
Configuration Manual

MSc Research Project

Data Analytics

Srivenkateswara Rao Vatti
Student ID: x18181104

School of Computing

National College of Ireland

Supervisor: Rashmi Guptha

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Srivenkateswara Rao Vatti

Student ID: x18181104

Programme: Data Analytics

Year: 2020

Module: MSc Research Project

Supervisor: Rashmi Guptha

Submission Due Date: 17/08/2020

Project Title: Configuration Manual

Word Count: XXX

Page Count: 15

I hereby certify that the information contained in this (my submission) is inform-
ation pertaining to research I conducted for this project. All information other than my
own contribution will be fully referenced and listed in the relevant bibliography section
at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Srivenkateswara Rao Vatti

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be
placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Srivenkateswara Rao Vatti
x18181104

Contents

1 Introduction 2

2 Application Environment 2

2.1 Hardware . 2

2.2 Software and tools . 2

2.2.1 Google Colab . 3

2.2.2 Google Drive . 3

2.2.3 Python . 4

2.3 Major python Libraries used across artefacts 4

3 Application overview 4

3.1 Structure of the data . 4

3.2 Authentication and authorization . 5

3.3 Data pre-processing and transformation 8

3.4 CNN training . 10

3.4.1 Pre-trained Block . 11

3.4.2 Common block . 12

3.4.3 Saving the model . 12

3.4.4 Run the model . 13

3.5 CNN testing . 13

1

3.5.1 Plotting the graphs . 14

3.5.2 Printing the metrics . 15

4 Future Work 15

1 Introduction

The basic aim of the current research is to apply a set of convolutional neural net-
work(CNN) models implemented with transfer learning to detect and classify test the
accuracy and other metrics. The pre-trained models considered as part of this ana-
lysis is VGG16, VGG19, Inception V3, ResNet50 and Xception. Initial blocks of these
pre-trained models are extracted and integrated with a common block of additional con-
volutional layers. Apart from these models, a CNN model is implemented from scratch
with a set of convolutional layers and a comparative analysis is carried out in terms of
performance and efficiency of the models.

2 Application Environment

2.1 Hardware

A laptop with the configuration shown in the Table 1 is utilized for this research.

Table 1: Hardware

Feature Value

Processor Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz
RAM 8 GB

System Type 64-bit Operating System, x64-based processor
Hard disk 1 TB

2.2 Software and tools

The research is based on Google Colab platform along with Google drive for data storage.
The high level design of the platform is shown in Figure 1

2

Figure 1: Platform design

2.2.1 Google Colab

This is a web-based platform implemented by Google for implementing machine learning
and deep learning models. Google Colab is built upon Jupiter notebook on which CNN
architectures can be run with python as the programming language. TensorFlow and
Keras are the primary libraries used in this research and these packages will be loaded
onto the Colab environment for model implementation. TPU runtime available free of
cost in Colab and is utilized since the size of the data set used is around 8GB. Colab is
integrated with GitHub for code configuration purposes.

2.2.2 Google Drive

The data set acquired for this analysis is uploaded into google drive and then loaded
into Colab for further analysis. The primary reason for choosing google drive as a data
repository for this analysis is that the size of the data set is around 8 GB and the storing
and processing of this huge data are tedious and local machines like laptops or desktops
are not an ideal choice for this purpose.

3

2.2.3 Python

Python is the programming language opted for implementing CNN models as part of
this research and advanced packages such as TensorFlow and Keras for deep learning
purposes can be imported through python. Apart from these, python also comes with
data visualization libraries such as matplotlib for implementing graphs and charts.

2.3 Major python Libraries used across artefacts

The Table 2 explains various python libraries used as part of this analysis.

Table 2: Libraries in Python used

Library Usage

NumPy This library is for doing mathematical operations.
CV2 It is for reading an image from a physical path

matplotlib Plotting graphs
OS File operations like creating, moving

pydrive Authentication and authorization between Google Colab and Google Drive.
TensorFlow Machine learning model development

Keras Machine learning model development including pre-trained models.

