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Android Mobile Malware Detection System Using
Ensemble Learning

Janish Ottakanchirathingal
19120788

Abstract

Android is the most popular and dominant smartphone operating system in
the market. The Google Play store in the Android platform contains more than
one million android mobile applications that are downloaded and used by users for
various purposes. Meanwhile, they have also become a prime target of unethical
intrusions due to their open-source platform and popularity. In this research, we
observed that traditional methods failed to detect sophisticated malware as they
are incapable of detecting and predicting malware with variable attributes. In the
last many years, Machine learning classifications strategies have been used to tackle
these issues and this research observes that ensemble learning can produce the best
results. Thus, in this research, we proposed an Ensemble learning classification
model using Decision tree with Gradient Boosting algorithm that was trained on
the Malgenome mobile malware dataset. The performance of the model is evaluated
using metrics like accuracy and F1 and the model’s performance is compared with
conventional models like Support Vector Machine (SVM) and Naive Bayes.

Keywords: Android, Malware, Ensemble Learning, Decision Tree with Gradient
Boosting, SVM, Naive Bayes

1 Introduction

In the last two decades, the rapid development of high-speed mobile communication net-
work has resulted in portable devices such as smartphones and tablets becoming more and
more common. Individuals use smartphones for calling, texting, browsing the internet,
listening to music, and carrying out various other activities. Android is a very popular
platform provided by Google, that is powering billions of smartphones in the world. In
Android smartphones, the Google play store contains all types of applications that could
be downloaded and used by Android users. Increasingly human society depends on these
applications to perform daily activities like to make payments, for booking a taxi, etc.
As Android is an open-source platform, anyone is independent to develop an android
based application. To perform various malicious activities, various intruders develop an
Android application that contains the malware. It is important to note that intruders
are well aware of the android popularity among the users that they have transformed
their manual hacking procedures into the network-controlled bots that are adaptive to
the purpose of data-stealing. The threat of android malware is evolving rapidly and
increasingly users are faced with network-controlled ransomware, wiper malware, and the
other adversaries that are used to break down the security measures.
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1.1 Background Study

In 2019, Android’s smartphone market share is a whopping 86.1%, and this huge pop-
ularity has made Android a favorite target of cybercriminals. The first Android malware,
an SMS Trojan, was discovered in the wild by Kaspersky in the year 2010. Since then,
Android malware has been evolving rapidly and incorporated sophisticated techniques to
avoid detections. According to a study by Yajin Zhou and Xuxian Jiang [1], recent mal-
ware groups exhibit polymorphic behavior, malicious payload encryption, increased code
obfuscation, stealthy command and control communications channels, dynamic runtime
loading of malicious payload, etc. These anti-analysis techniques employed by the mal-
ware cause problems for traditional signature-based detection and significantly increase
the effort in uncovering malicious behavior and code within the Android applications.
Traditionally, there are two methods to detect malware applications, Static analysis, and
dynamic analysis. In the static analysis, the application binaries are dissembled and
then the application source code and related metadata is inspected without running the
application. Whereas in dynamic analysis, the application behavior is inspected in the
runtime.

As malware evolved and become more sophisticated, malware detection using these
traditional approaches has become more difficult. In the last few years, Machine learn-
ing has produced critical results with their feature selection and malware classification
approaches. Several supervised learning algorithms such as support vector machines
(SVM), simple logistic, random forest, and a combination of classification and clustering
were used to deal with the problem. In this study [2], they proposed the AntiMalDroid
systems where the recognition of malware is conducted based on the behavior which uses
the ”logged behavior sequence” as the feature of ”SVM model training and recognition”.
Thus, several techniques and methods using Machine learning algorithms are proposed by
various researchers so that malware in the Android system could be detected effectively.

1.2 Research Rationale

Malware and their detection always encountered several issues as everyday new and emer-
ging malware are introduced and developed by several hackers or attackers. Since the
invention of computer systems, there has been malware targeting them for hacking and
stealing confidential data. As the use of mobile and tablet is growing hugely, cybercrim-
inals are increasingly targeting these devices. Android is the most dominant smartphone
operating system in the market, and it is an open-source platform where anybody can
develop an Android based application. It provides the flexibility of installing third party
malicious applications to get confidential data from the users. As the Android system is
modified by several developers, the attackers could modify the system files by clicking the
security system of androids easily without letting the users know about it. As the users
are also not much aware of malicious third-party applications, these issues are widespread
and undetected. This research is responsible for detecting these types of malware affect-
ing Android systems by using the ensemble learning to provide a safeguard to protect the
Android system against unethical intrusions.
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1.3 Research Aim

The research aims to analyze and gather knowledge about the malware detection sys-
tems effectively and understand the workflow of their detection by their behavior with
the help of ensemble learning. The authentic secondary resources are responsible for gath-
ering knowledge about the system and its infrastructures for analyzing these processes in
terms of preventing malicious attacks and saving confidential data efficiently. The goal
of this review is to emphasize how tree-based classifiers or ensemble classifiers are best
for classifying the anomalies and malware in Android mobile phones and its usability.

