

Android botnet detection using signature

data and Ensemble Machine Learning.

MSc Academic Internship

MSc Cyber Security

Viraj Kudtarkar

Student ID: 18178499

School of Computing

National College of Ireland

Supervisor: Ross Spelman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Viraj Kudtarkar

Student ID:

18178499

Programme:

MSc Cyber Security

Year:

2020

Module:

MSc Internship

Supervisor:

Ross Spelman

Submission Due

Date:

17/08/2020

Project Title:

Android botnet detection using signature data and Ensemble

Machine Learning.

Word Count:

5120 Page Count: 16

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the

National College of Ireland’s Institutional Repository for consultation.

Signature:

Viraj Kudtarkar

Date:

17 August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Android botnet detection using signature data and

Ensemble Machine Learning.

Viraj Kudtarkar

18178499

Abstract

As the use of smartphones has increased intensely in the past decade for daily activities such as

socialising, banking, online shopping and communicating with friends and family. Android operating

system is very popular and used universally for smartphones and tablets. Therefore, threats for this

android platform is emerging very rapidly. Exploiting smartphones are comparatively easy and more

effective than exploiting traditional computer systems and thus attackers started developing

applications with hidden botnet capabilities. These applications use to take control of user’s device

without his permission to steal sensitive data or launch denial-of-service attack with the help of

Command and Control (C&C) servers. There are many proposed solutions available to detect botnet

application using various approaches. In this paper, I proposed a hybrid model for botnet detection

using a combination of signature-based detection at initial layer to perform abrupt detection. At 2nd

layer ensemble machine learning method is used to identify botnet components with the help of

extracted permissions and intents via static analysis. I compared 5 machine learning classifier

algorithms and selected three with highest accuracy to create ensemble model. To extract the features

to prepare efficient dataset for training and testing of this machine learning model I analyse 375

applications with botnet capabilities and 1105 benign applications from CICInvesAndMal2019

dataset which is novel and publicly available for researchers by the Canadian Institute for

Cybersecurity. To confirm this result, we used Virus Total as a reference point which also showed

comparable results of botnet detection. In this experiment, we successfully obtain 95.4% accuracy

with the Logistic Regression classifier which was slightly increased to 95.8% after assembling top

three algorithms.

Keywords: Android Botnets, Ensemble Machine Learning, Signature-Based detection, Permissions,

Intents, and DDoS prevention.

1 Introduction

In past few years, smartphones and tablets plays integral part in our life due to its seamless

capabilities and pocket friendly structure. Therefore, these devices outplaced traditional and

heavy-handed computers. These devices are used to carry out all the activities from

communicating or socializing, gaming, online shopping to sensitive activities like banking or

using online payment systems. All the personal and sensitive information gets exchanged

between these devices and corresponding application servers; sometimes user store it in the

application or device which also provoke attackers to target smartphones. Amongst the many

operating system android is most popular OS used in smartphones; it rules the market with

86% share in the available applications for the first quarter of 2020 according to [4] with the

1.6 billion users worldwide [5]. As per statistics, Google Play store was hosting 2.896 million

android applications in June 2020 [6]. Android is an opensource platform which is available

to users with huge potentiality to develop third party applications encourages botnet writers

2

with evil purpose to develop more such applications. These applications can be hosted on the

official google play store or other third-party stores.

Upon successful infection of device by botnet application, the attacker acts as botmaster and

the infected device started acting like a zombie. Attacker gain full control of the infected

device remotely without users’ consent. Botmaster use command and control (C&C)

mechanism to communicate with these Infected zombies [8]. These botnets are capable of

launching Denial-of-Service attacks, brute-force attack, stealing information such as contact

details, call logs, location information, IMEI information of the device, network operator

details, voice mail numbers and even much more sensitive information such as bank

transactions and passwords, credit card details from the infected device depending on the

motive of the attack [9]. Botmaster also gets ability to intercept and read SMS or Email

messages, send fake messages or emails without permission of the device owner which can

