
Windows Portable Executor Malware
detection using Deep learning approaches

MSc Internship

Cyber Security

Yogesh Bharat Parmar
Student ID: x18176402

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Yogesh Bharat Parmar

Student ID: x18176402

Programme: Cyber Security

Year: 2020

Module: MSc Internship

Supervisor: Mr. Vikas Sahni

Submission Due Date: 17/08/2020

Project Title: Windows Portable Executor Malware detection using Deep
learning approaches

Word Count: XXX

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA
the National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Windows Portable Executor Malware detection using
Deep learning approaches

Yogesh Bharat Parmar
x18176402

Abstract

Malware’s are the main barriers in the growth of digital acceptance. Every
system or device in the world is connected with the internet and internet became
the main source of spreading malware’s. In the windows operating system various
types of malware’s are found, detection of such malware in timely manner is a
challenging task. Almost every executive file in the windows operating system is in
the PE (Portable Executor) format. PE file begins with the header that includes the
various information about the file such as type of application, space requirement,
libraries used and many more. Our main goal, in this work is to detect the windows
malware without relying on any explicit signature based methods. In order to solve
such issues, we are using different types of deep neural networks. CNN, RNN and
CONV-LSTM models are used in order to detect the malicious behaviour from the
Portable executable samples. The target value can be either malicious or legit. The
classification results of every model will be analysed and compared using different
classification metrics and achieved a highest classification accuracy of 94.18% using
CONV-LSTM model.

1 Introduction

Malicious software most commonly referred to as Malware is a kind of specifically designed
software that is used to penetrate and cause disturbance or damage to any system or
network without the proper knowledge of its user. Malware is the common terms that
are practically used to denote all kind of cyber threats and intrusion. They are branched
into various types but comes under two simple categories as stand-alone malware and
viral infectors. These kinds of malware cause destruction to the system or the network
and also lead to loss of valuable data and confidential files. They can also be classified into
different types based on their functioning. Most popular infectors are trojans, adware,
worms, backdoors, spyware etc. Installing themselves in the host system or network they
try to spy and steal the information. With the growing technology and the advent of many
evolutions in the IT, the domain has led to an increase in cyber-threat activities. As the
protection mechanism gets stronger the malware gets typical to be identified. Detecting
these intrusions can be a typical task and they are done by detecting the signals and
signatures obtained from such malware. Some of the identification of methodologies
and software is used to make out its presence. But nowadays the detection process is
becoming very difficult because of the protection mechanism used by these infectors.
They have multiple polymorphic layers and use many methodologies that will enhance

1



itself and avoid whatever detection mechanism used by the host system. Many analysis
that is carried out in the detection of malicious software using emulsion techniques is
found in [1]. Some of the other classic methods are also discussed in his paper. To make
the analysis, there are currently two methods widely practised in the detection of the
presence of malware. They are the static and dynamic methods of analysis. They are
carried out online with the assistance of knowledge experts. The outcomes of the process
are compiled together and are known as the “signature”. This method takes account of
all static signals to analyse the process after they are designed before the implementation.
Some kind of malicious software even tackles this process through the use of obfuscation.
However, as an enhanced mechanism, the model of detection based on dynamic signals
has been implemented as formulated by [2]. All these methods use some behavioural
techniques to detect the presence of malware if found any. Some of them use hypervisor
based on the instrumentation.

Other statistical techniques are also found to be employed in the detection process.
They are the methodologies that generate the response based on the patterns that cor-
respond to the behaviour of the malware. Opposite to that another of finding out the
presence of malicious software is done with the aid of expert analysis which on the whole
searches for the deterministic signatures done by [3]. As following the current age, the
most commonly used types of malware detection systems are the signature-based and non-
signature-based detection methods. Some unique bits are analysed by the signature-based
methods in the identification process of malware but on the other hand, the non-signature
based detecting model uses the whole process of reading actions and pre-define database
to find the presence of malicious software. The first time that is the signature-based
model needs constant updates and is limited only with its database but it has the most
top quality of accurate precision. The main drawback of this method is that the identi-
fication time is more or less length and is compared to the range of the attack duration.
While the other model called non-signature-based detection has the backlog of producing
false results. It is observed that false positives and negatives are displayed sometimes
but it is a rare phenomenon. But this technique also helps in the reduced identification
time, prevents the window from being misidentified. They can also identify many kinds
of malware issues like Zero-day etc, while this process can go completely undetected when
using the signature-based method. Some of the pure software implementations are also
discussed. They often perform the functions in the trusted computing base. Many times,
the software used for malware detection is more vulnerable to the same cyber threats
that every other system possess. The protection strategy can be disabled by malicious
software in major cases as depicted by [4].