1.4 Research Objectives

• To determine the effective work which can identify the new mobile application
malware

• To determine the feature selection technique chi-square for achieving better accur-
acy.

1.5 Research Questions

• How accurately our proposed work can identify the new mobile application mal-
ware?

• How the feature selection techniques help us to achieve better accuracy?

1.6 Research Hypothesis

H1: The proposed work can identify the new mobile application malware very accurately.
H0: The proposed work cannot identify the new mobile application malware very accur-
ately.
H2: The feature selection chi-square techniques help us to achieve better accuracy.
H0: The feature selection chi-square techniques do not help us to achieve better accuracy.

1.7 Conclusion

Ensemble learning was proposed in the year 1964 for classification purposes. Since then it
has come a long way and it is well-liked and widely adopted among the machine learning
community. By training multiple base learners and discriminating strong learners from
weak learners, ensemble learning reduces error significantly. In this paper, we are focused
on taking benefit of the advantages of the ensemble model by enhancing a traditional
and efficient classification model: Decision Trees with gradient boosting. The work also
focused on feature extraction and feature selection, and the model was then trained
and tested. Its performance is evaluated using metrics like accuracy and F1 score. The
model’s performance is then compared with traditional models like SVM and Naive Bayes
to see if the ensemble models outperform traditional models.

The remaining sections of the research paper are as follows: Section 2 discusses the
related work, Methodology carried out for the research is described in Section 3. The
design specification is described in Section 4, while Section 5 covers implementation.
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Section 6 covers the Evaluation of the results, followed by a conclusion and future work
in Section 7.

2 Related Work

Human society depends on technology and the internet now more than ever to carry
out their daily activities. The adoption of the internet has rapidly risen in the last
decade largely thanks to smartphones. With the introduction of the first Android phone
in 2008, the use of mobile phones has been exploded since then. Besides using mobile
phones for audio and video calls, people also use Android applications downloaded from
Google Play store for various purposes. The rise in popularity of android phones has
gained the attention of cybercriminals and threat actors. This has led to the plethora of
mobile malware applications targeting mobile phones running Android operating system
to conduct nefarious activities such as stealing money or sensitive information, IP theft,
extortion, and more. These malware applications are designed by the creative hackers
that require intelligent processing and detection agents to detect.

Traditional signature-based detection models that worked in the last many decades
have become inadequate in this age as they simply cannot cope up with the sheer num-
ber of malware application developed daily. But from the last several years, Machine
learning has produced critical results with their feature selection and malware classific-
ation approaches. This work will review the important classification methods that were
used to detect the anomalies in the mobile application domain together with the brief
background of some traditional approaches. The goal of this review is to emphasize how
tree-based classifiers or ensemble classifiers are best for classifying the anomalies and
malware in mobile phones and their usability.

2.1 Empirical Study

One of the biggest inventions in terms of technology is mobile phones. In the early days,
people use mobile phones for making calls, sending text or multimedia messages. With
the invention of smartphones, people use mobile phones for surfing the internet, listening
to music, downloading, and sharing purposes besides calling and sending messages. The
evolution in the use of these mobile phones can be seen from the initial days to the present
day that there is a huge change that has occurred throughout these days. The Google
Play store is the repository in the Android platform from where Android applications
can be downloaded. People use these Android applications to fulfill various purposes.
It is also a common trend that people pair their Android phones with different web
applications or with other individuals at the public places that will increase the probability
of data-stealing through interconnected mobile malware applications. These malware
applications are designed by the creative hackers that require intelligent processing and
detection agents to detect.