3 Application overview

3.1 Structure of the data

The dataset used for this research is around 8 GB in size and is acquired from the respect-
ive data source and stored in Google drive for further analysis. A link to the google drive
folder which contains the data can be found in 1. The screen shown in Figure 2 explains
the folder structure of the tomato pest data. As per the figure, the data is segregated
into three folders of images and the other three folders of the respective labels of the
images. The folders GREENPATROL DB V1.0.zip, GREENPATROL DB V2.0.zip and
GREENPATROL DB V3.0.zip contain the images. The folders LABELS V1.0.zip, LA-
BELS V2.0.zip and LABELS V3.0.zip contain the labels in the form of annotation files
which are in XML format. The reason for splitting the image data into three separate
folders is to avoid timeout errors while loading images onto google Colab environment.

1Data Link: https://drive.google.com/drive/u/1/folders/1aXb25Wp9sG7mL6AQgYY9ElrGcERi95JU

4

https://drive.google.com/drive/u/1/folders/1aXb25Wp9sG7mL6AQgYY9ElrGcERi95JU

Figure 2: Data structure

3.2 Authentication and authorization

The data is fetched from google drive onto google Colab for further image processing
activities such as cropping, resizing and extracting bounding boxes. This data retrieval
from google Colab needs to be authenticated when accessing google drive. The following
code will be executed for this purpose.

import os
from os import l i s t d i r
from pydr ive . auth import GoogleAuth
from pydr ive . d r i v e import GoogleDrive
from goog le . co lab import auth
from o au th2 c l i en t . c l i e n t import Goog leCredent ia l s
import numpy as np
auth . a u t h e n t i c a t e u s e r ()
gauth = GoogleAuth ()
gauth . c r e d e n t i a l s = Goog leCredent ia l s . g e t a p p l i c a t i o n d e f a u l t ()
d r i v e = GoogleDrive (gauth)

A link will be prompted as shown in the Figure 3

Figure 3: Authentication and authorization step 2

Select the google account that is associated with google drive in which the data
resides as shown in Figure 4.

5

Figure 4: Authentication and authorization step 3

Click on Allow as shown in Figure 5.

6

Figure 5: Authentication and authorization step 4

The screen will be redirected to a page where we can copy a pass code and need
to be pasted in the text box shown in Figure 3 so that the google Colab platform will be
given access to fetch the data from google drive.

7

Figure 6: Authentication and authorization step 5

3.3 Data pre-processing and transformation

There are two supporting files used in this analysis apart from primary model files and
these files named as CreatePestImageData.py and SupportingFunctions.py. These files
can be uploaded and instances of these files can be created on Colab environment by
executing the following two blocks of code.

from goog le . co lab import f i l e s
f i l e s . upload ()

import CreatePestImageData as Imagedataset
import Support ingFunct ions as support

There should be a nested folder structure created before executing the rest of
the code. There should a parent folder with the name “Pests” and two nested folders
underneath it called “Images” and “Labels”. Please find the Figure 7 for reference.

8

Figure 7: Data pre-processing step 2

Configuration Parameters: The Table 3 describes the methods and para-
meters passed those methods.

Table 3: Methods and parameters overview

Method Name Purpose Parameters

DownLoadFiles(folderId,
drive)

To download the data files
from google drive to Colab

The “folderId” is the
unique identifier of the
folder in Google Drive in
which data resides and can
be found in URL of the
folder in the google drive.
The “drive” is the object
created as per the code
shown in Figure ??

Unzip(source Path ,
dest Path)

To extract the images and
annotation files from the zip
files that are downloaded
in the previous step.Note:
This method needs to be
called for all the folders
of images and labels

source Path is the path of
the zip file of images or la-
bels which are downloaded
to google Colab dest Path
is the target folder which
is either “Images” or “La-
bels” those are located in
the “Pests” parent folder

fileCount(directory) To get the number of files
residing a folder.

directory - The path of the
folder

9

prepare dataset(path ,
class object ,
image Size,
imagePath,
,test size)

To prepare training and val-
idation data sets in the
form of NumPy arrays by
cropping the images as per
the XML-based annotation
files.

Path - the path of annota-
tion files
class object - class labels
of the image data
image Size - the size of
the image that needs to be
cropped
imagePath - the path of
image files
test size - the size of the
test data set that is created.