Windows is mostly used operating system, has the highest number of consumer base.
The windows is mainly popular for its simple user interface and its executable file cap-
ability, which can run or install any program in a simple manner. Some of the intruders,
misuse this capability by providing the malware executable files in order to perform
fraudulent activities. For privacy and data protection it is very important to detect and
cease these kind of activities in a timely manner. Traditional malware detection methods
were mainly using the signature based methods. The disadvantage with signature based
method is the change is single bit or just few bytes in malicious code can make the mal-
ware undetectable. Therefore, our main goal is to detect the Windows malware without
relying on explicit signature database. In this work we are proposing the deep neural
network based solution in order to accurately classify the executable samples as malware

2



or legit. Convolution neural network, Recurrent Neural Network and Convolution with
LSTM recurrent neural network has been implemented in order to perform a comparative
analysis between the different deep neural networks also to find out the best one.

2 Research Question

• How deep learning algorithms accurately classifies the Malicious Portable Executors
?

• Which model provides the best classification results for detection of malicious port-
able executors and what is the maximum accuracy can be achieved ?

3 Literature Review

It is evident that the cyber-attacks have evolved along with the technologies and it is
very difficult to detect and take them down using the existing antivirus and cybersecurity
software. The ineffectiveness is observed in the identification of well-developed threats
and the usage of endpoint sensors in tackling the above is frequently seen in the lower
level enterprises. In the research model proposed by [5] enhanced model as a solution to
the above-mentioned issue. They have used normal auto windows set up to detect the
presence of malware. The audit logs are used in this process. They are cost-effective
ones and provide better accuracy. They emit signals to detect the presence of malicious
systems and notify their presence if found any. They can be used along with the other
networks and additional cybersecurity antivirus software. This model provides more
accurate results of nearly 83 per cent and very low false positives nearly about 0.1 per
cent which takes a toll on and include about 70 per cent of all the malware detection.
The audits that are used in this process do not record the types of malware found but
detects them correctly. Audits like Albeit can be easily fed into any type of network and
be grouped into multiple databases. This technique can be processed with less initial cost
and also extensive research analysis is required to take this implementation in the long
run. More significantly, the presence of external layers such as the one used for detecting
the audit logs and the route of the cyber attacks etc may require extra time to make
the defence after the identification of the presence of malware. [6] Xu in his research
paper proposes a new method for the detection of the presence of malicious software by
the GPU technique which is used for the analysis of the patterns that are observed while
finding the malware’s presence.

This method recognises the memory that is stored in the system when already en-
countered with malware in the past. By using this method, the desired visibility and
enhanced security are acquired. Gotten feedback is used to detect the presence of mal-
ware signals. Most of the malicious software are of two main categories. They are the
kernel rootkits and the assaults that are happened on the memory of the system to cor-
rupt. The accuracy rate is found to be somewhere around 99 per cent and the developed
model detects all kind of cyber threats and malicious presence. The kind of false alerts
like the displayed signals of the false positive and false negative are found to be at the
rate of less than 5 per cent on a comparative total. This method can be devised on
a system very easily and can be used on the model of hardware-oriented identification
of malware. They can be used on the system or a network. It sources all the needed

3



information from the system’s memory or the available online sources. It takes a call on
the holistic approach model that helps in the better detection and identification process.
Firstly, a trial process is done by including the test run of kernel server and the functions
and the risks associated with it. The performance level that is observed on the rootkit
is comparatively higher than all the existing previous models. The false positives were
also observed to be present in very less per cent. Some memory manipulative threats
are easily tackled by this proposed model. One of the greatest pluses of this approach
is that it makes use of the machine learning algorithms to detect the malware’s presence
using signatures and other traditional human prediction features. It is the main asset in
the process of the critical analysis process. Another proposal of malware identification
is done by [7]. They have listed out the responsible details that are based on the deep
neural networks are used in building this whole method.