further lead to SMS frauds or phishing attacks. Furthermore, He can carry out unwanted

installations of malwares or banking trojans [14], [15]. Various botnet variants found in the

year 2011 such as GoldDream, PjApps, Plakton and DroidKungFu. All of them were

communicating via HTTP protocol with their C&C servers. The attack executed in 2012,

using the Eurograbber variant of Zeus affected 30, 000 consumers of various banks in Europe

and cause loss of nearly $36 million euros [10]. In a report published by Forbes, upstream

notified that the malicious applications on play store are getting doubled every year with 55%

higher transaction frauds. Last year around 43000 devices were infected by the 98000

malicious applications [7]. As per Kaspersky, 60% of android malware contains some level

of botnets components [11]. Also, the mobile botnets are considered as highly reliable

compared to traditional botnets as users very hardly shut down their smartphones [12], [13],

[14]. These mobile botnets have three basic components which are (C&C) command and

control server, infection vectors and the topology. The C&C server is the most essential

component which is used for sending commands and receiving information between

botmaster and bots. Infection vectors are responsible for transmission of bot binaries into the

device. And the topology is for organizing the bot. Usually centralized topology is used while

very few botnets use decentralized topology to formulate the zombies [14].

Figure 1: Development of new Android malware worldwide from June 2016 to May 2019 [16].

3

Considering the rapid growth of the botware applications and the immense potential they

hold to exploit android smartphones it is an endless need to find more and more reliable

mitigation. I have conducted this study to find a compatible solution which will help to

eliminate botnet applications before installation. In this paper I proposed a two layered

approach to identify android botnets using both signature-based detection at initial layer and

static analysis using ensemble machine learning at 2nd layer.

This report is expected to comply with our research question: Can use of signature data and

ensemble machine learning be able to detect android botnet applications.

The rest of the paper is organised in following manner: In Section 2, related works are

discussed. In the 3rd section, research methodology is discussed. Section 4 presents the

design specification. 5th section presents the Implementation. In section 6, evaluation and

results are mentioned and final 7th section is about conclusion and future work.

2 Related Work

Identification of botnet application is very crucial for prevention of cyber-attacks in recent

times. Research related to mobile application security is always evolving as this field is new

and boosting rapidly. There are various approaches proposed by researchers from all over the

world to identify and prevent mobile malware and botnet applications. Before developing this

proposed system, an in-depth literature review was conducted to learn about already existing

solution. In this section I have highlighted existing research works using many different

approaches and methods to determine and restrict mobile botnets attacks. This section is

divided into multiple sub-sections based on approaches used for detection. To improve the

accuracy of classification this review was very imperative signature-based detection

Signature based approach for detecting applications with malicious components is pretty

simple compared to other approaches. It is done by comparing the unique data collected from

the application with the data which is previously analysed and stored in the database. It will

help in quick determination and also to save processing power. But the minor changes in

code allows bypassing signature-based analysis which is the main drawback of this method.

Databased has to be updated regularly to defend against newly designed applications. Also, it

is not capable to detect zero-day attacks.

Oh, Jadhav and Kim [1], has proposed a multi-layered system using signature-based

detection and behavioral analysis. The system is segregated into 5 main layers and at each

layer a specified task will be performed. First layer was responsible to extracts the hash value

from the provided application to verify if the application was previously analysed or not by

comparing it with the data stored in the database. Further it will be forwarded to next layer to

collect the data which is required for behavioral analysis by conducting static and dynamic

functions. At third layer this data will get parsed and converted into usable format. And

finally, the decision will be made by considering on both signature and behavioural analysis.

Machine Learning Approaches

4

In this sub-section I have discussed various approaches based on machine learning for

detection of botnet applications. It also includes research related to detection of malware

applications, since it has resemblance with detection of botnet detection.

2.2.1 Static Analysis Based Detection

The static analysis is performed by extracting the feature from the application without

running the application by doing reverse engineering of the application. These features are

used for training testing machine learning model to determine if the application is botware or

benign.

