~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Harshal Milind Tayade
Student 1D: x18182763

School of Computing
National College of Ireland

Supervisor: Dr. Rashmi Gupta

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Harshal Milind Tayade
Student ID: x18182763
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Rashmi Gupta
Submission Due Date: 28/09/2020
Project Title: Configuration Manual
Word Count: 1319
Page Count: [14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Harshal Milind Tayade

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Harshal Milind Tayade
x18182763

1 Introduction

This configuration manual provides a high level overview of the hardware and software
requirements to replicate the research. This manual will prove helpful in understanding
the coding steps needed to reproduce this research right from setting up the execution
environment to visualizing the model results. A step-by-step guide below is divided into
different sections for simplicity.

2 Hardware Requirement

The project was implemented on a Lenovo Legion Y740 laptop with the configuration
details mentioned in figure

View basic information about your computer
Windows edition

Windows 10 Home Single Language .- .

© 2019 Microsoft Corporation. All rights reserved. .. WI n d OWS 1 O
System

Processor. Intel(R) Core(TM) i7-9750H CPU @ 260GHZ 2.59 GHz

Installed memory (RAM): 16.0 GB (15.9 GB usable)

System type: 64-bit Operating System, x64-based processor

Pen and Touch: No Pen or Touch Input is available for this Display

Support Information

Computer name, domain, and workgroup settings

Computer name: LAPTOP-J2188VEA G('\a'\:e settings

Full computer name: LAPTOP-J2188VEA

Figure 1: System Configuration

3 GPU Configuration

The project was implemented using Nvidia GeForce RTX 2060 with the configuration as
shown in figure

4 Software Requirement

The software packages mentioned in table |1 were used in project implementation

1

System Information X

NVIDIA , <
CO NTROL PAN E L Detailed information about your NVIDIA hardviare and the system it's running on. NVIDIA.

Display Components

System Information
Operating system: Windows 10 Home Single Language, 64-bit

DirectX runtime version: 12.0
Graphics card information

Rems
GeForca RTX 2060 1920 ~
clock: 1200 MHz
e 14.00 Ghps
e 192-bit
: 336.05 GB/s
raj 14275 M8
.. 6144 MB GDDRS
leo mem... 0 M8
8131 MB
on: $0.06.2€.40.C0

Figure 2: System Configuration

Name Version
Anaconda Navigator 1.9.12
Jupyter Notebook 6.0.3
CMD.exe prompt 0.1.1
Python 3.7
Spyder 4.1.3
Google Chrome 84.0
Tableau Professional Edition
Overleaf N/A
Microsoft PowerPoint 2020 Edition

Table 1: Required Software Packages

5 Programming Environment Setup

Python programming language was used for project implementation. To achieve this
we adopted the Anaconda development environment whose dashboard is shown in figure
Bl Anaconda hosts bundle of applications which are suitable programming, debugging,
visualization and data-mining. For our project we considered Jupyter Notebook for code
development and testing. For advanced debugging spyder was used.

D Anaconda Navigator

Eile Help

{2 ANACONDA NAVIGATOR

A Home Applications on

@ Environments er ® m o g @ ') o @ @ @
o~

Jupyterlab
126

N Learnin q Notebook PyCharm VS Code CMD.exe Prompt

14
r Runacmd.exe terminal with your current Multidi
Files,

ah Communif ity

AW
Qg
Spyder

413
cientific PYthon Development.

Figure 3: Anaconda Programming Environment

5.1 Steps to setup the development, testing and debugging en-
vironment

1. Download the Anaconda Navigator Individual edition from the Official site [[]

‘J ANACONDA. Products « Pricing Solutions Resources Blog Company

Q Individual Edition

a Team Edition

[- > technology for
@ ensemaking.

@ Professional Services . . o
ther millions of data science practitioners,

wuta wnvernr creerprioes, and the open source community.