The goal of this proposed technique is to enhance the predictability and the rate
of accurate identification. It tests all the generic components and layers before giving
the notification of the presence of malware. It also assures lower false positives and
negatives. The testing process is also done at a very quick rate stating the effectiveness
of the particular model that is proposed. The percentage of malware detection is found to
be 95 per cent on the rough calculation and the prediction of false positives and negatives
is somewhere around the range of 0.1 per cent. the input consists of around more than
450,000 database that has the information of malware codes and types that are obtained
from various companies and cyber treat security services. Also, while taking the count the
method checks the process of generation of false positives and negatives at the endpoint.
By doing such a method the live displaying of data from the input along with the process
of analysis done for the newly obtained data. The user can also have access to the number
of data that is being collected and stored in a day. The explanation is also given for the
detection of false positives and negatives if alerted about any. The given data about the
false intimation is then converted into a storage tank with the display of threats ranked
in order. Nowadays the improvement and evolution in the technology have taken hold
of nearly all the malware detection and prevention process using all the mechanisms of
AI. Such a process is done using the protocols of cloud security in the network and many
other mechanisms that are alike. While accessing the cloud data, the servers store all
the dynamic memory files which traces and find out the same samples from the input
database.

Once the system finds the presence of any cyber intrusion or the malware it uses the
registered memory. Likewise, it also tracks information from thousands of clients and
companies. In another model, the neural networks are employed in the identification
mechanism to find out the portable execution files that are hidden and not visible. It
analyses all the files and classifies them as malware or normal files based on the functioning
of the library cells while reducing the unsearched spaces in the domain of machine learning
for the identification of the presence of malware. Also, this model shows us the required
precision and ongoing analysis that is comparatively better than other existing research
models. The overall precision observed by the model is around 98 per cent on the whole
while making the analysis and identification process in a dataset which contains more
than 4000 sets of data which is included in the set file. The packers are not well defined
in the made method model which in turn affects the working flow of the project and
the usage of all other features. This proposed model is exhibited by [8]. To extract
more files and proceed with the method of classification the outcomes obtained from
the hybrid analysis can be of great help. However, to classify the unidentified data the

4



neural network is employed. Another machine learning approach that deals with the same
process of identifying the missed out portable execution files with accuracy and a higher
rate of detecting the presence of malware. The static method is found to be used in the
methodology proposed by [9]. It just groups all the features by the process of integration
of datasets and units that deals with the major PE files present in the domain. Every
attribute is measured in the process of analysis including the methods of accuracy, the
F-measure and the rate of its precision. Their initial research displays all the grouped
attributes that are established to find all the unidentified protocols of malicious softwares.
The dataset’s accuracy is found to be in the range of 92 per cent and the relativity is
near to 84 per cent out of all the techniques. The method of random forest is also used
in the detection process. Another non-signature method involved in the identification
process of malware using the neural networks and other portable execution files in the
taken window samples. The process involves the set of integrated attributes, some hybrid
models and heuristics that are the main parts of the framework in non-signature-based
models. Some of the structural and behavioural patterns are analysed in the process of
engaging machine learning protocols in the analysis of the presence of malware if found
any. Some of the simple systems are used in the creation of such a model as interpreted
by [10]. Every cyber threat or malicious software has a special signature or a pattern
when it enters the host system or network. Such a pattern if analysed properly can help
in the quick detection of the presence or intrusion of malware very easily. Some of the
main features that are used in this operational process are Opcode-n-gram, the strings
that are in the PE files and some of the typical classifiers and byte-n-gram etc. These will
help in the identification of the files and to determine whether they are malicious are not.
This is done by a thorough reading of the files and headers of the particular data type.
The framework tells the specification of execution data and normal data that is present
in the windows sample taken for the analysis. These files that are present in the windows
are called as portable execution files and common object files sometimes short-termed
as PE and COFF. The PE is mostly vast and contains many headers and features that
are base for the detection mechanism. Those can be complied and fed into the system
memory just from the place where they are located. The segments that are present in
the PE is also huge and has more attributed to data for example constants, variables etc.
The PE also provides the user with the total description of all the API that are uploaded
and for time being is stored in the library of the device. The below diagram represents
the working and the description of the PE header working the samples of the windows.

