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Android botnet detection using signature data and 

Ensemble Machine Learning. 
 

Viraj Kudtarkar  

18178499  
 

 

Abstract 

 

As the use of smartphones has increased intensely in the past decade for daily activities such as 

socialising, banking, online shopping and communicating with friends and family. Android operating 

system is very popular and used universally for smartphones and tablets. Therefore, threats for this 

android platform is emerging very rapidly. Exploiting smartphones are comparatively easy and more 

effective than exploiting traditional computer systems and thus attackers started developing 

applications with hidden botnet capabilities. These applications use to take control of user’s device 

without his permission to steal sensitive data or launch denial-of-service attack with the help of 

Command and Control (C&C) servers. There are many proposed solutions available to detect botnet 

application using various approaches. In this paper, I proposed a hybrid model for botnet detection 

using a combination of signature-based detection at initial layer to perform abrupt detection. At 2nd 

layer ensemble machine learning method is used to identify botnet components with the help of 

extracted permissions and intents via static analysis. I compared 5 machine learning classifier 

algorithms and selected three with highest accuracy to create ensemble model. To extract the features 

to prepare efficient dataset for training and testing of this machine learning model I analyse 375 

applications with botnet capabilities and 1105 benign applications from CICInvesAndMal2019 

dataset which is novel and publicly available for researchers by the Canadian Institute for 

Cybersecurity. To confirm this result, we used Virus Total as a reference point which also showed 

comparable results of botnet detection. In this experiment, we successfully obtain 95.4% accuracy 

with the Logistic Regression classifier which was slightly increased to 95.8% after assembling top 

three algorithms. 

 

Keywords: Android Botnets, Ensemble Machine Learning, Signature-Based detection, Permissions, 

Intents, and DDoS prevention. 

 

 

1 Introduction 
 

In past few years, smartphones and tablets plays integral part in our life due to its seamless 

capabilities and pocket friendly structure. Therefore, these devices outplaced traditional and 

heavy-handed computers. These devices are used to carry out all the activities from 

communicating or socializing, gaming, online shopping to sensitive activities like banking or 

using online payment systems. All the personal and sensitive information gets exchanged 

between these devices and corresponding application servers; sometimes user store it in the 

application or device which also provoke attackers to target smartphones. Amongst the many 

operating system android is most popular OS used in smartphones; it rules the market with 

86% share in the available applications for the first quarter of 2020 according to [4] with the 

1.6 billion users worldwide [5]. As per statistics, Google Play store was hosting 2.896 million 

android applications in June 2020 [6]. Android is an opensource platform which is available 

to users with huge potentiality to develop third party applications encourages botnet writers 
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with evil purpose to develop more such applications. These applications can be hosted on the 

official google play store or other third-party stores.  

Upon successful infection of device by botnet application, the attacker acts as botmaster and 

the infected device started acting like a zombie. Attacker gain full control of the infected 

device remotely without users’ consent. Botmaster use command and control (C&C) 

mechanism to communicate with these Infected zombies [8]. These botnets are capable of 

launching Denial-of-Service attacks, brute-force attack, stealing information such as contact 

details, call logs, location information, IMEI information of the device, network operator 

details, voice mail numbers and even much more sensitive information such as bank 

transactions and passwords, credit card details from the infected device depending on the 

motive of the attack [9]. Botmaster also gets ability to intercept and read SMS or Email 

messages, send fake messages or emails without permission of the device owner which can 

further lead to SMS frauds or phishing attacks. Furthermore, He can carry out unwanted 

installations of malwares or banking trojans [14], [15]. Various botnet variants found in the 

year 2011 such as GoldDream, PjApps, Plakton and DroidKungFu. All of them were 

communicating via HTTP protocol with their C&C servers. The attack executed in 2012, 

using the Eurograbber variant of Zeus affected 30, 000 consumers of various banks in Europe 

and cause loss of nearly $36 million euros [10]. In a report published by Forbes, upstream 

notified that the malicious applications on play store are getting doubled every year with 55% 

higher transaction frauds. Last year around 43000 devices were infected by the 98000 

malicious applications [7]. As per Kaspersky, 60% of android malware contains some level 

of botnets components [11]. Also, the mobile botnets are considered as highly reliable 

compared to traditional botnets as users very hardly shut down their smartphones [12], [13], 

[14]. These mobile botnets have three basic components which are (C&C) command and 

control server, infection vectors and the topology. The C&C server is the most essential 

component which is used for sending commands and receiving information between 

botmaster and bots. Infection vectors are responsible for transmission of bot binaries into the 

device. And the topology is for organizing the bot. Usually centralized topology is used while 

very few botnets use decentralized topology to formulate the zombies [14]. 