Please find the below code block shown for the usage of above methods in Google
Colab environment.

support . DownLoadFiles (’ 1aXb25Wp9sG7mL6AQgYY9ElrGcERi95JU ’
, d r i v e)
support . Unzip (’/ content /GREENPATROL DB V3. 0 . z ip ’ ,
’/ content / Pests /Images ’)
support . f i l eCount (’/ content / Pests /Images ’)
dataSet = Imagedataset . createImageDataset ()
c l a s s o b j e c t = {0 : ’ egg wf ’ ,

1 : ’ egg bt ’ , 2 : ’ egg ta ’ , 3 : ’ wf ’ ,
4 : ’ bt ’ , 5 :
’ tomato ’}

dataSet . p r epa r e da ta s e t (’ / content / Pests / Labels ’ ,
c l a s s o b j e c t ,32 , ’/ content / Pests /Images ’ , t e s t s i z e =11241)
(trainY , trainX) , (testY , testX) =
(dataSet . trainY , dataSet . trainX) ,
(dataSet . testY , dataSet . testX)

3.4 CNN training

The portion discussed so far is common to all the models implemented as part of this
research. Once the training and testing data is prepared, both can be passed to mod-
els as part of the training. The following Table 4 describes different models and the
corresponding files in the code submitted.

10

Table 4: Code files corresponding to models implemented

Model Code File

CNN Pest Classifier CNN.ipynb
VGG16 Pest Classifier VGG16.ipynb
VGG19 Pest Classifier VGG19.ipynb

ResNet50 Pest Classifier ResNet50.ipynb
InceptionV3 Pest Classifier InceptionV3.ipynb

Xception Pest Classifier Xception.ipynb

These models are implemented with two major blocks namely pre-trained block and a
common block of additional convolutional layers.

3.4.1 Pre-trained Block

The code block shown below is the one for downloading the InceptionV3 model from
Keras API.

import t en so r f l ow as t f
from keras import models
from keras . a p p l i c a t i o n s . i n c ep t i on v3 import InceptionV3
InceptionV3 = InceptionV3 (input shape=input shape ,

i n c l u d e t o p=False , poo l ing =’avg ’ , weights =’ imagenet ’)
InceptionV3 . summary ()

The code block shown below is for extraction of “conv2d 3” block for the Incep-
tionV3 model.

from keras . models import Model
layerName = ’ conv2d 3 ’
mymodel = Model (inputs= InceptionV3 . input ,
outputs=InceptionV3 . g e t l a y e r (layerName) . output)
mymodel . summary ()

11

3.4.2 Common block

The “conv2d 3” extracted in the previous step is then integrated to a common block as
shown in the below code blocks to implement the final architecture of the model which
will be trained in the next stage of the implementation.

from keras import a p p l i c a t i o n s
from keras . models import Model
from keras . l a y e r s import Conv2D ,
MaxPooling2D , GlobalAveragePooling2D
from keras . l a y e r s import Dense ,
Dropout , Act ivat ion , F lat ten
from keras . l a y e r s . norma l i za t i on import

BatchNormal izat ion
import matp lo t l i b . pyplot as p l t

model= models . S equent i a l ()
model . add (mymodel)
model . add (Conv2D(16 , (3 , 3) , a c t i v a t i o n =’ re lu ’ ,

padding=’same ’))
model . add (MaxPooling2D (p o o l s i z e =(2 , 2)))
model . add (Conv2D(32 , (3 , 3) , a c t i v a t i o n =’ re lu ’ ,
padding=’same ’))
model . add (MaxPooling2D (p o o l s i z e =(2 , 2)))
model . add (GlobalAveragePooling2D ())
model . add (Dense (64 , a c t i v a t i o n =’ re lu ’))
model . add (BatchNormal izat ion ())
model . add (Dense (6 , a c t i v a t i o n =’softmax ’))
model . l a y e r s [0] . t r a i n a b l e = True

compile the model
model . compi le (opt imize r =’adam ’ ,

l o s s =’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,
met r i c s =[’ accuracy ’])

3.4.3 Saving the model

The model implemented can be trained using the code block shown below. This is useful
to retrain the model again and again till satisfactory results are obtained.