While approaching for the models for the detection of malware two kinds of techniques
can be analysed. These major methods are employed in many of the approaches and it
is proven to be well administered. They two major types are static analysis and dynamic
analysis. The first method that is static analysis in which all the data samples and the
files are analysed for the presence of malicious software. The second type, the dynamic
analysis is the process where the examination is done on the samples while the execution of
the file is in the process. The static analysis is found to be the most appropriate method
that is used for the identification of malware that is mostly used in the commercial
industry of cybersecurity services. It is usually done by applying the malware samples of
datatype based on the bites level and the pattern of signatures present. The method of
blacklisting is very efficient and well-deployed and is found to be accurate. The accuracy
is well improved and the detection and display of false positives and negatives are found
to be lower on a comparative scale. The detection rate is found to be around 90 per cent
in the model proposed by [11]. Since every method of identification is done based on the

5



Figure 1: PH header

signature samples no higher modifications or changes can be done because it will alter
all the signature patterns that are taken for the analysis. It will alter all the binary and
compiler codes that are used for the process. Many more advanced and complex methods
can be used for the implementation technique. Some of the other changes in the analysis
can be done at a very low budget. The outcome is found to be accurate but other lags
are found between the analysed malware and detection process. The antivirus engines
are processed to detect it within the swift amount of time. This model is found to be
better doing than the existing models and the methodology was proposed by [12].

The static approach is complemented by the addition of a dynamic approach along
with it. The behaviour pattern is completely analysed and then the detection method
is properly done. The analysis is smoothly done without errors and the good step of
the dynamic method is to recycle the present antivirus technique. This software is taken
into account by the automatic process in the virtual zone. After the virtualisation then
the samples are allowed to run on the endpoint and detect the anomaly and prevent
it from interfering into the system. Making the automated variety run along with the
other detection software can be very difficult on a larger scale. The process finds it very
difficult to detect it while it is present and being in the sandbox. It blocks the malicious
activities that are found in the host system and it complexes the functioning between
the dataset and the automated dynamic behaviour. Another method of taint analysis is
also a concept of the dynamic method that is proposed by the [13]. This model involves
the implementation of a system on the automatic basis and its set is applied on its own.
While designing an enhanced model for the detection of malware presence the dynamic
behaviour must be completely used for better results. A complementary approach is
also carried out in the identification of such anomalies and it penetrates all the layers
to block and reverse the malware with the help of antivirus protocols. These functions
use the endpoint and analysis the complete behaviour of the dataset and have no other
extra option but to block and shut down the complete server to take action as a defence
mechanism. Rather concentrating on the customised approach in developing a proposed
model [14] in their paper puts forward the method of a model that solves the practical

6



difficulties that stop the enhancement of designing an accurate and effective method for
the detection of the presence of malicious software in the host system or network. For
this method, no additional maintenance will be required but it functions effectively at
low cost with moderate care and supervision. In this research work, the negative issues
are tackled and lessened by using the enhanced superior activity of logs that are collected
as the windows PE samples. The most audit logs are present in the SIEMs collection and
are utilised well. Some of the other approaches try to limit and lessen the data samples
to show accuracy as higher. But with the use of windows audit, this model takes the data
into the administration level in the network without the want for the installation of any
other external software. It also reduces the load in the network as well as the overload
of the system.

4 Methodology

Our proposed methodology, uses the multiple deep learning models in order to detect the
malicious portable executable. A series of multiple steps has been performed in order to
implement the proposed framework. A flow diagram of proposed architecture is shown
in Figure 2. The steps includes data collection, data pre-processing, feature extraction,
feature selection and training of model. We will discuss about each steps in upcoming
sub-sections.