According to Suleiman, the malware is nothing but a malicious program that gets
injected in the different process by the cybercriminals, and without the knowledge of
the owner, the criminals enter into the system and cause damage by getting personal
or sensitive data from the system and use it for nefarious purposes [3]. There are
different approaches to minimize the risk and to keep the cybercriminals away from the
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system. In this research, the concept of ”Ensemble Learning Algorithm” will be taken into
consideration to incorporate with the Android phone so that it can detect any malware
activities that might be injected by any unwanted sources. If the malware or different
viruses get identified by this algorithm, then it will be quite easier for the developer of
the Android phones to incorporate this algorithm into the system so that users will not
face any sort of unwanted activities while using their phones. The malware researchers
also use static analysis and dynamic analysis to detect malware. A Static analysis of
software is performed without executing the program. Static analysis technique based on
system calls, source code, and taint is shown in figure 1. Dynamic analysis requires that
we execute the program, often in a virtual environment.

Figure 1: Static Analysis based on (a)system calls, (b) taint, (c) source code

In the early days, Antivirus software was used to confront Android mobile malware.
Android phones were equipped with an antivirus scan tool that can detect malware
functions in smartphones. Before incorporating the software, it needs to make sure that
it runs of complete scan and does not overlook any sort of vulnerabilities [4]. According
to Sakir, we must keep the software updated with new malware signatures, so that it can
recognize the present version of the malware and keep our Android device safe.

Traditional defense techniques such as Antivirus became inefficient in recent times,
as they simply could not keep up with the pace of development and introduction of
continuously updated malware. Moreover, as they rely on signature-based detection,
they were incapable of defending against zero-day attacks or to detect a new malware.
The antivirus software also failed to stop short message service (SMS) scams that are
used to steal the user data [1]. According to Oberheide, it almost took around 48 days
for an antivirus scanning tool to detect new threats that can enter the system [5]. In
this study [6], the author reports that the use of network-controlled bots than human-
controlled bots to target mobile phones are highly appreciated among the cybercriminals
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and black hat hackers. Then, IDS systems were developed and unlike Antivirus software,
IDS has proved to be vital in malware detection with their anomaly and misuse-based
IDSs [7]. While misuse-based IDS were not successful as they failed to detect unknown
malware, the anomaly-based IDS were widely used since they detect malware based on
anomalous activity. But in their research [8], the author claims that with the evolution of
malware and increased sophistication techniques these IDS systems are of very little use.
Hence, they suggest that the Machine Learning strategies are excitingly good because
they predict the malware according to the labeled or unlabeled data sets and provide
stable detection strategies with excellent model accuracies.

In the last many years, Machine learning has been used to classify malware targeting
computers, servers, and computer systems. In recent years, with the availability of more
samples of Android malware, Machine learning is increasingly used to detect malicious
applications. In this research, the concept of the ”Ensemble Learning Algorithm” was
taken into consideration to incorporate with the Android phone so that it can detect
any malware activities that might be injected by any unwanted sources. The concept
of Ensemble Learning is nothing, but the way of diversification based on the decision of
machine learning is called ensemble [9]. It can be said that the decision of an individual
cannot be more appropriate compared to a group of feedback or rating such as if someone
wanted to buy a car, that person must consult an individual and get a single positive
or negative response. Still, if that person asks a group of people to make a choice based
on a group of cars, then they will come up with a conclusion after a certain discussion
by seeing the negative and positive side of the cars. The exact similar things happen in
machine learning where the diversification of results is considered for taking few certain
decisions. It also incorporates machine learning but grouping a bunch of diverse decisions
and come to one single result or conclusion is the main responsibility of this algorithm
technique [10]. The method of algorithm combines with different techniques of machine
learning into the single predictive model to decrease bias, Variance, and make betterment
to the prediction. These terms can be technically called boosting, bagging, and stacking,
respectively.

The role of ensemble learning in detecting the android malware is of prime importance
because the ensemble learner combines the uniqueness of different ML techniques as a
multilevel or tree-based classifier to eliminate the learning loss and increase the variable
immunity of the classification system. The main reason behind using machine learning
algorithms in the Android system for malicious behavior detection of the applications is
due to the intrinsic nature of malware that it can remain quite a long time without getting
notified. Most of the traditional approaches for preventing malware are based on keeping
the malware signature updated in the detection system. So, the use of antivirus will not
be helpful to detect any existing malware which is there for a long time in our system but
hidden as its signature has not yet been identified as malware or any new unencountered
malware. Whereas when we use machine learning algorithms, their nature is to learn
from their experience and as models are based on certain features, so they will help a
great deal when we put it to use in the proposed system where even without updates we
can uncover any new malware which we thought as a safe application.