 

 

Figure 1: Development of new Android malware worldwide from June 2016 to May 2019 [16]. 
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Considering the rapid growth of the botware applications and the immense potential they 

hold to exploit android smartphones it is an endless need to find more and more reliable 

mitigation. I have conducted this study to find a compatible solution which will help to 

eliminate botnet applications before installation. In this paper I proposed a two layered 

approach to identify android botnets using both signature-based detection at initial layer and 

static analysis using ensemble machine learning at 2nd layer.  

 

This report is expected to comply with our research question: Can use of signature data and 

ensemble machine learning be able to detect android botnet applications.  

 

The rest of the paper is organised in following manner: In Section 2, related works are 

discussed. In the 3rd section, research methodology is discussed. Section 4 presents the 

design specification. 5th section presents the Implementation. In section 6, evaluation and 

results are mentioned and final 7th section is about conclusion and future work. 

 

2 Related Work 
 

Identification of botnet application is very crucial for prevention of cyber-attacks in recent 

times. Research related to mobile application security is always evolving as this field is new 

and boosting rapidly. There are various approaches proposed by researchers from all over the 

world to identify and prevent mobile malware and botnet applications. Before developing this 

proposed system, an in-depth literature review was conducted to learn about already existing 

solution. In this section I have highlighted existing research works using many different 

approaches and methods to determine and restrict mobile botnets attacks. This section is 

divided into multiple sub-sections based on approaches used for detection. To improve the 

accuracy of classification this review was very imperative signature-based detection 

 

Signature based approach for detecting applications with malicious components is pretty 

simple compared to other approaches. It is done by comparing the unique data collected from 

the application with the data which is previously analysed and stored in the database. It will 

help in quick determination and also to save processing power. But the minor changes in 

code allows bypassing signature-based analysis which is the main drawback of this method. 

Databased has to be updated regularly to defend against newly designed applications. Also, it 

is not capable to detect zero-day attacks. 

 

Oh, Jadhav and Kim [1], has proposed a multi-layered system using signature-based 

detection and behavioral analysis. The system is segregated into 5 main layers and at each 

layer a specified task will be performed. First layer was responsible to extracts the hash value 

from the provided application to verify if the application was previously analysed or not by 

comparing it with the data stored in the database. Further it will be forwarded to next layer to 

collect the data which is required for behavioral analysis by conducting static and dynamic 

functions. At third layer this data will get parsed and converted into usable format. And 

finally, the decision will be made by considering on both signature and behavioural analysis. 

Machine Learning Approaches 
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In this sub-section I have discussed various approaches based on machine learning for 

detection of botnet applications. It also includes research related to detection of malware 

applications, since it has resemblance with detection of botnet detection. 

2.2.1 Static Analysis Based Detection 

 

The static analysis is performed by extracting the feature from the application without 

running the application by doing reverse engineering of the application. These features are 

used for training testing machine learning model to determine if the application is botware or 

benign. 

 

Yusof, Saudi and Ridzuan [2], use android permissions and (Application Programming 

Interface) API calls for the classification of botnet. Researchers used 50 application to extract 

5, 560 samples from the Drebin dataset for training and 800 samples are taken from Google 

Play Store for testing purpose. feature selection was performed to select best 16 permissions 

and 31 API calls which are most related with android botnet to perform classification. 

Random Forest, Support Vector Machine, Naïve Bayes and K-NN algorithms are used to 

evaluate the results. Random Forest algorithm was superior 99.4% accuracy and false 

positive rate of 16.1%. 

In [3], Tansettanakorn, Thongprasit, Thamkongka and Visoottiviseth used similar method to 

develop a system named as ABIS (Android Botnet Identification System) to identify the 

detect botnet applications. The ABIS server is capable of connecting to the Google Play 

server. As per user requirements this ABIS server evaluates APK package from Play Store to 

analyse the requested application. The dataset containing 14 botnet families with 1,929 

applications were used with 150 additional clean applications which are downloaded from the 

play store. 

63 permissions and 1,414 API calls were used to train seven classification algorithms 

including Random Forest, MLP, Decision Tree, J48, SVM, SMO, Naïve Bayes and Bagging. 

Random Forest achieved best classification results with 96.9% of recall with 4 Permissions 

and 41 API calls. 
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3 Research Methodology 
 

In this paper, we have proposed a unique method to identify hidden botnets from android 

applications by making use of signature-based detection with ensemble machine learning. In 

the previous sanctions we have highlighted some of the existing works which are already 

done by researchers to detect the botnet applications. The linear-sequential model which is 

also known as waterfall model was used to execute this research. This model is considered 

best for AI and machine learning where requirement of are nominal. We divide the entire 

process into small components. 