Figure 2: Proposed Framework for detection of Malicious Windows PE

4.1 Data Collection

The windows portable executor data file has been collected from kaggle. The dataset
contains more than 200,000 Windows PE Samples with 486 features without including
the target variable. The Windows PE samples can be either malicious or benign. Some
of the important features of the dataset are has configuration, has debug, has exceptions,
has exports, has imports, has nx, has re-locations, has signature, has resource and many
more. The target features can be classified in binary format as malicious or not-malicious.
The dataset contains the discrete and continuous features. Overall the size of dataset is
more than 340MB.

7



4.2 Data Pre-processing

Data Pre-processing is the first and most crucial step of data analytics. A noisy data
can reduce the accuracy of the model to a great extent. The dataset also contains many
null values, which has been dropped from the dataset. Also label encoder technique has
been used in order to convert the discrete values into the numbers. The correlation value
of features in the dataset has been calculated, the highly correlated features should be
remove from the dataset.

4.3 Feature Engineering

There are mainly two kinds of feature engineering techniques we have used, it includes
feature extraction and feature selection methods. The dataset already contains 486 fea-
tures, extracting more features is not a feasible option as the number of features are
already more. Highly correlated feature in the dataset affects the accuracy of model.
Also as the number of features are very high and all the features in the dataset may not
be useful therefore in order to select the important features we using principle component
analysis (PCA). It simplifies the complexity for high dimensional data while retaining the
trends and common patterns. We have applied principle component analysis in order to
reduce the dimensionality of data. After implementing PCA, we achieved the optimal
number of features as 85 (including the target feature) shown using graph in Figure 3.

Figure 3: Dimensionality reduction using PCA

After reducing the dimensionality of dataset, there are no highly correlated features
available in dataset, that can be shown with the help of histogram in Figure 4.

8



Figure 4: Histogram for representing the correlation between Features

4.4 Model Training

After performing data pre-processing and feature engineering steps the filtered data will
be provided to deep learning models to perform predictive analysis. In our experiment
we are using 3 different models for training and performing a comparative analysis.
The models are Convolution Neural Network (CNN), Recurrent Neural Network (RNN)
and Convolution-LSTM which is basically a combination of CNN and Long short term
memory (recurrent neural network). The 70% of the data is used for training whereas,
remaining 30% of data will be used for testing purposes. The functionality of each of the
model will be explained in the Design section.

4.5 Evaluation of results

After training the model, the obtained results will be evaluated using various performance
metrics, which includes Accuracy, loss, precision, recall and F1-score. These metrics will
be calculated for every individual model in order to find out the best one. The definition
of each of the metrics is explained in below subsections.

4.5.1 Precision

Precision is the primary metrics, used for the binary classification. To calculate the pre-
cision, Correctly predicted positive values are divided by total predicted positive values.
Low false positive rate indicates a higher precision score. It can be defined as :

Precision = TruePositive/(TruePositive + FalsePositive)

9



4.5.2 Recall

Recall score is mainly used to calculate the sensitivity of model. It represents the false
negative values generated by the model. The recall score can be defined as :

Recall = TruePositive/(TruePositive + FalseNegative)

4.5.3 F1-score

F1-score combinely calculates the false positive and false negative observations. It is
mainly obtained from precision and recall values. The F1-score can be defined as :

F1score = 2 ∗ ((precision ∗ recall)/(precision + recall))

4.5.4 Accuracy

The accuracy is the ratio of correctly predicted value divided by total observations. It
can be defined as :

Accuracy = (TP + TN)/(TP + FP + FN + TN)

4.5.5 Loss

To calculate the error of the model during the optimization process a loss function is
calculated. Sometimes, the loss is inversely proportional to accuracy of the model.

5 Design Specification

The architecture and design of each model used in our experiment is different from one
another. We will discuss about the architecture and design of each model in following
subsections.

5.1 Convolution Neural Networks (CNN)

Convolution Neural networks are the type of deep neural networks, which consist of
input, output and hidden layers. The complexity of the model, mainly depends on the
number of inputs and number of hidden layers. The more number of hidden layers,
more will be the complexity of model. CNN model is mainly used for object detection,
image processing and image classification purposes. Most commonly, ReLu is used as the
activation function in CNN. The architecture of CNN is shown with the help of diagram
in Figure 5.