Yusof, Saudi and Ridzuan [2], use android permissions and (Application Programming

Interface) API calls for the classification of botnet. Researchers used 50 application to extract

5, 560 samples from the Drebin dataset for training and 800 samples are taken from Google

Play Store for testing purpose. feature selection was performed to select best 16 permissions

and 31 API calls which are most related with android botnet to perform classification.

Random Forest, Support Vector Machine, Naïve Bayes and K-NN algorithms are used to

evaluate the results. Random Forest algorithm was superior 99.4% accuracy and false

positive rate of 16.1%.

In [3], Tansettanakorn, Thongprasit, Thamkongka and Visoottiviseth used similar method to

develop a system named as ABIS (Android Botnet Identification System) to identify the

detect botnet applications. The ABIS server is capable of connecting to the Google Play

server. As per user requirements this ABIS server evaluates APK package from Play Store to

analyse the requested application. The dataset containing 14 botnet families with 1,929

applications were used with 150 additional clean applications which are downloaded from the

play store.

63 permissions and 1,414 API calls were used to train seven classification algorithms

including Random Forest, MLP, Decision Tree, J48, SVM, SMO, Naïve Bayes and Bagging.

Random Forest achieved best classification results with 96.9% of recall with 4 Permissions

and 41 API calls.

5

3 Research Methodology

In this paper, we have proposed a unique method to identify hidden botnets from android

applications by making use of signature-based detection with ensemble machine learning. In

the previous sanctions we have highlighted some of the existing works which are already

done by researchers to detect the botnet applications. The linear-sequential model which is

also known as waterfall model was used to execute this research. This model is considered

best for AI and machine learning where requirement of are nominal. We divide the entire

process into small components.

Figure 2: Waterfall Model

1 In the Requirement phase, the objectives and goals of this research are defined.

Thorough literature review was done to understand the previously implemented

solutions.

2 During the analysis phase, the data required for testing was collected and cleaning of the

data was performed to get quality data for testing.

3 Design phase involves finalizing the features, constructing the database to store the

signature values, finalising dataset and selection of classification algorithms.

4 At the coding phase actual implementation and building of the model was completed.

5 Actual evaluation of the implemented model was performed during this stage where we

validated the results obtain from coding phase.

6 All the outcomes of the previous phases are documented in this phase.

We used static analysis to extract the required features from the android applications such as

MD5 hash values, package names, dangerous android permission and intents. From these

extracted features MD5 hash values and package names are used for signature-based

https://www.thesaurus.com/browse/previous
https://www.thesaurus.com/browse/documented

6

detection, where android permissions and intents are used to train and test the machine

learning model which is used at second layer for classification. Similar approach is used by

previous researchers [14], [17], [15], [18], [19].

3.1 Dataset

For conducting this research, we have used CICInvesAndMal2019 dataset which is openly

available for researchers and published by the Canadian Institute for Cybersecurity [20]. This

is very comprehensive and novel dataset which is not used in any of the research conducted

to identify botnet applications. This dataset contains 426 samples of malware applications

and 5,065 samples of benign applications [21]. In this study, we selected only 384 samples of

botnet applications and 1105 samples of clean non-malicious applications due to the time

limitations. We split the dataset into two parts for training and testing, where the 70% of data

is assigned for training and was 30% is assigned for testing purpose. As these applications are

malware applications and only malware category and family classification were done, we

validate them by scanning via the Virus Total API. Only the applications which are identified

as botnet applications are used in this research.