(A (&)

Figure 4: Anaconda Programming Environment

2. Install Jupyter Notebook and Spyder applications from the Home tab of Anaconda
Navigator highlighted in figure [f]

Thttps://www.anaconda.com /products/individual

) Anaconda Navigator

- X
Eile Help
{) ANACONDA NAVIGATOR
feonson . oo —
PS £ o o £ o <
Environments) pr
ovie P
Jupyter %,
' (Y
N8 Leaming Notebook PyCharm VS Code CMD.exe Prompt Glueviz JupyterLab
603 2002 1480 011 o152 126
Web-based, interactive computing FullFeatured Python IDE by JetBrains. Streamiined code editor with support for i current idimensi i n extensible env S
i Edit and run ion, linti i ing, i ig it files. i ips wit d and ing, based on the
i debuggi i ing and version conrol. m . " ,)
&% Community. g the . version control. 2mong related datasets. Jupyter Notebook and Architecture.
=
£ o £ L
I3 g
_ a4
Orange 3 Powershell Prompt. Qt Console RStudio Spyder
231 001 a4 1165 13
Component based data mining framework. Runa it inli 3 A set of integrated tools designed to help. ‘Scientific Python Development:
isualizatic lysis For i Pprope il i i R.Includes R i Powerful Python IDE with
novice and expert. In! ive workFlows activated highlighting, graphical callig d tiall i i 3
witha large toolbor. debugging and introspection features

Documentation

Figure 5: Installing Jupyter and Spyder

3. Install CUDA version 10.1 from the officia NVIDIA developers website|and cUDNN
version 7.6.5 compatible with CUDA 10.1 from cuDNN archive H

CUDA Toolkit 10.1 original Archive

Select Target Platform @

Click on the green buttons that describe your target platform. Only supported platforms will be shown.

Operating System Windows Mac 0SX

Architecture @ 5_¢

Version 10 Server 2019 Server 2016 Server 2012 R2
Installer Type @ exe (local]

x

R
o~
N

Do oad aller fo do 0 x86_6

The base installer is available for download below.

> Base Installer Download (2.4 GB) &
Installation Instructions:

1. Double click cuda_10.1.105_418.96_win10.exe
2. Follow on-screen prompts

Figure 6: Nvidia CUDA 10.1

4. Install the tensorflow environment in Anaconda using CMD.EXE prompt in the
Navigator window and following executing commands from the Anaconda tensor-
flow website. [

Zhttps://developer.nvidia.com/cuda-10.1-download-archive
3https://developer.nvidia.com /rdp/cudnn-archive#a-collapse765-101
4https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow /

6 Dataset Aquistion

The research was carried out by sourcing a Zenodo website open to research dataset.
This dataset consisted of different types of laryngeal tissue ragning from healthy to pre-
cancerous lesions. The dataset can be downloaded from the Zenodo website | by clicking
the highlighted button.

Files (8.8 MB) v
Name Size
laryngeal dataset tar 8.8MB | & Download |

md5:aae9d2ed69a37138268d31763b723d70 @

Figure 7: Dataset Download

7 Dataset Transformation

The sourced data is contained in zip file. The extracted files are structured in three
folders. Each folder containing four other folders that represent different types of tissues.
Figure |8 shows the original structuring.

« = v 1 | > ProjectCode > laryngeal dataset

: , e e []
Name Date modified Type —

LA 7ot 04-10-2017 1554 File fold - priemosted
-10-2017 15: ile folder 5 Quick access,
B Desktop y T Hbw 04-10-2017 1553 il folder
7 fo2 04-10-2017 1604 File folder B Desitop »
¥ Downloads ke 04-10-2017 15551 File folder
o3 04-10-2017 1608 File folder ¥ Downloads #
[Documents T wa 04-10-2017 1554 File folder
[pictures

B ooamens # | Le 04-10-2017 15:54 File folder
] pictures »

R

Figure 8: Original folders of the dataset

Shttps://zenodo.org/record /1003200#.XzXb7ChKhPa

These images are then restructured for binary classification into two folders. ”Healthy”
representing "he” folder images and ”Cancerous” representing "Hbv”, "IPCL” and ” Le”
folder images. This was automated using python script shown in the code.