10



Figure 5: CNN Architecture

5.2 Recurrent Neural Network (RNN)

The inspiration for recurrent neural network has been taken from multilayer-perceptron
model. In recurrent neural network output from previous steps are fed into the current
step, that is the reason it is called recurrent model. Recurrent neural networks are very
popular for processing time-series data. RNN transforms the independent activation to
dependent function by assigning the same weights and biases to all layers. The output
of previous layer becomes the input of another layer in RNN model. The architecture of
recurrent neural network is shown in Figure 7

Figure 6: RNN Architecture

5.3 Convolution LSTM Model

Convolution LSTM is mainly designed for sequence prediction problems. Where the CNN
layer is mainly used for feature extraction over input data and later,it is combined with
LSTMs to support sequence prediction. From the previous studies, we have found that
the combination of CNN model with LSTM provides the better classification performance
as compared to other algorithms. Therefore, we has selected this combination for our
prediction.

11



Figure 7: Convolution LSTM model Architecture

6 Implementation

The experiment was performed in a single machine, where the programming language
is used as python3. Along with the python3, we have used jupyter notebook for live
code and visualization. Predicting Windows Portable executor is a binary classification
problem. Therefore, all the deep learning models, which were best suited for classification
task have been utilized in our experiment. The dataset has been divided into training
and test set with the ration of 70:30. All the deep learning model has been trained for
25 epochs. The ReLu is used as the activation function for all the models. The following
specifications are used to implement the proposed framework :

• Main memory (RAM) : 6 GB

• GPU : 1xTesla K80 @ 2.20 GHz

• Number of Cores : 2

• Hard disk : 40GB

• Operating system : Windows 10

• Programming Language : Python

• User Interface : Jupyter Notebook

• Libraries Used : Pandas, numpy, matplotlib, sklearn, keras and seaborn

7 Evaluation

The Evaluation has been performed over 200,000 Windows portable executor samples.
Three different deep learning algorithms Convolution Neural Network (CNN), Recurrent
Neural network (RNN) and Convolution with LSTM recurrent model have been imple-
mented. The precision, recall, accuracy, f1-score and loss has been calculated for each
model. In every experiment we will discuss evaluate a metric performance for all the 3
models, which will be running over 25 epochs. The cross-validation techniques has been
used in our proposed approach. Therefore, the results for every metrics will be evaluated

12



for training set and validation set as well. Metrics on training set will represent the pro-
gress of model in terms of training. Whereas, from validation set the quality of model is
measured in order to make the new predictions.

7.1 Experiment 1 / Precision, Recall and F1-score Comparison

In the first experiment we have run the model over 25 epochs and calculated the precision,
recall and f1-score for every model to have comparative analysis. The Precision scores
for all the 3 algorithms is shown in Figure 8.

Figure 8: Training and Validation Precision Comparison

The maximum precision score obtained is 0.505 using Convolution-LSTM model for
both the training and validation set. From the graph it has been also observed that,
on increase in the number of epochs the precision score for CONV-LSTM model is also
increasing. Whereas for CNN and RNN, the precision score is constant. The lowest
precision score by all model is 0.50. Lower precision rate clearly indicates high false
positive rates in prediction. Whereas, in case of recall score, 0.99 highest recall score has
been noted for both training and validation set as shown in Figure 9. The highest recall
value by all the models represent the low false negative observations.

Figure 9: Training and Validation Recall Comparison

The F1-Score Comparison for all the models is shown in Figure 10. On increasing the
number of epoch, we have observed a significant rise in the f1-score for all the algorithms.

13



The f1-score achieved by CNN model is 0.9005 and the F1-score for RNN model is 0.8932
for validation set. The highest f1-score of 0.9210 has been achieved by Convolution-LSTM
model.

Figure 10: Training and validation F1-score Comparison

Overall, we can conclude that highest precision, recall and f1-score has been achieved
by Convolution-LSTM model. It means with help of convolution LSTM we can achieve,
lowest false positive and false negative values.

