect specific type of malware
based on their functionality or author or even its signature. The following is a simple
example YARA Rule we created for testing purpose:

rule Example_Test

{

strings:

$text_string = "Tanmay"

condition:

$text_string

}

The above Yara rule is the simplest form of Yara rule where a string is detected. In
the example above, a text string is given, and the condition is where the logic of the rule
resides. Here the condition is the text string. Hence, when a file containing the string
“Tanmay” would be scanned the above rule would be activated and the file would be
flagged as malicious.

[20] We would be integrating LaikaBoss along with another framework called Zeek.
Zeek is a network analysis tool which sits on the network and logs entire traffic activity
and informs the admin if something malicious happens. LaikaBoss is a static analysis
tool, to use it for dynamic analysis we have implemented a shell script which scans the
file whenever that file is downloaded by the user.

There are different types of honeypots categorized by the level of interaction such as
high interaction honeypots, low interaction honeypots and medium interaction honeypots.
High interaction honeypots emulate a full operating system or have a real installation of
an operating system. An attacker has a lot of freedom on a high interaction honeypot.
A low interaction honeypot has limited access for the user. Low interaction honeypots

8

emulate just the network services rather than a full operating system. In our project
we have implemented a low interaction honeypot which starts some fake services on
ports specified by the admin to deceive the attacker. Medium interaction honeypots
are a combination of low interaction and high interaction honeypots. These have some
features of high interaction honeypot and low interaction honeypots combined.

The research conducted by Miros law Skrzewski [9] shows the count of the connections
on particular ports on the system overtime. Observing this data, we concluded the most
common port to be exploited and connected. Ports 445, 139, 135, 23 and 1433 were
among the most connected to. Analysing this data, we can open these ports in our
honeypot to attract attacker. The research conducted by Hrishikesh Arun Deshpande,

Figure 5: Connection count on different ports

shows a technique to prevent DDOS attack from happening by using multiple virtualized
honeypots called a honeyfarm and routing traffic through this honeyfarm first before
reaching the main system. This approach is very time consuming and is also quite
extensive as there must be multiple honeypots to be setup which might take a while and
also be quite expensive. In their research, Hrishikesh has explained different types of
DDOS attacks along with their effect. Rather than having multiple honeypots running
at the same time, our system uses a connection monitoring approach to list the number
of connections and if a threshold is reached different actions such as blacklisting the IP or
dropping the packets or sending RST flags could be performed. The table below shows
different types of DDOS attacks.

9

Table 1: Different types of DDOS attack.

Sr. No. Attack Effect
1. Smurf Attack The server is flooded with

ICMP packets causing a
DDOS attack.

2. TCP/Syn Flood Repeated SYN packets are
sent to every port on the
server thereby flooding the
server.

3. Ping of Death Malformed or oversized
packets are sent on the
target server intending to
crash, destabilize or freeze
the system.

4. Ping Flood In this type of attack,
the attacker sends multiple
ping requests to the server,
thereby causing a ddos.

5. UDP Flood Attack Forged UDP packets are
sent to a port on the tar-
get server which responds
to destination unreachable
ICMP response. When
multiple UDP packets are
sent, flooding occurs.

6. Teardrop In this type of attack,
jumbled overlapping pack-
ets are sent to the target
server thereby, crashing it.

7. Land Attack This is a type of at-
tack where packets with
identical source and destin-
ation are sent to confuse
the target server.

8. Nuke Attack This sends corrupt and
fragmented ICMP packets
thereby crashing the target
server’s operating system.

In our research, we would be using Virtual Machines to test and evaluate our system.
We would be using Ubuntu 18.04 LTS as our victim machine which would have our hon-
eypot deployed, and the attacker machine would be Kali which performs DDOS attacks
and hosts a sample malware on its Apache server to be downloaded by the victim. The
system would be evaluated by performing a DDOS attack on the system by the attack-
ing machine and by downloading a few malware samples to test its detection capability.
Below is a use case diagram which shows the functionality of the system and different

10

actors being part of the system.