8 Data Pre-Processing

The images required to be denoised using appropriate image processing technique. After
analysis of literature review, we have implemented Gaussian Filtering in our code. We
evaluated our proposed method by using BRISQUE image quality mertric. The coding
snippets below describe the required libraries and pre-processing steps.

9 Data Augmentation

As the data is from biomedical domain the challenge of smaller dataset size had to
be overcome. This was solved using appropriate data augmentation techniques which
included different geometric transformations shown in the below coding snippet.

" o —

Executing Pipeline: %] | /3000 [00:00<?, ? Samples/s]

Initialised with 330 image(s) found.

Qutput directory set to C:\Users\Harshal\Desktop\Project Code\dataset\He\output.Initialised with 33@ image(s) found.
Output directory set to C:\Users\Harshal\Desktop\Project Code\dataset\IPCL\output.Initialised with 330 image(s) found.
Output directory set to C:\Users\Harshal\Desktop\Project Code\dataset\Le\output.Initialised with 330 image(s) found.
Output directory set to C:\Users\Harshal\Desktop\Project Code\dataset\Hbv\output.

Processing <PIL.Image.Image image mode=RGB size=101x101 at 0x26AC2E9c948>: 100%|[INNNNENEEN| 3000/3000 [00:05<00:00, 579.92 Samp
IlTi:izlsing <PIL.Image.Image image mode=RGB size=101x101 at 0x26AC3546188>: 100%|[INNNENEIE| 3¢00/3000 [00:05¢00:00, 598.19 Samp
i:ii:lsing <PIL.Image.Image image mode=RGB size=101x101 at ox26Ac27E1EC8>: 100%|[INNNENEIE| 3e¢00/3600 [00:05<00:00, 569.70 Samp
;iz:ising <PIL.Image.Image image mode=RGB size=101x101 at ox26AC1C9AFCe>: 100%|[INNNENNEN| 3000/3000 [00:05<00:00, 555.50 Samp
les/s]

Figure 9: Data Augmentation Pipeline Output

10 Data Modelling

All the models are designed and implemented using keras library for deep learning and
Anaconda Jupyter Notebook. For implementing the two baseline models i.e. Convolu-
tional Neural Network and DenseNet121 based transfer learning models we have created
three folders named train, validate and test as shown in the below code.

10.1 Baseline 1 - CNN model

The CNN model was designed from scratch using the configuration shown in below snip-
pet. The libraries required for the model implementation is also shown in the following
code snippet.

The model was trained using different hyper-parameters which are included in the
code below.

The CNN model was evaluated on different metrics. The evaluation code snippet
along with visualized results are shown in figure

WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at
least “steps_per_epoch * epochs™ batches (in this case, 495@ batches). You may need to use the repeat() function when building
your dataset.

Confusion Matrix

[[939 51]
[154 836]]

Classification Report
precision recall fi-score support
Healthy 8.86 0.95 9.90 999
Unhealthy 0.94 0.84 9.89 990
accuracy 0.90 1980
macro avg 8.90 0.90 9.90 1980
weighted avg .90 9.90 .90 1980

Accuracy : 0.8964646464646465
Sensitivity : ©.9484848484848485
Specificity : ©.8444444444444444

Figure 10: CNN Model Evaluation

10.2 Baseline 2 - Dense-Net 121 model

The transfer learning Dense-Net 121 model was designed using the keras api library [f]
The model is trained on "ImageNet” dataset. The library and configuration parameters
is shown in figure

i R L S e AL

Model: "functional 33" i
Layer (type) Output Shape Param # Connected to

input_15 (InputLayer) [(Mone, 100, 100, 3) @

zero_padding2d_16 (ZeroPadding2 (None, 106, 106, 3) @ input_15[@][@]

convl/conv (Conv2D) (None, 58, 50, 64) 9408 zero_padding2d_16[@][e]

convl/bn (BatchNormalization) (None, 5@, 5@, 64) 256 convl/conv[@][e]

convl/relu (Activation) (None, 50, 58, 64) @ convi/bn[e][e]

zero_padding2d_17 (ZeroPadding2 (None, 52, 52, 64) @ convl/relufe][e]

pooll (MaxPeoling2D) (None, 25, 25, 64) @ zero_padding2d 17[e][e]

conv2_blockl @ bn (BatchNormali (None, 25, 25, 64) 256 pooli[e][e] .