12

from ten so r f l ow . keras . u t i l s import t o c a t e g o r i c a l
trainY = t o c a t e g o r i c a l (trainY)
testY = t o c a t e g o r i c a l (testY)
t f . c o n f i g . e x p e r i m e n t a l r u n f u n c t i o n s e a g e r l y (True)
f i l e p a t h =”/content / dr i v e /My Drive /Models/ InceptionV3
/ weights−{epoch :02 d}−{accuracy : . 3 f } . hdf5 ”
from keras . c a l l b a c k s import ModelCheckpoint
checkpoint = ModelCheckpoint (f i l e p a t h ,

monitor=’accuracy ’ ,
verbose =1, mode=’max ’ , s a v e b e s t o n l y=True)

c a l l b a c k s l i s t = [checkpo int]

3.4.4 Run the model

The model implemented can be executed using the code block shown below

model . f i t (trainX , trainY , verbose =1, epochs =50,
v a l i d a t i o n d a t a =(testX , testY) , c a l l b a c k s =[checkpoint])

3.5 CNN testing

The implemented models can be validated with predictions on testing data and necessary
graphs, key metrics can be calculated through the methods mentioned in the TABLE.

Table 5: Validation methods

Method Name Purpose Parameters

plot image(i,
predictions array,
true labels, images)

This method is to display
actual vs predicted results
of the test data

i – looping variable
predictions array –
The array of prediction
outcomes by model
true labels – Actual
classes of the images
images - Images those
are validated against true
labels

13

PrintMetrics(testX, testY,
model)

This method is for print-
ing important metrics such
as accuracy, precision, recall
and F1 score with the test
data

testX – NumPy array of
training data

testY – NumPy array of
validation data
model – the instance of the
model.

GenerateGraphs(acc,
val acc, loss, val loss)

This method is to draw
graphs such as loss vs ac-
curacy for both testing and
training data sets.

acc – training accuracy
val acc – validation accur-
acy
loss – training loss
val loss - validation loss

3.5.1 Plotting the graphs

The following code blocks are used for plotting the actual versus predicted labels against
a random 9 images of validation data.

de f p lo t image (i , p r e d i c t i o n s a r r a y , t r u e l a b e l s , images) :
p r e d i c t i o n s a r r a y , t r u e l a b e l ,
img = p r e d i c t i o n s a r r a y [i] , t r u e l a b e l s [i] , images [i]
p l t . g r i d (Fa l se)
p l t . x t i c k s ([])
p l t . y t i c k s ([])

p l t . imshow (img [. . . , 0] , cmap=p l t . cm . binary)

p r e d i c t e d l a b e l = np . argmax (p r e d i c t i o n s a r r a y)
i f p r e d i c t e d l a b e l == t r u e l a b e l :

c o l o r = ’ blue ’
e l s e :

c o l o r = ’ red ’

p l t . x l a b e l (”{} { : 2 . 0 f}% ({}) ” . format
(c l a s s o b j e c t [p r e d i c t e d l a b e l] ,

100∗np . max(p r e d i c t i o n s a r r a y) ,
c l a s s o b j e c t [t r u e l a b e l]) ,
c o l o r=c o l o r)

14

num rows = 3
num cols = 3
num images = num rows∗num cols
p l t . f i g u r e (f i g s i z e =(2∗num cols , 2∗num rows))
t e s t i ma ge s = testX [: num images]
p r e d i c t i o n s = model . p r e d i c t (testX Pred)
f o r i in range (num images) :

p l t . subp lot (num rows , num cols , i +1)
p lot image (i , p r e d i c t i o n s , testY Pred , testX Pred)

p l t . t i g h t l a y o u t ()
p l t . show ()

3.5.2 Printing the metrics

Various metrics such as accuracy, precision, recall and F1 score can be printed using the
code block shown below

support . Pr in tMetr i c s (testX Pred , testY Pred , model)

4 Future Work

In the future, the research can be extended in multiple dimensions. A different set of
CNN architectures can be implemented to examine the performance of the models in
terms of classifying the pests on tomato plants. The model implemented in the current
research can be integrated into a scouting robot so that it can detect the pests in real-time
conditions. Also, the models can be deployed onto smartphones so that the leaves of the
tomato plants can be scanned and the percentage of different pests that are formed can
be identified on the spot.

References

15

	Introduction
	Application Environment
	Hardware
	Software and tools
	Google Colab
	Google Drive
	Python

	Major python Libraries used across artefacts

	Application overview
	Structure of the data
	Authentication and authorization
	Data pre-processing and transformation
	CNN training
	Pre-trained Block
	Common block
	Saving the model
	Run the model

	CNN testing
	Plotting the graphs
	Printing the metrics

	Future Work