 

 

Figure 2: Waterfall Model 

 

1 In the Requirement phase, the objectives and goals of this research are defined. 

Thorough literature review was done to understand the previously implemented 

solutions. 

2 During the analysis phase, the data required for testing was collected and cleaning of the 

data was performed to get quality data for testing. 

3 Design phase involves finalizing the features, constructing the database to store the 

signature values, finalising dataset and selection of classification algorithms.  

4 At the coding phase actual implementation and building of the model was completed. 

5 Actual evaluation of the implemented model was performed during this stage where we           

validated the results obtain from coding phase.  

6 All the outcomes of the previous phases are documented in this phase. 

 

We used static analysis to extract the required features from the android applications such as 

MD5 hash values, package names, dangerous android permission and intents. From these 

extracted features MD5 hash values and package names are used for signature-based 

https://www.thesaurus.com/browse/previous
https://www.thesaurus.com/browse/documented
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detection, where android permissions and intents are used to train and test the machine 

learning model which is used at second layer for classification. Similar approach is used by 

previous researchers [14], [17], [15], [18], [19]. 

 

3.1 Dataset 
 

For conducting this research, we have used CICInvesAndMal2019 dataset which is openly 

available for researchers and published by the Canadian Institute for Cybersecurity [20]. This 

is very comprehensive and novel dataset which is not used in any of the research conducted 

to identify botnet applications. This dataset contains 426 samples of malware applications 

and 5,065 samples of benign applications [21]. In this study, we selected only 384 samples of 

botnet applications and 1105 samples of clean non-malicious applications due to the time 

limitations. We split the dataset into two parts for training and testing, where the 70% of data 

is assigned for training and was 30% is assigned for testing purpose. As these applications are 

malware applications and only malware category and family classification were done, we 

validate them by scanning via the Virus Total API. Only the applications which are identified 

as botnet applications are used in this research. 

3.2 Data Extraction 
 

To decompress the APK files and extract the required features from the source code of 

selected android applications, we tried and tested multiple reverse engineering tools like 

APKTool, Aapt, Simplify, Dex2 jar with JD-GUI which are available online. Finally, we use 

APKTool for most of the applications which is smoother compared to others. It is possible to 

clubbed with personalized scripts to automate the process. With the help of this tool we 

decoded the AndroidManifest.xml file which is present in the root directory also 

disassembles the DEX files to smali files to make them readable. We collected essential 

information such as uses−permissions and intents from manifest file where it is stored in an 

android application. The application gets installed successfully only upon receiving the 

confirmation from the user for all the requested permissions and intents. We also extracted 

MD5 hash values from the botnet application and package name from all the benign 

applications with the help of PackageManager. The data collected from above extraction 

methods was converted into CSV format file. Feature Selection 

 

3.2.1 Signature Data (MD5 Hash Values and Package Names) 

 

At first layer to perform signature-based detection we used MD5 hash values from the botnet 

applications and package names which are unique for each application are extracted from the 

benign applications respectively. We have used these features at initial level to diagnose 

botnet applications in our proposed method. In the beginning, we built our database of with 

these extracted MD5 hash values and package names. At the time of evaluation, the 
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application first tries to compare the hash value and package name with the existing values 

which are present at the database. 

3.2.2 Machine Learning Model (Permissions and Intents) 

 

Various samples of android applications both botnet as well as normal were studied and 

analysed thoroughly to understand the most essential features. If the higher number of 

features are used for prediction, then heavy processing power is required to process 

additional data which also takes longer time. <uses−permission> tag represents the 

permissions which will be requested by the application at the time of installation. For 

example, an application which requests combination of READ_CONTACTS and 

INTERNET or WRITE_SMS, SEND-SMS permission will collect all the contacts and 

related information stored on the device and send it to the botmaster using the internet or 

SMS service without users consent [22]. it is observed that botware applications seek higher 

amount of permissions than benign applications. Similarly, Intents indicates to the system 

that a specific event has occurred. In an application Intents permit binding among 

components internally as well as externally. Our analysis affirms that combination of 

requested permissions and intents have direct relations with malicious activities and are 

highly capable of predicting botnet applications. A comprehensive study with the frequency 

analysis was performed for the of both applications to select the final set of permissions and 

intents  which are most  prominent in detection of applications with botnet capabilities. 