3.2 Data Extraction

To decompress the APK files and extract the required features from the source code of

selected android applications, we tried and tested multiple reverse engineering tools like

APKTool, Aapt, Simplify, Dex2 jar with JD-GUI which are available online. Finally, we use

APKTool for most of the applications which is smoother compared to others. It is possible to

clubbed with personalized scripts to automate the process. With the help of this tool we

decoded the AndroidManifest.xml file which is present in the root directory also

disassembles the DEX files to smali files to make them readable. We collected essential

information such as uses−permissions and intents from manifest file where it is stored in an

android application. The application gets installed successfully only upon receiving the

confirmation from the user for all the requested permissions and intents. We also extracted

MD5 hash values from the botnet application and package name from all the benign

applications with the help of PackageManager. The data collected from above extraction

methods was converted into CSV format file. Feature Selection

3.2.1 Signature Data (MD5 Hash Values and Package Names)

At first layer to perform signature-based detection we used MD5 hash values from the botnet

applications and package names which are unique for each application are extracted from the

benign applications respectively. We have used these features at initial level to diagnose

botnet applications in our proposed method. In the beginning, we built our database of with

these extracted MD5 hash values and package names. At the time of evaluation, the

7

application first tries to compare the hash value and package name with the existing values

which are present at the database.

3.2.2 Machine Learning Model (Permissions and Intents)

Various samples of android applications both botnet as well as normal were studied and

analysed thoroughly to understand the most essential features. If the higher number of

features are used for prediction, then heavy processing power is required to process

additional data which also takes longer time. <uses−permission> tag represents the

permissions which will be requested by the application at the time of installation. For

example, an application which requests combination of READ_CONTACTS and

INTERNET or WRITE_SMS, SEND-SMS permission will collect all the contacts and

related information stored on the device and send it to the botmaster using the internet or

SMS service without users consent [22]. it is observed that botware applications seek higher

amount of permissions than benign applications. Similarly, Intents indicates to the system

that a specific event has occurred. In an application Intents permit binding among

components internally as well as externally. Our analysis affirms that combination of

requested permissions and intents have direct relations with malicious activities and are

highly capable of predicting botnet applications. A comprehensive study with the frequency

analysis was performed for the of both applications to select the final set of permissions and

intents which are most prominent in detection of applications with botnet capabilities.

Finally, the 18 features with top 15 permission and 3 intents which are prominent in detection

of botnet application are selected. If the higher number of features are used for prediction,

then heavy processing power is required to process additional data which also takes longer

time.

Table 1:Prominent Features Used to Detect Botnets.

Feature Name Type

READ_SMS Permission
READ_CONTACTS Permission
WRITE_SMS Permission
SEND_SMS Permission
RECEIVE_BOOT_COMPLETED Permission
RECEIVE_SMS Permission
WAKE_LOCK Permission
ACCESS_NETWORK_STATE Permission
INTERNET Permission
ACCESS_WIFI_STATE Permission
ACCESS_FINE_LOCATION Permission
ACCESS_COARSE_LOCATION Permission
CALL_PHONE Permission
READ_PHONE_STATE Permission
WRITE_EXTERNAL_STORAGE Permission
POWER_CONNECTED Intent
BATTERY_LOW Intent
BOOT_COMPLETED Intent

8

4 Design Specification

Figure 3: Application Work Flow Diagram

In this section we have presented the work flow and architecture of our proposed two layered

android botnet detection model. This tool is capable of detecting applications with botnets

capabilities. Figure 3 shows the flow diagram of design of the model.

4.1 Building and Training the Model

The steps include reverse engineering of botnet and normal applications to extract feature

vectors. SQLite database was created and data collected for signature-based detection was

stored in the database, i.e. MD5 hash values collected from botnet applications and the

package names of benign applications. For machine learning based model features selection,

cleaning and pre-processing of the dataset and splitting the dataset was done for training and

testing purpose. In next phase, 5 different machine learning classifiers (Random Forest,

Logistic regression, Decision Tree, Naive Bayes, SVM) are used on final dataset and

analysed the results. Top three classifiers are selected with best accuracy to build assemble

model based on voting mechanism.

9

4.2 Detection

Once the model is built, at the time of testing the application will first check the database for

the MD5 hash values and package names, if the value is matched it will display the results

and terminate the process. The new application is received for which the signature value did

not matched with the values available in the database, it will pass the function to the next

layer where machine learning based classification will be performed using assemble method

and the result will be displayed.