7.2 Experiment 2 / Loss Comparison

Loss is mainly anti-proportional to accuracy of the model. If there is reduction in the
value of loss for every epoch, there is a high chance of increase in accuracy over every
epoch. In the Figure 11, we have found a decrease in loss value for every epoch. Minimum
loss, higher the model performance. For validation set, the lowest loss achieved is 0.1596
using Convolution-LSTM model. In the seconds place, RNN has achieved the better
results with loss value of 0.1868 for validation set.

Figure 11: Training and validation Loss Comparison

7.3 Experiment 3 / Accuracy Comparison

Accuracy is one of the important measure for predictive analysis. We have calculated the
accuracy for all the 3 algorithms over every epoch. We have found a increase in accuracy

14



score, over increase in the number of epochs for both the training and validation set. A
validation accuracy of 92.91% has been achieved by CNN model. Whereas, RNN provided
the accuracy of 92.97% and again a highest accuracy of 94.18% has been achieved by
convolution LSTM model for validation set. An accuracy comparison graph for all the
deep learning models have been shown in Figure 12

Figure 12: Training and validation Accuracy Comparison

7.4 Discussion

On Comparing all the metrics over 3 different deep learning models, we can conclude that
combination of Convolution network with LSTM recurrent neural network provides the
high performing results. Whereas, CNN and RNN model achieved almost same accuracy
for training the model over 25 epochs which is definitely less than the convolution-LSTM
model. The precision value of all three models are found to be very low, it means our
prediction will contains more false positive values. The recall score of every model is very
high, so can conclude that our prediction will contains less false negative values. We have
plotted a confusion matrix for highest performing model, which is Convolution-LSTM
model. The confusion matrix of CONV-LSTM model is shown in Figure 13.

Figure 13: Confusion matrix of CONV-LSTM model

15



8 Conclusion and Future Work

We have performed various experiment and analysis in order to know the best model for
malware detection in windows portable executor. We have trained the 200,000 Windows
PE samples over the different deep learning models and found that the combination of
Convolution network with LSTM recurrent neural network performs the best, in terms of
every metric used such accuracy, loss, precision, recall and F1-score. A highest accuracy
of 94.18% has been achieved, which is very much efficient to be used for detection of
malware in windows operating system. The sensitivity score for every model is very
high, therefore prediction score contains the false negative values only 1.55% for CONV-
LSTM model. In future work, more combination of different deep neural network can
be explored in order to achieve the more better performance. In production system, the
data size might be more in size, which will require high computation power. To solve
such issues, scalable solution such as hadoop and spark framework can be utilized.

References

[1] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and
Classification of Malware Behavior,” in Proceedings of the 5th international
conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. DIMVA ’08. Paris, France: Springer-Verlag, Jul. 2008, pp. 108–125. [Online].
Available: https://doi.org/10.1007/978-3-540-70542-0 6

[2] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from a survey
towards an established taxonomy,” Journal in Computer Virology, vol. 4, no. 3, pp.
251–266, Aug. 2008. [Online]. Available: https://doi.org/10.1007/s11416-008-0086-0

[3] C. Wong, S. Bielski, A. Studer, and C. Wang, “Empirical Analysis of Rate Limit-
ing Mechanisms,” in Recent Advances in Intrusion Detection, ser. Lecture Notes in
Computer Science, A. Valdes and D. Zamboni, Eds. Berlin, Heidelberg: Springer,
2006, pp. 22–42.

[4] “Anomaly-based intrusion detection system through feature selection analysis
and building hybrid efficient model - ScienceDirect.” [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S1877750316305099

[5] K. Berlin, D. Slater, and J. Saxe, “Malicious Behavior Detection using Windows
Audit Logs,” arXiv:1506.04200 [cs], Aug. 2015, arXiv: 1506.04200. [Online].
Available: http://arxiv.org/abs/1506.04200

[6] Z. Xu, S. Ray, P. Subramanyan, and S. Malik, “Malware detection using machine
learning based analysis of virtual memory access patterns,” in Proceedings of the
Conference on Design, Automation & Test in Europe, ser. DATE ’17. Lausanne,
Switzerland: European Design and Automation Association, Mar. 2017, pp. 169–174.

[7] J. Saxe and K. Berlin, “Deep neural network based malware detection using two
dimensional binary program features,” Oct. 2015, pp. 11–20.