Figure 6: Use Case Diagram of the Proposed System

As we can see in the use case diagram above, there are three actors, the attacker, the
admin, and the unsuspecting user. The attacker performs a DDOS attack on the system.
Our honeypot uses a custom Iptables and Game theory script to detect and mitigate an
ongoing attack and runs another script to prevent such DDOS attacks from happening
in the future. Also, our honeypot logs all the connection logs for the admin to analyse
later. We have also integrated Zeek IDS into our honeypot which has its own logs which
would be monitored by the admin as well. When the unsuspecting user downloads a file
that file is scanned by LaikaBoss and checked whether the file is malicious or not. These
logs could also be further analysed by the admin.

4 Design Specification

The proposed system consists of two parts with different functions. The first part is the
DDOS attack detection, mitigation, and prevention while the second part is the malware
detection. The first part is performed when there is an ongoing attack on the system. It
uses our game theory script and the IPtables script.

In our first part, game theory script successfully detects an attack and uses Nash
Equilibrium to calculate the best possible move to be taken by the system. For DDOS
attacks, we also have another shell script which uses a connection monitoring approach
to list the number of connections and if a threshold is reached a particular action is
performed.

11

The Game theory works with two layers. Layer 1 detects the attack by monitoring the
connection to the system and having a connection threshold. These connection details
such as the IP address, destination IP, source and destination ports, protocol type and
time are logged and saved into a database server for further analysis. Layer 2 is responsible
for analysing the attack and takes a decision using a game theoretical approach. The best
possible outcome is calculated, and a decision is made whether to block the ip address or
drop the connection. This successfully mitigates an ongoing DOS attack on the system.

[21] We also have a separate IP tables script with a list of fully customizable IPtable
rules which are automatically deployed when our honeypot is deployed and an ongoing
attack is mitigated. These IPtable commands will prevent from future attacks from
happening. Below are some of the important Iptable rules we have used in our script and
their brief explanation.

Table 2: IPtable Rules and their Description

$IPT −A FORWARD − i $WAN −m s t a t e −−
s t a t e NEW, INVALID −j DROP

This does not allow new or un-
known network to reach our in-
ternal network.

$IPT −A INPUT − i l o −j ACCEPT
$IPT −A INPUT − i $LAN −j ACCEPT

This accepts connections from
the local machine and local net-
work

$IPT −N F i r e w a l l
$IPT −A F i r e w a l l −m l i m i t −− l i m i t 10/

minute −j LOG −−log−p r e f i x ” F i r e w a l l
: ”

$IPT −A F i r e w a l l −j DROP

This is going to handle the pack-
ets we don’t want to respond to
by limiting the amount of logs to
10/min

$IPT −N Rejec twa l l
$IPT −A Rejec twa l l −m l i m i t −− l i m i t 10/

minute −j LOG −−log−p r e f i x ”
Re j e c twa l l : ”

$IPT −A Rejec twa l l −j REJECT

This logs the above packets and
informs the sender that the pack-
ets were rejected.

$IPT −A Rejec twa l l −j REJECT −−r e j e c t −
with icmp−host−unreachable

This could be used to simulate
that the host cannot be reached.

$IPT −N Badf lags
$IPT −A Badf lags −m l i m i t −− l i m i t 10/

minute −j LOG −−log−p r e f i x ” Badf lags
: ”

$IPT −A Badf lags −j DROP

This is going to handle the ille-
gitimate packets we do not want
to respond to by limiting the
amount of logs to 10/min

12

$IPT −A INPUT −p tcp −−tcp−f l a g s ACK,
FIN FIN −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s ACK,
PSH PSH −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s ACK,
URG URG −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s FIN ,
RST FIN ,RST −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s SYN,
FIN SYN, FIN −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s SYN,
RST SYN,RST −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s ALL
ALL −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s ALL
NONE −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s ALL
FIN ,PSH,URG −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s ALL
SYN, FIN ,PSH,URG −j Badf lags

$IPT −A INPUT −p tcp −−tcp−f l a g s ALL
SYN,RST,ACK, FIN ,URG −j Badf lags

This is a bad flags chain which is
going to handle all the TCP bad
flags and log and drop them.

$IPT −A INPUT −p icmp −−icmp−type 8 −m
l i m i t −− l i m i t 1/ second −j ACCEPT

$IPT −A INPUT −p icmp −j F i r e w a l l

This is to avoid Ping flood.