5 Implementation

In this section, we have discussed about final implementation and coding to build our android

detection model. The R file contains the step by step process and implementation of all steps

and processes performed towards classifying and building our model were implemented with

Python 3.8 using Pycharm 2020.1. All the Packages and libraries which are present in python

help functions work effectively. We install all the necessary packages and libraries before

calling their corresponding functions.

Building Database: Sqlite3

We used an SQLite database to store the android application’s unique identifier “Package-

name” and MD5 hash key-values. Database helped us in making our system more efficient by

returning responses in very less time. Database contains a table named “Apps” which stores

all the app’s information. We have data of almost 600 application stored in our database for

testing purpose. This data needs to be updated periodically to get better detection results.

Pre-processing and Cleaning of Dataset

For training of our ML models, we selected 18 features (permission and intent), which have

most significant capability of distinguishing botnet applications. In pre-processing part, we

removed the noise from data by deleting rows which are incomplete. Also, we dropped the

unnecessary columns which are not necessary for our training process. Once the filtering

process is completed, we split the data into 2 parts with 70:30 ratio, 70% for training and

30% for testing purpose.

Machine Learning Model

Before creating final model, we trained five different classifier algorithms which includes:

Support Vector Machine, Logistic Regression, Random Forest, Decision Tree and Naive

Bayes for our machine learning predictor. Models were trained on 70% of dataset in training

process, first the model is created and trained by “model.fit()” method. “Model.predict()” is

used for getting test results out of the model and returns a confusion matrix which is used for

10

finding the accuracy of the trained model. We extracted 3 different performance measures for

our models which are Accuracy, Precision and Recall. After completion of training process,

all trained models were stored in “.pkl” file format.

Assemble Model

To build our final detection method we used ensemble methods in our predictor. Ensemble

method is a technique in which we combine different models to produce improved results.

Ensembles can produce more precise and accurate outputs compared to single algorithm. We

have created voting-based ensemble model which includes three models which are Random

Forest, SVM and Decision Tree. Out of five three best models were chosen on the basis of

accuracy, so only top 3 model with best accuracy results were used in creation of ensembles.

11

6 Evaluation and Results

In this section we have represented the results received from the signature-based detection

mechanism, five machine learning algorithms, and also from assemble method which we

used in this research. We have also described the metrics used for evaluation.

6.1 Signature-based detection

In figure 4 we have highlighted the results received from signature-based detection with

green colour. In this detection process the signature values are getting verified with the values

stored in database for the identification, it gives results in less time compared to the machine

learning based detection process.

Figure 4: Results from Signature based detection.

6.2 Machine Learning based detection

We have also described the metrics used for evaluation

• To calculate accuracy, we divide number of correct predictions by total predictions

done.

• To calculate precision, we divide the number of true positive by the sum of true

positive and false positive.

12

• To calculate Recall, we divide the number of true positive by the sum of sum of true

positive and false negatives.

• To compare two models, we use F-Score. It will help in measuring recall and

precision at same time.

Figure 5: Bar Chart for Metrics

Table 3 shows the metrics scores given by the 5 different algorithms which are used during

the testing phase.

Table 2: Metrics Chart of Different Algorithms

Algorithms Used Accuracy % Precision % Recall % F- Measure

Random Forest 87.6 87.93 97.04 91.72

 Logistic Regression 95.4 94.91 99.4 96.43

Decision Tree 94.3 94.58 98.22 95.95

Naive Bayes 94.8 94.87 98.52 95.95

Support Vector

Machines
83.1 84 15 95.85 89.16

13

After comparing metrics scores of all 5 algorithms it was observed that Logistic Regression

model has the highest accuracy of 95.4% while Naive Bayes and Decision Tree are giving the

94.8% and 94.3% respectively. We did not rely on only accuracy and checked F1 score and

observed that same algorithms are having good F1 score. It indicates that there are very low

number of low false positives and low false negatives values and our model has identified the

botnets applications correctly without having the false alarms. As we know F1 score will be

considered good when it's near to 1, and the model will be considered as unsuccessful when

it's near 0.