In this study [11], the authors applied Bayesian classification to group the applic-
ations into benign or suspicious. They used 1000 samples of each benign and malware
application for the training and classification. Whereas in this research [12], authors used
permission and call flow graphs for training SVM models to classify benign and malicious
applications. In a research by Aravind and Paramvir [13], they tried to classify malicious
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android applications using Näıve Bayes, Random Forest, J48 Decision Tress, K-star, and
Simple logistic technique. This work concludes that simple logistic technique has achieved
an accuracy of 99.7 percent on the dynamic application dataset the choice of classifier
and the less data sample often compromise the detection precision and resulted in false
positives. A behavior-based malware detection system by Iker and Simin [14] use k-means
algorithms on system calls behavior to detect malware. Hemalatha and Selvabrunda in
their research [15] used mixed-kernel support vector machine (SVM) model to detect the
android malware with the use of metrics that support precision issues and achieved an
accuracy of 96.89 percent. In this reported research [16], the author claims that net-
work traffic analysis and modelling of the imbalanced network traffic is important for the
feature selection, boosting the immunity of the detector and the resulting accuracy of
the ML classifier. A signature-based malware detection approach using Machine learning
algorithms is shown in figure 2 [17].

Figure 2: Malware detection approach

According to many researchers, the use of multi-level classifiers increases model ac-
curacy over single classification algorithm. In the recent past, the concept of decision
trees (multi-level classifiers) together with ensemble learning was introduced that in-
creases the model efficiency and accuracy. An example of this concept was studied in this
research [18], where they uses the decision trees, random forest, and gradient boosting
to analyze the multi-hierarchy classification that gave 97.92 percent of accuracy in the
mobile malware detection. Another multi-level ensemble detector is reported in this re-
search paper [19], where they have developed the multi-level classifiers (Droid Fusion) i.e.
the base classifiers at the lower stage and the predictive ranking-based algorithm at the
higher-level to increase the classifier accuracy by eliminating the security threats to the
android system. DroidMat [20], where Android malware is detected using k-means clus-
tering after computing the required number of clusters by Singular Value Decomposition
(SVD) approach. They present experimental results based on 238 Android samples from
34 families together with 1500 benign apps. The evaluation of the different ensemble or
tree-based classifiers were discussed in the research by Sohel Rana and Andrew H Sung,
where they have used the Random Forest [21]. SVM, Extremely Randomized Tree, and
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Gradient boosting tree together with the substring-based methods are used to eliminate
the improper and unwanted information from the dataset, thus reduce the feature size
to avoid the larger data dimensions. The authors also argued that on some data set
and metric variation Gradient boosting provides the best result, but it consumes a lot of
training time. As our research deals with gradient boosting tree for malware detection we
took this point in our research that how to reduce the training time when applying the
Gradient boosting ensemble classification. In a study Fauzia [22], to detect the malware
ensembles were deployed with decision trees i.e. stacking, boosting, and bagging. The
author argues that the gradient boosting will perform better if the weights of the boosting
algorithm is treated as non-heuristic. In the research by Kichang Kim, they implement
the tree boosting ensemble learner to predict the malicious application by calculating the
risk score based on the code evaluation strategies that improve the performance of the
learner [23].

Various traditional methods have been used, which uses the blacklisting approach to
detect the malware. Since they were unable to detect new malware these approaches were
of little use. The research papers studied for this dissertation all cover various techniques
like static analysis, dynamic analysis, and Machine learning approach.The Static analysis
fails at sophisticated code obfuscation used by the attacker and also at polymorphic and
metamorphic malware. Dynamic analysis needs a secure isolated environment and the
malware may behave differently in the two environments (virtual and real), besides, some
actions of malware are triggered under some specific conditions like (data, time, platform)
in the real environment which may not be detected by the secure virtual environment.
Using machine learning, we can overcome these drawbacks as the models are based on
features. When it predicts the malware or benign nature of application based on the
features that are significant, and with proper training of the models, it may even uncover
the malware that is new or are still hidden in plain sight. In this work, we proposed
the decision tree with gradient boosting strategy that will consider non-heuristic learning
weights optimization, selection of the best features through network feature dataset,
reduce the classifier training time with the autonomous elimination of the unwanted tree
extensions, and the fast boosting algorithm that solves the multi-classification problem
instead of binary classification and yields the best classification accuracy.