$IPT −A INPUT − i $WAN −p tcp −−dport 94
−j ACCEPT

This is to accept SSH connections

$IPT −A INPUT −m s t a t e −−s t a t e RELATED,
ESTABLISHED −j ACCEPT

This accepts related and estab-
lished connections

$IPT −A INPUT −j Re j e c twa l l Finally, this rule is applied to
anything that was not allowed.

LaikaBoss Framework is used in our system to detect malware. LaikaBoss has some
configuration files which it uses to identify malicious files and these configuration files
can be customized as needed by the admin. Some of these files are disposition files,
Yara rules files and the dispatch files. Disposition.yara file consists of all the disposition
settings which is located at /etc/laikaboss/modules/dispositioner/. The outcome of a
scan is defined by a disposition. If something malicious is found, disposition can be a
determining factor and can be used to identify the malware, its priority level, etc.

Yara rules files are the files where the basic Yara rules are stored and are the main
part of the LaikaBoss framework. The dispatch.yara file controls the dispatch strings
which is located in /etc/laikaboss. It is considered the main part of Laikaboss, or the
“brain” of the framework. The dispatch file contains the Yara rules to help define and
determine different file types and modules to execute against those file types. Some of
the examples of file or object types defined by default, are email, Microsoft Office 2003
and 2007+, PDF, RTF, ZIP, etc.

We chose LaikaBoss Framework for malware detection as LaikaBoss can find malware
hidden inside a particular file type. For example, to identify a javascript js file inside a

13

zip, having a dispatch rule as stated below would detect the js file.

rule js_in_zip

{

meta:

flags = "js_in_zip"

condition:

ext_sourceModule contains "EXPLODE_ZIP" and type_is_js

}

Such type of malware delivery is the most common technique used by the attackers, and
LaikaBoss framework could successfully prevent such attacks from happening. When a
zip with js inside it is passed through LaikaBoss with the above dispatch rule, will give
the following result.

"flags": [

"dispatch::js_in_zip"

],

...

"source": "CLI",

"filename": "e_zip_47A8A1783B27BAP79A499B.js",

"fileType": ["js"]

The scan output shows that there is a new flag hit of ”dispatch::js in zip” and the filename
of e zip 47A8A1783B27BAP79A499B.js The filename is starting with ”e zip ” because
the file originated from the EXPLODE ZIP module. Also, a flag can be set stating
that there was a JavaScript file in a zip as EXPLODE ZIP was the source module that
produced the js file.

LaikaBoss framework can also be used to capture particular strings or to identify
malicious emails by writing separate Yara Rules. LaikaBoss is as strong as the Yara rules
integrated with it. LaikaBoss can also be used to identify malicious emails. For example,
to identify a specific malicious email below rule, need to be implemented in Yara.

rule malicious_tester

{

strings:

$xmailer_001 = "X-Mailer: Tanmay 1.1"

$helo_001 = "helo=malicious"

condition:

any of ($xmailer_*) and any of ($helo_*)

}

The above rule is a simple Yara rule which will check for the X-Mailer and the helo strings.
After writing this rule it needs to be updated in the dispatch logic for the type is email
rule.

rule type_is_email

{

meta:

scan_modules = "META_EMAIL EXPLODE_EMAIL

14

SCAN_YARA(rule=/etc/laikaboss/modules/scan-yara/email_rules.yara)"

file_type = "eml"

strings:

$from = "From "

$received = "\x0aReceived:"

$return = "\x0aReturn-Path:"

condition:

(not ext_sourceModule contains "EXPLODE_EMAIL") and

(($from at 0) or

($received in (0 .. 2048)) or

($return in (0 .. 2048)))

}

After updating the dispatch logic and creating the new Yara rule, when passing the
malicious email, we observe that the email is flagged as malicious with the Yara rule
malicious tester with a flag value.

{

"scan_result": [

{

"order": 0,

"rootUID": "b345b7-8922-4eqd-1b56-28bceaf32c63431",

"flags": [

"yr: malicious_tester "

],

...

Along with LaikaBoss, we have also integrated [22] Zeek IDS into our honeypot and
whenever our honeypot is deployed, Zeek server starts monitoring and logging all the
data. This data could later be used for analysis by the system admin. Zeek logs are
automatically saved /usr/local/zeek/logs.