From above results we got clear idea about the three best classification algorithms out of five

algorithms which we have used for training. Therefore, we used Logistic Regression,

Decision Tree and Naive Bayes classifiers to build our final assemble model which was

based on voting mechanism.

Table 3: Accuracy Chart of Assemble Method

Algorithms Used
Accuracy

%

Precision

%
Recall % F- Measure

Assemble Method 95.8 98.69 86.59 92.24

Table 4 shows the metrics scores received from the assemble model. Where we are able to

achieve the 95.8% accuracy which is very similar with the scores, we achieved from Logistic

Regression classifier.

6.3 Discussion

After analysing the results, it was concluded that there is no significant difference in

outcomes of Logistic Regression classifier and the assemble machine learning approach

which we have proposed. However, we choose top 3 algorithms as our final model because of

high accuracy and high F-score. Although, there are several studies [2], [14], [18] where

researchers claim of achieving more than 98%-99% of accuracy our hybrid model also

capable of detecting botnets by signature data which will help to save processing power and

time for the already known botnets as well as known benign applications as we have stored

package names of verified benign applications into our database. Model and methods are

good as we are still able to achieve great amount of accuracy. Therefore, to improve the

results to get optimal results we can suggest the improvement in dataset by adding more

feature vectors with dynamic analysis. Other advance classification models or using Neural

networks can help to achieve maximum results.

14

7 Conclusion and Future Work

To conclude this, we can say that we are able to achieve the objective of our research which

is developing an android botnet detection model on signature-based detection along with

assemble machine learning method by identifying the optimal classifiers. This model will

successfully identify the android botnet applications at initial level to prevent the damaged

caused by various cyber-attacks. The analysis outcome of results states that the selected

feature vectors android permissions and intents are highly capable of detecting botnets

correctly. This model has potential to provide a good accuracy and precision score with

minimum false positive percentage. We tried five different machine learning classifiers from

which top three classifiers are used to build the assemble model. Out of five Logistic

Regression classifier achieved the highest accuracy rate of 95.4%. Our hands are tied with the

time limitation for the proposed project, the algorithms are effective in detection but the

feature vectors are not sufficient to achieve best results. As extracting features and analysing

them in order to enhanced the outcomes was so much time consuming.

For the future work of this research we would like to suggest a cloud-based approach by

signature and Machine learning methods. It should also include the android model to

automatically extract only the selected and vital features from the application to achieve the

maximum accuracy.

15

References

[1] T. Oh, S. Jadhav and Y. H. Kim, "Android botnet categorization and family detection
based on behavioural and signature data," 2015 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju, 2015, pp. 647-
652, doi: 10.1109/ICTC.2015.7354630.

[2] M. Yusof, M. M. Saudi and F. Ridzuan, "A new mobile botnet classification based on
permission and API calls," 2017 Seventh International Conference on Emerging
Security Technologies (EST), Canterbury, 2017, pp. 122-127, doi:
10.1109/EST.2017.8090410.

[3] C. Tansettanakorn, S. Thongprasit, S. Thamkongka and V. Visoottiviseth, "ABIS: A
prototype of Android Botnet Identification System," 2016 Fifth ICT International
Student Project Conference (ICT-ISPC), Nakhon Pathom, 2016, pp. 1-5, doi:
10.1109/ICT-ISPC.2016.7519221.

[4] "IDC - Smartphone Market Share - OS", IDC: The premier global market intelligence
company, 2020. [Online]. Available: https://www.idc.com/promo/smartphone-market-
share/os/. [Accessed: 14- Aug- 2020].

[5] "Topic: Android", Statista, 2020. [Online]. Available:
https://www.statista.com/topics/876/android/. [Accessed: 14- Aug- 2020].

[6] "Google Play Store: number of apps | Statista", Statista, 2020. [Online]. Available:
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-
google-play-store/. [Accessed: 14- Aug- 2020].