3 Research Methodology

The process to build the Android malware detection system will be done in a series of
steps as shown in figure 3. First, the dataset that we will be working on will be taken to
the system. It will be followed by data preprocessing. In this step, understanding of the
data is established. The data is checked for missing values, outliers, etc if found any of
these issues, the necessary preventive measures are performed. Then feature extraction
and selection are performed. In this stage, we are using chi-square as a measure to score
the features based on the significance level in reaching to the target variable using that
feature. The score is then compared and the one’s with the lesser score is dropped out
of the data. Then the proposed models are implemented. The models which will be
implemented are decision tree with Gradient Descent discussed in section 4.1, Support
Vector Machine (SVM) discussed in section 4.2, and Naive Bayes in section 4.3, The
evaluation metrics discussed in section 4.4 are accuracy score and F1 score.

The proposed models for a malware prediction system put together in this paper are
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Figure 3: Proposed Model

Decision trees with gradient descent, SVM, and Naive Bayes. All these models fall under
the category of classification models. Classification models work with the data to identify
which class or category an observation belongs too. The first step is to train the models
on the training data, followed by testing on the test data. Training and test are nothing
but the subsets of the entire population. The training set is used to train the model
to learn and test the model for its performance is done using the test data. The values
in actual data and one predicted by the model are compared for the accuracy score is
generated.

4 Design Specification

The machine learning models and evaluation metrics that are implemented in this pro-
posed system are described below and the conceptual framework is shown in Figure 4
:
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Figure 4: Conceptual Framework

4.1 Decision Trees with Gradient Boosting

For ensemble we need a base algorithm, a final algorithm is added as a function on the
base algorithm. The model is improvised by implementing step learning. The ensemble
techniques which are popular now-days are boosting and bagging. Boosting is adding a
weight to the classifier and bagging is taking prediction average over a classifier group.
To generate a decision tree ensemble, we are using gradient boosting. In decision tree,
we implement a step that is weight, a random value. We run the model through various
step sizes, to find the optimal step size. As in this method, a larger value of step-size will
make us skip the local minima.

4.2 Support Vector Machine (SVM)

Support Vector Machines (SVM) shows the data points in training data in the space
that separates the category by a distinct gap known as a hyperplane. In training SVM
model, the data points are put in their respective category group in the space. The
hyperplanes are then generated to mark the distinct groups. It is used for both regression
and classification purposes. SVM adds a margin in the hyperplanes, which is the distance
between the nearest data point in a class.

4.3 Naive Bayes

Näıve Bayes is a probabilistic classifier based on Bayes theorem which assumes that there
is a strong relationship within the features. It forms a simple Bayesian network model
coupled with Kernel density estimation to achieve high accuracy.

4.4 Proposed Evaluation Metrics

For a machine learning model, the evaluation metrics are an integral part. There is no
point in creating a machine learning model that does not have a well-defined feedback
mechanism. For a model, we receive its feedback from the evaluation metrics; we keep on
improving the model performance until we reach the desired accuracy score. Evaluation
metrics guide the performance of a model. In the proposed system, the performance of
the models are evaluated using the following parameters:
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4.4.1 Accuracy

Accuracy is the percentage of the sum of all the correct predictions with the total num-
ber of observations. The accuracy score is a statistical measurement scale for a model.
Accuracy is the number of values that the model can predict efficiently. Mathematically
it can be represented as:

Accuracy = (True positive + True negative /(True positive + True negative + =
False-positive + False negative)

True Positive is the number of actually true values, and the model also predicted to
be true. True negative is the number of actually negative values, and the model also
predicted to be negative. False Positive is the number of actually negative values, and
the model also predicted to be true. False-negative is the number of actually true values,
and the model also predicted to be negative.

4.4.2 F1-Score

F1-Score is the harmonic mean of precision and recall values for a classification problem.
F1 Score is mathematically represented as:

For the F1 score, the harmonic mean is taken into consideration as it punishes extreme
values more. F1 Score is within the range [0, 1]. There has to be a proper balance between
precision and recall values. As with a high value of precision with a low value of recall,
provides us with an accurate model, on the contrary leaving values that are out of the
classification range. For an efficient model, the value of F1-Score is on the higher end.
Precision is closeness to the actual values, calculated by using the below formula:

Precision= True Positive / True Positive + False Positive

The recall is the ability of the model to find the relevant values.