5 Implementation

The implementation was carried out into three phases. The first phase was to imple-
ment a basic honeypot which could start fake services on the specified ports and log
the connection details. The second phase was to implement the scripts needed for mal-
ware detection. This was done by integrating LaikaBoss using shell scripts to make the
whole detection process dynamic. The third phase was to implement a game theory and
IPtables script which detects a DDOS attack happening on the system and performs a
particular action based on the best possible outcome.

15

Technologies Used:

Table 3: Technologies Used.

Technology Used Version Version
Python 3.8 Honeypot
MySQL 8.0 Database to store the con-

nection logs
Shell scripts - To integrate LaikaBoss,

Zeek and Iptables Rules in-
side our honeypot.

File Structure:

The project consists of 4 python files, 3 shell scripts and a database.
The python files are:
main.py : which starts the honeypot when the user passes the IP address of the

system and ports to start the fake services as arguments.
final.py, gt.py, capture.py : these files are used for detecting a DDOS attack and

mitigating it using game theory.
script01.sh : This is the program which integrates LaikaBoss and Zeek inside our

honeypot and makes the detection process dynamic.
ddos.sh : This is shell script which detects and mitigates DDOS attack by monitoring

the connections and having a connection threshold.
Iptables.sh : This is the script with all the customizable IPtable rules as mentioned

above which prevents any future attacks from happening on the system.
The implementation has been taken place on a Ubuntu 18.04 LTS virtual machine. All

the required dependencies had to be installed prior to the implementation. The detailed
implementation and steps to be followed are explained in the Configuration manual.

Below is the figure of different modules of the system and how all these modules are
interlinked to the system. Also, the files used by each module are represented in the
figure.

The final output of the system is threefold; first when the honeypot is deployed
and when an attacker tries connecting to the system, the connection logs are saved and
displayed on the honeypot’s output screen, second when a DDOS attack is detected,
a warning message pops up that the DDOS attack has been detected along with the
attacker IP address and the port number and third is when a user downloads a file from
the internet, that file is automatically scanned by LaikaBoss and LaikaBoss output is
displayed on the honeypots output terminal. Also, when the honeypot is deployed, Zeek
server starts monitoring and a message is displayed that the Zeek server has started and
is monitoring the activity along with the location of the Zeek logs.

16

Figure 7: Different Modules of the Proposed System

17

6 Evaluation

Critical analysis of the functionalities and evaluation was performed on the proposed
system. To evaluate the proposed system different Virtual machines were used to conduct
different tests. The honeypot was deployed on Ubuntu 18.04 LTS Virtual Machine while
the attacks were simulated from two different Kali Virtual machines. All the machines
are connected through a virtual network so that they can interact with each other and
are completely isolated form the production system so that the production system is
not impacted from the experiments conducted. All the virtual machines are running
over VMWare 12 on Windows 10 64 bit. DDOS attacks were simulated using the Kali
machines to test the detection and mitigation functionality of the proposed system as
well as malware samples were hosted to test the malware detection functionality of the
system.

6.1 Detection and Mitigation of DDOS Attacks

DDOS attack has been simulated using a different virtual machine. Kali VM was used
to simulate a DDOS attack on our system using hping tool. Hping is a packet generator
tool which generates a lot of packets and is mostly used for testing purposes, which can
be used for simulating DDOS attack. After initiating the attack, our system detected our
attack within 10 seconds and our game theory script performed the best suitable action,
in our case it was to block the ip address. The IP address was blocked as it was a high
rate attack. After simulating a low rate attack, our system successfully drops the packets
and sends the RST flag. Below is the Warning message the system displays when an
attack is detected and when the IP address is blacklisted.

Figure 8: Warning Message

Figure 9: Mitigation

18

6.2 Prevention of DDOS Attacks

When the honeypot script is deployed and when an attack is detected and mitigated, the
IPtables script is also deployed. This IPtables script is used to prevent any such further
attacks. To test it, we tried doing the same DDOS attack using hping tool from our
attacking Kali VM and every time our system successfully prevented the attack as we got
an error as “Host Unreachable”. This was because of the IPtables rules we had in our
IPtables script which prevents any such further DDOS attacks from happening. To revert
back to previous rules the admin has to restore the previous IPtables rules and then the
system would be the same as before. Also, the IPtables script is highly customizable and
can be customized and changed easily by the admin if need arises and depending on the
type of working the organization requires. The below screenshot is when the IPtables
script is applied which prevents future DDOS attacks from happening.