[7] Z. Doffman, "Beware—Millions Of Android Users Must Delete This ‘Malicious’ Video
App Now", Forbes, 2020. [Online]. Available:
https://www.forbes.com/sites/zakdoffman/2020/06/03/beware-millions-of-android-
users-must-delete-this-malicious-video-app-now/#2cf42678386f. [Accessed: 14- Aug-
2020].

[8] M. La Polla, F. Martinelli and D. Sgandurra, "A Survey on Security for Mobile
Devices," in IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 446-471,
First Quarter 2013, doi: 10.1109/SURV.2012.013012.00028.

[9] R. R. Nigam, A Timeline Of Mobile Botnets, pp. 1-8, 2015.

[10] E. Kalige and D. Burkey, "A Case Study of Eurograbber: How 36 Million Euros was
Stolen via Malware", Versafe, December 2012.

[11] Funk, C., Garnaeva, M.: Kaspersky security bulletin 2013. Overallstatistics for 2013.
Securelist (2013)

[12] Anagnostopoulos, M., Kambourakis, G., Gritzalis, S.: New facetsof mobile botnet:
architecture and evaluation. Int. J. Inf. Secur.1–19 (2015)

[13] Flo, A., Josang, A.: Consequences of botnets spreading to mobiledevices. In: Short-
Paper Proceedings of the 14th Nordic Confer-ence on Secure IT Systems (NordSec
2009), pp. 37–43 (2009).

[14] Venkatesh, G.Kirubavathi & Anitha, R.. (2017). Structural analysis and detection of
android botnets using machine learning techniques. International Journal of Information
Security. 17. 10.1007/s10207-017-0363-3.

[15] S. Anwar, J. M. Zain, Z. Inayat, R. U. Haq, A. Karim and A. N. Jabir, "A static
approach towards mobile botnet detection," 2016 3rd International Conference on

16

Electronic Design (ICED), Phuket, 2016, pp. 563-567, doi:
10.1109/ICED.2016.7804708.

[16] "Global Android malware volume 2018 | Statista", Statista, 2020. [Online]. Available:
https://www.statista.com/statistics/680705/global-android-malware-volume/.
[Accessed: 14- Aug- 2020].

[17] S. Esmaeili and H. R. Shahriari, "PodBot: A New Botnet Detection Method by Host and
Network-Based Analysis," 2019 27th Iranian Conference on Electrical Engineering
(ICEE), Yazd, Iran, 2019, pp. 1900-1904, doi: 10.1109/IranianCEE.2019.8786432.

[18] W. Hijawi, J. Alqatawna and H. Faris, "Toward a Detection Framework for Android
Botnet," 2017 International Conference on New Trends in Computing Sciences
(ICTCS), Amman, 2017, pp. 197-202, doi: 10.1109/ICTCS.2017.48.

[19] A. Karim, R. Salleh and S. A. A. Shah, "DeDroid: A Mobile Botnet Detection
Approach Based on Static Analysis," 2015 IEEE 12th Intl Conf on Ubiquitous
Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted
Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications
and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, 2015, pp. 1327-1332,
doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.240.

[20] L. Taheri, A. F. A. Kadir and A. H. Lashkari, "Extensible Android Malware Detection
and Family Classification Using Network-Flows and API-Calls," 2019 International
Carnahan Conference on Security Technology (ICCST), CHENNAI, India, 2019, pp. 1-
8, doi: 10.1109/CCST.2019.8888430.

[21] "Investigation on Android Malware 2019 | Datasets | Research | Canadian Institute for
Cybersecurity | UNB", Unb.ca, 2020. [Online]. Available:
https://www.unb.ca/cic/datasets/invesandmal2019.html. [Accessed: 14- Aug- 2020]

[22] B. Choi, S. Choi and K. Cho, "Detection of Mobile Botnet Using VPN," 2013 Seventh
International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, Taichung, 2013, pp. 142-148, doi: 10.1109/IMIS.2013.32.