Recall= True Positive / (True Positive + False negative)

True Positive is the number of actually actual values, and the model also predicted to
be true. The real negative is the number of actually negative values, and the model also
predicted to be negative. False Positive is the number of actually negative values, and
the model also predicted to be true. False-negative is the number of indeed actual costs,
and the model also predicted to be negative.

5 Implementation

In this section, we describe how the implementation was carried out to build an efficient
classification model using ensemble learning. The modelling and feature selection process
is also described in this section.
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5.1 Environment Setup:

The proposed model is coded in the python programming language. The python distri-
bution widely used for data science, Anaconda software, and Jupyter Notebook (IDE) is
used for writing and executing the code on Microsoft Windows 10 platform.

5.2 Dataset Description

The Malgenome mobile malware dataset provided by North Carolina State University is
used in this research for training and testing the model. The publicly available dataset
was downloaded from figshare [24] in CSV format. The dataset consists of 215 mobile
application features with the 3799 samples (1260 malware apps from Android malgenome
project and 2539 benign apps). The dataset feature involves trsact, onService-Connected,
ServiceConnection and send SMS etc. Which will be used for our analysis.

5.3 Package Installation

The following required libraries and packages are installed to perform our research:

1. Numpy: Numerical Python or Numpy library is used for array related operations

2. Pandas: Pandas Library in python is used for data manipulation and analysis

3. Matplotlib: Matplotlib library in python is used for plotting the graphs

4. Scikit Learn: Scikit Learn library is the Machine learning package of python
programming language. It contains optimized code for various machine learning
algorithms like the random forest, logistic regression, näıve bayes, etc.

5.4 Exploratory Data Analysis

Once the required packages are installed, data is imported into the system, we perform
data pre-processing where a basic statistical description of all the features is done, where
the count, mean, mode, standard deviation, and quartiles are calculated as shown in Fig
5.

Figure 5: Statistical description of all features

Then the data is checked for missing values and this dataset does not contain any null
values or missing values.
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5.5 Feature Selection

One of the most important steps in a Machine learning classification is selecting significant
features for training our model. Feature selection is the process of selecting the correct
number of features to train our model and ignore insignificant feature to increase the
precision and to reduce training time. The data features and target set are separated
and then features are evaluated for their level of significance using chi- square method.
There was a total of 216 application features in the dataset. It was discovered that by
using chi-square that out of 216 application features only 98 are significant.

5.6 Modelling

The objective of this research was to build a model to classify Android malware applic-
ation into malware or benign using ensemble learning. We have used Decision tree with
gradient descent algorithm as an ensemble learning model and support vector machine
(SVM) and Näıve Bayes algorithms are used for comparative study. After the feature se-
lection using Chi-Square method, the data is then checked for overfitting or underfitting.
By overfitting, it is meant that the features that are fed into model are too much for the
model to handle. Underfitting is when the number of features in the model are too few.
Both affect the performance and the accuracy of the model. The models are then built
and tested for accuracy and f1 score.

6 Evaluation

The models are implemented, and their performance is evaluated, it is found the Gradient
Boosted Decision Tree outperforms the other two models i.e. SVM and naive bayes.

Figure 6: Model Scores

The scores for the implementation are shown in figure 6 above. From the figure, we
can see that the best scores belong to Gradinet boosed Decision Tree or GBDT . Gradient
boosted Decision Tree has an accuracy score of 99.12% and F1 score of 99.12, Support
Vector Machine has an accuracy of 99.04% and F1 score of 99.04 and the Naive Bayes
has the same scores.
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7 Conclusion and Future Work

The rise in the adoption of Android smartphones continues to grow and this is why An-
droid malware is such a lucrative business for bad actors. As we observed in this research,
the traditional security measures are not efficient in mitigating the risk of intrusion due
to malware. As attackers use sophisticated techniques and measures, there is a dire need
for an efficient safeguard to protect Android systems from illegal intrusions. The aim of
this research was to find the ensemble model performance in predicting the existence of
malware in the android system. The Decision tree with gradient boosting algorithm was
trained on the dataset and the ensemble model had an accuracy of 99.12 in predicting if
an application is malware or benign. It was found that the ensemble model outperforms
the Support Vector Machine and Naive Bayes by a slight margin. So, with this, we may
conclude that all the models are good at predicting if a particular application is benign
or malware and our ensemble model have higher success rate than SVM and Näıve bayes
models using the same dataset.

For future work, we can compare the various ensemble models like AdaBoost, XG-
Boost and check which one is best for the said purpose. We can also apply neural networks
and see the difference in the performance.
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