Figure 10: Nmap scan

6.3 Honeypot Logs and Zeek Logs

This was the test performed on our system to check whether our system logs all the
network activity and starts the Zeek IDS automatically. As we can see in the image below,
Connection details have been displayed on the output of our honeypot. This output was
displayed when our attacking machine Kali VM did a reconnaissance scan using nmap
to check for open services and ports. After performing the nmap, we observed that the
attacking VM can see the fake services open on the ports specified to the honeypot. Also,
all the connection logs are successfully logged onto a file as well as displayed on the output
screen. The test was conducted several times, while opening different ports and using
different machines to connect to the real system, the honeypot worked as intended every
time. It logged all the connection activity and the Zeek instance also was started and
Zeek started monitoring and logging whenever the honeypot was deployed. The image
below shows the output when the honeypot was deployed given the ports 8080, 8888, and
9999. Also, the connection logs are visible as the Kali VM nmap scanned our system. We
can also observe that the Zeek instance has been started and Zeek has started monitoring
and saving its logs at /usr/local/zeek/logs.

19

Figure 11: Honeypot Logs

6.4 LaikaBoss Integration and Testing

This was a simple experiment conducted to check whether our LaikaBoss has been suc-
cessfully integrated in our honeypot. We created a simple Yara rule which detected a
simple string found in a pdf file. After deploying our honeypot, we downloaded that file
using wget and when the file was downloaded, it was successfully scanned by LaikaBoss
and its output was shown in our honeypot’s output terminal.

Figure 12: LaikaBoss Integration and Testing

20

6.5 Detection of a Malicious file

This test was conducted to check whether our system detects a malicious file, in this
case it was Petya Ransomware. The attacking VM Kali was used to host the Petya
Ransomware file on it’s Apache server. When the victim user downloaded that file, our
honeypot successfully detected it and displayed its flags.

Several other flags were also displayed which were not specific to the Petya Ransom-
ware. Our system had the Petya Ransomware Yara rule already integrated; this shows
us that our systems malware detecting capability is as strong as the Yara rules it has
integrated within it.

Many tests were performed to detect malicious files and our system successfully de-
tected all of them as long as our system had the corresponding Yara rule. Below is the
output of the Petya Ransomware detection done successfully by our honeypot.

Figure 13: Petya Ransomware Detection

Below is the Yara Rule we wrote after analyzing the Petya Ransomware sample. The
strings were present inside the binary file because of which when written in the rule file,
the file is detected. This rule detects the Petya Ransomware when it is downloaded by
the user and scanned by LaikaBoss.

21

Figure 14: Petya Ransomware Yara Rule

Table 4: Different Tests Conducted.

Test Cases Malicious File Result Reason
1. Petya Ransomware Detected Had a corresponding Yara

Rule already present in the
system

2. Malicious pdf file in zip Not Detected The system did not re-
cognize the zip file and
couldn’t explode and scan
it as there was no dis-
patch logic regarding the
zip present in the system

3. Malicious pdf file in zip Detected After adding the dispatch
logic, the system success-
fully detected the file.

4. Emotet malware Not Detected There was no correspond-
ing Yara Rule present in
the system which could de-
tect this type of malware

5. Emotet malware Detected After adding its Yara rule,
the system successfully de-
tected the malware.

6.6 Discussion

Multiple experiments were conducted using the proposed system which reflects the differ-
ent functionalities the proposed system could perform. The first test conducted was the
detection and mitigation of DDOS attack, it was concluded from the three experiments
conducted that the proposed system successfully mitigated all the DDOS attacks. In the
first experiment, as it was a high rate DDOS attack the system blacklisted the IP ad-
dress. In the second experiment we simulated a low rate DDOS attack and the proposed
system mitigated it by sending RST flags. In the third experiment, we again performed

22

a high rate attack using a different attacking VM and the proposed system successfully
mitigated it as well. The IPtables had to be restored each time while performing the
above experiments as when an attack is detected and implemented the IPtables script is
activated and new IPtables are implemented which prevent future DDOS attacks from
happening. This was tested by simulating a DDOS attack but the attacking system
was not successful to attack the system. This was because of the robust IPtable rules
implemented with our system.