Finally, the 18 features with top 15 permission and 3 intents which are prominent in detection 

of botnet application are selected. If the higher number of features are used for prediction, 

then heavy processing power is required to process additional data which also takes longer 

time. 

Table 1:Prominent Features Used to Detect Botnets. 

Feature Name Type 

READ_SMS Permission 
READ_CONTACTS Permission 
WRITE_SMS Permission 
SEND_SMS Permission 
RECEIVE_BOOT_COMPLETED Permission 
RECEIVE_SMS Permission 
WAKE_LOCK Permission 
ACCESS_NETWORK_STATE Permission 
INTERNET Permission 
ACCESS_WIFI_STATE Permission 
ACCESS_FINE_LOCATION Permission 
ACCESS_COARSE_LOCATION Permission 
CALL_PHONE Permission 
READ_PHONE_STATE Permission 
WRITE_EXTERNAL_STORAGE Permission 
POWER_CONNECTED Intent 
BATTERY_LOW Intent 
BOOT_COMPLETED Intent 
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4 Design Specification 
 

 

 

Figure 3: Application Work Flow Diagram 

 

In this section we have presented the work flow and architecture of our proposed two layered 

android botnet detection model. This tool is capable of detecting applications with botnets 

capabilities. Figure 3 shows the flow diagram of design of the model. 

4.1 Building and Training the Model 
 

The steps include reverse engineering of botnet and normal applications to extract feature 

vectors. SQLite database was created and data collected for signature-based detection was 

stored in the database, i.e. MD5 hash values collected from botnet applications and the 

package names of benign applications. For machine learning based model features selection, 

cleaning and pre-processing of the dataset and splitting the dataset was done for training and 

testing purpose. In next phase, 5 different machine learning classifiers (Random Forest, 

Logistic regression, Decision Tree, Naive Bayes, SVM) are used on final dataset and 

analysed the results. Top three classifiers are selected with best accuracy to build assemble 

model based on voting mechanism. 
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4.2 Detection 
 

Once the model is built, at the time of testing the application will first check the database for 

the MD5 hash values and package names, if the value is matched it will display the results 

and terminate the process. The new application is received for which the signature value did 

not matched with the values available in the database, it will pass the function to the next 

layer where machine learning based classification will be performed using assemble method 

and the result will be displayed. 

 

 

5 Implementation  
 

In this section, we have discussed about final implementation and coding to build our android 

detection model. The R file contains the step by step process and implementation of all steps 

and processes performed towards classifying and building our model were implemented with 

Python 3.8 using Pycharm 2020.1. All the Packages and libraries which are present in python 

help functions work effectively. We install all the necessary packages and libraries before 

calling their corresponding functions. 

 

Building Database: Sqlite3 
 

We used an SQLite database to store the android application’s unique identifier “Package-

name” and MD5 hash key-values. Database helped us in making our system more efficient by 

returning responses in very less time. Database contains a table named “Apps” which stores 

all the app’s information. We have data of almost 600 application stored in our database for 

testing purpose. This data needs to be updated periodically to get better detection results. 

 

Pre-processing and Cleaning of Dataset 
 

For training of our ML models, we selected 18 features (permission and intent), which have 

most significant capability of distinguishing botnet applications. In pre-processing part, we 

removed the noise from data by deleting rows which are incomplete. Also, we dropped the 

unnecessary columns which are not necessary for our training process. Once the filtering 

process is completed, we split the data into 2 parts with 70:30 ratio, 70% for training and 

30% for testing purpose. 

 

Machine Learning Model 
 

Before creating final model, we trained five different classifier algorithms which includes: 

Support Vector Machine, Logistic Regression, Random Forest, Decision Tree and Naive 

Bayes for our machine learning predictor. Models were trained on 70% of dataset in training 

process, first the model is created and trained by “model.fit()” method. “Model.predict()” is 

used for getting test results out of the model and returns a confusion matrix which is used for 



10 
 

 

finding the accuracy of the trained model. We extracted 3 different performance measures for 

our models which are Accuracy, Precision and Recall. After completion of training process, 

all trained models were stored in “.pkl” file format. 

 

Assemble Model 

To build our final detection method we used ensemble methods in our predictor. Ensemble 

method is a technique in which we combine different models to produce improved results. 

Ensembles can produce more precise and accurate outputs compared to single algorithm. We 

have created voting-based ensemble model which includes three models which are Random 

Forest, SVM and Decision Tree. Out of five three best models were chosen on the basis of 

accuracy, so only top 3 model with best accuracy results were used in creation of ensembles. 
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6 Evaluation and Results 
 

In this section we have represented the results received from the signature-based detection 

mechanism, five machine learning algorithms, and also from assemble method which we 

used in this research. We have also described the metrics used for evaluation. 