[8] A. R. Mohammed, G. Sai Viswanath, K. Sai babu, and T. Anuradha, “Malware De-
tection in Executable Files Using Machine Learning,” in Advances in Decision Sci-
ences, Image Processing, Security and Computer Vision, ser. Learning and Analytics

16

https://doi.org/10.1007/978-3-540-70542-0_6
https://doi.org/10.1007/s11416-008-0086-0
https://www.sciencedirect.com/science/article/abs/pii/S1877750316305099
http://arxiv.org/abs/1506.04200


in Intelligent Systems, S. C. Satapathy, K. S. Raju, K. Shyamala, D. R. Krishna,
and M. N. Favorskaya, Eds. Cham: Springer International Publishing, 2020, pp.
277–284.

[9] R. Vyas, X. Luo, N. McFarland, and C. Justice, “Investigation of malicious portable
executable file detection on the network using supervised learning techniques,” May
2017, pp. 941–946.

[10] “Random forest classifiers: A survey and future research directions |
Request PDF.” [Online]. Available: https://www.researchgate.net/publication/
284881039 Random forest classifiers A survey and future research directions

[11] A. Mohaisen and O. Alrawi, “AV-Meter: An Evaluation of Antivirus Scans and
Labels,” in Detection of Intrusions and Malware, and Vulnerability Assessment, ser.
Lecture Notes in Computer Science, S. Dietrich, Ed. Cham: Springer International
Publishing, 2014, pp. 112–131.

[12] G. V. V. i. o. o. t. founders, C. o. L. a. w. a. a. P. i. t. D. o. C. S. a. t. U.
o. C. i. S. B. H. c. r. i. i. m. analysis, W. Security, V. Assessment, m. p. s.
H. a. e. a. b. o. Security, M. Agents, a. o. o. I. C. H. h. b. t. P. C. o. t. I.
S. o. R. A. i. I. Detection, o. t. I. S. o. Network, D. S. Security, o. t. I. S. o.
Security, P. i. . H. i. k. f. organizing, r. a. i.-u. C. T. F. h. contest, c. iCTF, t. e.
y. i. d. o. i. a. t. w. G. V. r. h. M. S. w. honors, P. D. f. P. d. Milano, Italy,
I. 1994, 1998, r. H. i. a. m. o. IEEE, and ACM., “Antivirus Isn’t Dead, It Just
Can’t Keep Up,” May 2014, library Catalog: www.lastline.com. [Online]. Available:
https://www.lastline.com/labsblog/antivirus-isnt-dead-it-just-cant-keep-up/

[13] A. Slowinska and H. Bos, “Pointless tainting? Evaluating the practicality of pointer
tainting,” Jan. 2009, pp. 61–74.

[14] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Capturing
system-wide information flow for malware detection and analysis,” in CCS’07
- Proceedings of the 14th ACM Conference on Computer and Communications
Security, Dec. 2007, pp. 116–127. [Online]. Available: https://experts.syr.edu/en/
publications/panorama-capturing-system-wide-information-flow-for-malware-detec

17

https://www.researchgate.net/publication/284881039_Random_forest_classifiers_A_survey_and_future_research_directions
https://www.researchgate.net/publication/284881039_Random_forest_classifiers_A_survey_and_future_research_directions
https://www.lastline.com/labsblog/antivirus-isnt-dead-it-just-cant-keep-up/
https://experts.syr.edu/en/publications/panorama-capturing-system-wide-information-flow-for-malware-detec
https://experts.syr.edu/en/publications/panorama-capturing-system-wide-information-flow-for-malware-detec

	Introduction
	Research Question
	Literature Review
	Methodology
	Data Collection
	Data Pre-processing
	Feature Engineering
	Model Training
	Evaluation of results
	Precision
	Recall
	F1-score
	Accuracy
	Loss


	Design Specification
	Convolution Neural Networks (CNN)
	Recurrent Neural Network (RNN)
	Convolution LSTM Model

	Implementation
	Evaluation
	Experiment 1 / Precision, Recall and F1-score Comparison
	Experiment 2 / Loss Comparison
	Experiment 3 / Accuracy Comparison
	Discussion

	Conclusion and Future Work