Multiple tests were performed to check the malware detection capability of our system
and it was found that our system is as strong as the Yara rules and the dispatch logic
it has integrated with it. In our experiments, we conducted different test cases, the
proposed system successfully detected the malware samples as long as its corresponding
Yara rules were in the system. We also had some generic Yara rules which detected
malware samples based on the PE file it has hidden inside or which were not completely
hidden, but some complex hidden malware needed its corresponding Yara rule. In case 1,
Petya Ransomware was tested with our system and our generic Yara rules also detected
the file as malicious. We also created a Yara rule to specifically detect Petya and after
passing it to our system, that rule was also used along with the other generic rules to
detect. In the second case, we had a malicious file inside a zip file and our system could
not detect zip file and could not use its different modules. This made our system to not
detect the malicious file but once we updated our dispatch logic, our system successfully
detected the malicious pdf. Similarly in case 4 and 5, Emotet malware was downloaded
and our system could not detect it as it did not have its Emotet’s Yara rule , but after
adding the Yara rule, our system successfully detected it. With these tests, we can
conclude that to keep the system safe and up to date it is necessary to have the Yara
rules and dispatch logic updated so that newer malware could also be detected easily.
We also had Zeek logs which could be used for the analysis later by the admin. An
improvement to the current system would be to have Zeek extracted files pass through
LaikaBoss which would add another layer of protection.

7 Conclusion and Future Work

In this paper, an approach to detect malware using LaikaBoss framework on a honeypot
was implemented. Along with this, an approach to detect, mitigate and prevent network
attacks such as DDOS using a game theoretical based technique was implemented. The
implemented system successfully detects malware based on the Yara rules it has integrated
within it. It also detects DDOS attacks, logs all the connection activity onto the server
and mitigates it by determining a proper action to perform which is either to block the IP
or drop the connection. In our experiments, we concluded that the system detects all the
malware samples fed into it as long as it has the corresponding Yara rule integrated within
it. The system also successfully detected and mitigated the DDOS attacks and prevented
any further attacks from happening which is what we concluded from the experiments we
conducted. In our case, the honeypot and the system were on the same internal network.
This decreases the security of the internal network devices in case the honeypot fails. For
future scope, the honeypot could be deployed on the external network i.e. outside the
firewall. The LaikaBoss framework which is integrated with the honeypot could receive
files from an internal network system using Laikaboss’s cloud instance. This could be
done to further secure the system and have honeypot running as its own separate dummy

23

system outside the internal network. Also, [23] the Zeek logs and extracted files from
Zeek which are saved for further analysis in our system could be fed to the LaikaBoss
instance to further increase the security of our system as a whole. For further research,
a combination of Zeek, Laikaboss and RITA(Real Intelligence Threat Analysis) could be
looked at and integrated in the system.

References

[1] L. Huang and Y. L. Y. Z. Y. L. D. Feng, “A game theory based approach to the
generation of optimal ddos defending strategy,” 2014.

[2] H. A. Deshpande and N. I. P. Ltd, “Honeymesh: Preventing distributed denial of
service attacks using virtualized honeypots,” International Journal of Engineering
Research and, vol. V4, no. 08, p. IJERTV4IS080325, Aug 2015.

[3] R. Jasek, “Apt detection system using honeypots,” 2013.

[4] D. Dean and D. Wagner, “Intrusion detection via static analysis,” in
2012 IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA:
IEEE Computer Society, may 2001, p. 0156. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SECPRI.2001.924296

[5] S. Kemppainen and T. Kovanen, Honeypot Utilization for Network Intrusion Detec-
tion, 05 2018, pp. 249–270.

[6] M. Abdullahi, S. Aliyu, and S. Junaidu, “An enhanced intrusion detection system us-
ing honeypot and captcha techniques,” FUDMA JOURNAL OF SCIENCES-ISSN:
2616-1370, vol. 3, no. 3, pp. 202–209, 2019.