6.1 Signature-based detection 

 

In figure 4 we have highlighted the results received from signature-based detection with 

green colour. In this detection process the signature values are getting verified with the values 

stored in database for the identification, it gives results in less time compared to the machine 

learning based detection process. 

 

 

Figure 4: Results from Signature based detection. 

6.2 Machine Learning based detection 

 

We have also described the metrics used for evaluation 

 

• To calculate accuracy, we divide number of correct predictions by total predictions 

done. 

   
 

• To calculate precision, we divide the number of true positive by the sum of true 

positive and false positive. 
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• To calculate Recall, we divide the number of true positive by the sum of sum of true 

positive and false negatives. 

 

 

 
 

• To compare two models, we use F-Score. It will help in measuring recall and 

precision at same time. 

 

 
 

 

Figure 5: Bar Chart for Metrics 

 

Table 3 shows the metrics scores given by the 5 different algorithms which are used during 

the testing phase.  

Table 2: Metrics Chart of Different Algorithms 

Algorithms Used Accuracy % Precision % Recall % F- Measure 

Random Forest 87.6 87.93 97.04 91.72 

 Logistic Regression 95.4 94.91 99.4 96.43 

Decision Tree 94.3 94.58 98.22 95.95 

Naive Bayes 94.8 94.87 98.52 95.95 

Support Vector 

Machines 
83.1 84 15 95.85 89.16 
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After comparing metrics scores of all 5 algorithms it was observed that Logistic Regression 

model has the highest accuracy of 95.4% while Naive Bayes and Decision Tree are giving the 

94.8% and 94.3% respectively. We did not rely on only accuracy and checked F1 score and 

observed that same algorithms are having good F1 score. It indicates that there are very low 

number of low false positives and low false negatives values and our model has identified the 

botnets applications correctly without having the false alarms. As we know F1 score will be 

considered good when it's near to 1, and the model will be considered as unsuccessful when 

it's near 0. 

 

From above results we got clear idea about the three best classification algorithms out of five 

algorithms which we have used for training. Therefore, we used Logistic Regression, 

Decision Tree and Naive Bayes classifiers to build our final assemble model which was 

based on voting mechanism. 

Table 3: Accuracy Chart of Assemble Method 

Algorithms Used 
Accuracy 

% 

Precision 

% 
Recall % F- Measure 

Assemble Method  95.8 98.69 86.59 92.24 

 
Table 4 shows the metrics scores received from the assemble model. Where we are able to 

achieve the 95.8% accuracy which is very similar with the scores, we achieved from Logistic 

Regression classifier. 

6.3 Discussion 
 

After analysing the results, it was concluded that there is no significant difference in 

outcomes of Logistic Regression classifier and the assemble machine learning approach 

which we have proposed. However, we choose top 3 algorithms as our final model because of 

high accuracy and high F-score. Although, there are several studies [2], [14], [18] where 

researchers claim of achieving more than 98%-99% of accuracy our hybrid model also 

capable of detecting botnets by signature data which will help to save processing power and 

time for the already known botnets as well as known benign applications as we have stored 

package names of verified benign applications into our database. Model and methods are 

good as we are still able to achieve great amount of accuracy. Therefore, to improve the 

results to get optimal results we can suggest the improvement in dataset by adding more 

feature vectors with dynamic analysis. Other advance classification models or using Neural 

networks can help to achieve maximum results. 

 



14 
 

 

7 Conclusion and Future Work 
 

To conclude this, we can say that we are able to achieve the objective of our research which 

is developing an android botnet detection model on signature-based detection along with 

assemble machine learning method by identifying the optimal classifiers. This model will 

successfully identify the android botnet applications at initial level to prevent the damaged 

caused by various cyber-attacks. The analysis outcome of results states that the selected 

feature vectors android permissions and intents are highly capable of detecting botnets 

correctly. This model has potential to provide a good accuracy and precision score with 

minimum false positive percentage. We tried five different machine learning classifiers from 

which top three classifiers are used to build the assemble model. Out of five Logistic 

Regression classifier achieved the highest accuracy rate of 95.4%. Our hands are tied with the 

time limitation for the proposed project, the algorithms are effective in detection but the 

feature vectors are not sufficient to achieve best results. As extracting features and analysing 

them in order to enhanced the outcomes was so much time consuming. 

For the future work of this research we would like to suggest a cloud-based approach by 

signature and Machine learning methods. It should also include the android model to 

automatically extract only the selected and vital features from the application to achieve the 

maximum accuracy. 
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