Figure 11: Dense-Net 121 model Configuration

Shttps://keras.io/api/applications/densenet /

Epoch 1/1@

996/990 [1 - 123s 124ms/step - loss: ©.4284 - accuracy: ©.8860 - val loss: ©.8234 - val accuracy:
0.6667

Epoch 2/1@

996/990 [1 - 121s 122ms/step - loss: ©.0367 - accuracy: ©.9905 - val loss: ©.4999 - val accuracy:
0.7825

Epoch 3/10

996/990 [1 - 121s 123ms/step - loss: @.0163
0.6870

Epoch 4/10

990/99@ [] - 121s 122ms/step - loss: ©.0046 - accuracy: 0.9984 - val loss: ©.5767 - val_accuracy:
0.7302

Epoch 5/1@

990/990 [1 - 121s 122ms/step - loss: @.0019
@.7576

Epoch 6/10

990/99a [] - 122s 123ms/step - loss: 7.7041e-84 - accuracy: @.9998 - val_loss: ©.5961 - val_accur
acy: 0.7373

accuracy: 0.9964 - val loss: ©.6517 - val accuracy:

accuracy: 0.9994 - val loss: ©.5330 - val accuracy:

Figure 12: Dense-Net 121 model Training

The Dense-Net 121 model was trained based on the hyper parameters shown in the
code snippet Every epoch monitors the accuracy and loss for training and validation
set.

WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at
least “steps_per_epoch * epochs™ batches (in this case, 495@ batches). You may need to use the repeat() function when building
your dataset.

Confusion Matrix

[[828 162]
[327 663]]

Classification Report
precision recall fi1-score support
Healthy 8.72 9.84 9.77 990
Unhealthy 0.80 @.67 a.73 290
accuracy 0.75 1980
macro avg 8.76 a.75 a.75 1980
weighted avg 8.76 8.75 8.75 1980

Accuracy : ©.753030303030303
Sensitivity : ©.8363636363636363
Specificity : ©.6696969696969697

Figure 13: Dense-Net 121 model Evaluation

The Dense-Net 121 is evaluated using the code snippet shown in figure

10

10.3 Attention-based Multiple Instance Learning

This section explains the implementation for our novel method in detection of laryngeal
cancer. We have designed this code by referring to (Ilse et al.; |2018; Wang et al.; [2018]).

The code is arranged using modular design using functions and classes wherever appro-
priate. This will help the user in reproducing the results in easy manner. The main class
contains the basepath of the dataset and K-fold cross validation parameters. The main
function calls two methods. First method loads the data and second method trains, tests
and returns the model evaluation. The snippet below summarizes the main method.

The coding snippet denote the libraries that were used for implementation of our novel
MIL technique. They comprise of standard python libraries, keras libraries, file handling
libraries and visualization libraries.

Based on the K-fold cross validation the data from Healthy and Cancerous image
folders are shuffles into train and test set. Different images in each set during every fold
execution shown in the following code. Here we have used 3-fold cross validation.

The model_training() function in the depicted code snippet handles the code execution

11

from creating train and test bags, batch generation for each phase, model training and
testing to result generation.

We create image bags for training based on the class label of the image. The function
in the below code returns bag of image containing image data and labels.

The function cell_network() in the code defines the MIL model architecture consisting
of the attention-based MIL pooling. All the hyper-parameters are set in this function.

The MIL attention class consists of multiple functions that perform the transforma-
tions defined in the pooling mechanism. Based on the hyper-parameter values and kernel
configuration the constructor function initializes the data variables. The build function
averages the weights generated by the convolutional network. The call function introduces
the “tanh” product based on the attention mechanism.