[7] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, and et al.,
Clustering Client Honeypot Data to Support Malware Analysis. Springer
Berlin Heidelberg, 2010, vol. 6279, p. 556–565. [Online]. Available: http:
//link.springer.com/10.1007/978-3-642-15384-6 59

[8] [Online]. Available: https://www.sans.org/reading-room/whitepapers/malicious/
paper/38295

[9] M. Skrzewski, Network Malware Activity – A View from Honeypot Systems.
Springer Berlin Heidelberg, 2012, vol. 291, p. 198–206. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-31217-5 22

[10] C. Moore, “Detecting ransomware with honeypot techniques,” in 2016 Cybersecurity
and Cyberforensics Conference (CCC), 2016, pp. 77–81.

[11] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou, “Collecting autonomous spreading
malware using high-interaction honeypots,” in Information and Communications
Security, S. Qing, H. Imai, and G. Wang, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007.

24

https://doi.ieeecomputersociety.org/10.1109/SECPRI.2001.924296
https://doi.ieeecomputersociety.org/10.1109/SECPRI.2001.924296
http://link.springer.com/10.1007/978-3-642-15384-6_59
http://link.springer.com/10.1007/978-3-642-15384-6_59
https://www.sans.org/reading-room/whitepapers/malicious/paper/38295
https://www.sans.org/reading-room/whitepapers/malicious/paper/38295
http://link.springer.com/10.1007/978-3-642-31217-5_22

[12] B. Moayedi and M. Abdollahi Azgomi, “A game theoretic framework for evaluation
of the impacts of hackers diversity on security measures,” Reliability Engineering
System Safety - RELIAB ENG SYST SAFETY, vol. 99, 01 2011.

[13] M. V. O. De Assis, A. H. Hamamoto, T. Abrao, and M. L. Proenca, “A game
theoretical based system using holt-winters and genetic algorithm with fuzzy logic
for dos/ddos mitigation on sdn networks,” IEEE Access, vol. 5, p. 9485–9496, 2017.

[14] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu, “A survey of game
theory as applied to network security,” in 2010 43rd Hawaii International Conference
on System Sciences. IEEE, 2010, pp. 1–10.

[15] S. M. Khattab, C. Sangpachatanaruk, D. Mosse, R. Melhem, and T. Znati, “Roaming
honeypots for mitigating service-level denial-of-service attacks,” in 24th International
Conference on Distributed Computing Systems, 2004. Proceedings., 2004, pp. 328–
337.

[16] R. Challoo, , and R. Kotapalli, in Detection of Botnets using Honeypots and P2P
Botnets., vol. 5, 2011.

[17] X. Luo, Q. Yan, M. Wang, and W. Huang, “Using mtd and sdn-based honeypots to
defend ddos attacks in iot,” in 2019 Computing, Communications and IoT Applica-
tions (ComComAp), 2019, pp. 392–395.

[18] R. Venkatesan, G. Kumar, and M. Nandhan, “A novel approach to detect ddos
attack through virtual honeypot,” 07 2018, pp. 1–6.

[19] Jul 2019. [Online]. Available: https://javapipe.com/blog/iptables-ddos-protection/

[20] J. Liburdi, “Laika boss + bro = laikabro (?!),” Feb 2017. [Online]. Available:
https://medium.com/@jshlbrd/laika-boss-bro-laikabro-d324d99fddae

[21] B. Musawi, “Mitigating dos/ddos attacks using iptables,” International Journal Of
Engineering Technology, vol. 12, pp. 101–111, 01 2012.

[22] S. Haas, R. Sommer, and M. Fischer, “zeek-osquery: Host-network correlation for ad-
vanced monitoring and intrusion detection,” arXiv preprint arXiv:2002.04547, 2020.

[23] V. Gustavsson, “Machine learning for a network-based intrusion detection system:
An application using zeek and the cicids2017 dataset,” 2019.

25

https://javapipe.com/blog/iptables-ddos-protection/
https://medium.com/@jshlbrd/laika-boss-bro-laikabro-d324d99fddae

	Introduction
	Related Work
	Honeypots
	Intrusion Detection Systems
	Malware Analysis
	Game Theory
	Network Attacks

	 Research Methodology
	Design Specification
	Implementation
	Evaluation
	Detection and Mitigation of DDOS Attacks
	Prevention of DDOS Attacks
	Honeypot Logs and Zeek Logs
	LaikaBoss Integration and Testing
	Detection of a Malicious file
	Discussion

	Conclusion and Future Work