13

def bag.accuracy (y-true, y-pred):
y-true = K.mean (y-true, axis=0, keepdims=False)
y-pred = K.mean (y-pred, axis=0, keepdims=False)
acc = K.mean (K.equal (y-true, K.round(y-pred)))
return acc

def bag.loss (y-true, y-pred):
y-true = K.mean (y-true, axis=0, keepdims=False)
y-pred = K.mean (y-pred, axis=0, keepdims=False)
loss = K.mean (K.binary.-crossentropy (y-true, y.pred), axis=-1)
return loss

The code shows the custom function used to evaluate the train/validation accuracy
and loss for each fold.

A B C D E F G H J K L

1 true_negatives 2707.1958 true_positives 262.0132 false_negatives 774.0994 false_positives 186.662
2 |true_negatives 8118.8174 true_positives 1814.9043 false_negatives 1495.185 false_positives 1233.974
3 true_negatives 13643.8838 true_positives 3749.113 false_negatives 1798.539 false_positives 2204.299
4 |true_negatives 19440.7109 true_positives 5842.5439 false_negatives 1949.222 false_positives 2896.236
5 | true_negatives 25512.9141 true_positives 8014.6948 false_negatives 2046.483 false_positives 3287.649
© |true_negatives 31683.6523 true_positives 10198.4805 false_negatives 2126.21 false_positives 3586.497
7 |true_negatives 37892.3203 true_positives 12391.875 false_negatives 2206.338 false_positives 3837.316
8 |true_negatives 44195.9375 true_positives 14565.125 false_negatives 2274.712 false_positives 4024.957
9 true_negatives 50532.5234 true_positives 16756.1055 false_negatives 2340.566 false_positives 4164.717
10 true_negatives 56896.3438 true_positives 18947.4805 false_negatives 2405.13 false_positives 4277.784
11 |true_negatives 63259.0703 true_positives 21140.4844 false_negatives 2481.118 false_positives 4379.075
12 |true_negatives 69634.4844 true_positives 23334.9609 false_negatives 2554.434 false_positives 4468.94
13 |true_negatives 76033.9766 true_positives 25524.627 false_negatives 2614.884 false_positives 4552.261
14 true_negatives 82397.4062 true_positives 27748.2754 false_negatives 2669.829 false_positives 4643.327
15 |true_negatives 88795.7422 true_positives 29935.1914 false_negatives 2721.786 false_positives 4739.244
16 |true_negatives 95175.2734 true_positives 32155.627 false_negatives 2772.089 false_positives 4821.866
17 |true_negatives 101566.3281 true_positives 34370.8516 false_negatives 2818.838 false_positives 4901.844
18 true_negatives 107933.2031 true_positives 36587.707 false_negatives 2869.318 false_positives 5000.329
19 true_negatives 114339.3594 true_positives 38792.1836 false_negatives 2918.209 false_positives 5074.118
20 |true_negatives 120756.0938 true_positives 40997.0039 false_negatives 2957.985 false_positives 5145.558
21

22 |Mean 60525.76184 20156.4624 2339.749 3871.333
23

24

25

26

27

28

29

fold1 | fold3 | fold2 | graph I 4

Figure 14: Excel for Metric Calculation

The figure [14] shows the collection of True Positives, True Negatives, False Positives
and False Negatives from each epoch in a tabular format in excel. They were used to
calculate sensitivity, specificity and F1 score.

The code for our proposed MIL architecture is referred from the GitHub |Z|

References

Ilse, M., Tomczak, J. M. and Welling, M. (2018). Attention-based deep multiple instance
learning, Conference Proceeding .

Wang, X., Yan, Y., Tang, P., Bai, X. and Liu, W. (2018). Revisiting multiple instance
neural networks, Pattern Recognition 74: 15-24.

"https://github.com /utayao/Atten_Deep_MIL

14

	Introduction
	Hardware Requirement
	GPU Configuration
	Software Requirement
	Programming Environment Setup
	Steps to setup the development, testing and debugging environment

	Dataset Aquistion
	Dataset Transformation
	Data Pre-Processing
	Data Augmentation
	Data Modelling
	Baseline 1 - CNN model
	Baseline 2 - Dense-Net 121 model
	Attention-based Multiple Instance Learning

