
Configuration Manual

MSc Research Project

Data Analytics

Rashmikant T Shukla
Student ID: x18181236

School of Computing

National College of Ireland

Supervisor: Dr. Rashmi Gupta

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rashmikant T Shukla

Student ID: x18181236

Programme: Data Analytics

Year: 2020

Module: MSc Research Project

Supervisor: Dr. Rashmi Gupta

Submission Due Date: 17/08/2020

Project Title: Configuration Manual

Word Count: 1238

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Rashmikant T Shukla
x18181236

1 Introduction

This configuration manual document includes all the info about the technical environ-
ment, coding language, libraries used for the implementation of the project. This gives
the description of Integrated Development Environment (IDE) used in the research. The
configuration manual should be read in conjunction with the research report to recreate
the same outputs.

2 Environment Specification

2.1 Hardware

• Operating System: Windows 10 Home

• Processor: Intel(R) Core(TM) i5-8265U CPU@ 1.60Hz, 1.80 GHz

• Installed Memory (RAM): 8.00 GB

• System Type: 64-bit Operating System, x64-based Processor

2.2 Software

• Anaconda IDE-Jupyter Notebook: Anaconda IDE is an open-source distri-
bution.This enable user to use Python, R by providing support for the jupyter,
spyder and R-studio. This can be downloaded from their Website.1 This research
has used jupyter note book for the data conversion, exploratory data analysis, and
visualization.

• Microsoft Excel 2016: Excel is used to stored data just before model creation in
CSV format.

• Google Colaboratory :Google Colaboratory popularly known as Google Colab is
free cloud based jupyter environment which allows individual users to train machine
learning models on TPU which are much faster than the other systems. This
research uses colab for final model creation, training and testing.

• Coding Language, Environment and Libraries:

1

Figure 1: Python and Jupyter Version

– Coding language is python and jupyter notebook is used as platform (see
Figure 1).

– Below mentioned libraries are used in this research:

∗ Numpy

∗ Scikit-learn

∗ Pandas

∗ Matplotlib

∗ Scipy

∗ Keras

3 Project Execution

Project execution starts with recognition of appropriate data. Then data preparation,
feature extraction and finally model creation and its training and testing.

3.1 Data Selection

Data is taken from NASA AMES laboratory website. This dataset is publicly available it
is in MATLAB format which directly cannot be used in python. Data downloaded from
the website have .mat extension (see Figure 2).2 This File includes Charging, Discharging
and Impedance cycle.

• Charging Cycle and Discharging Cycle: In this dataset Charging of the bat-
teries are done under constant current of 1.5A until the voltage reached to 4.2V
(single battery cell’s maximum voltage) and then it is continued under this voltage

1https://www.anaconda.com/products/individual
2https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

2

https://www.anaconda.com/products/individual
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Figure 2: Data Download Page

until current dropped to 20mA. Discharging is done at constant current of 2A until
battery voltages of B005 reached 2.7V, B006 reached 2.5V, B007 reached 2.2V and
B0018 reached 2.5 V (Goebel et al.; 2008). Each Charging and Discharging Cycle
has parameters as shown in Table 1; 3

Table 1: Charging and Discharging Cycle Parameters
Voltage measured Battery terminal voltage (Volts)
Current measured Battery output current (Amps)

Temperature measured Battery temperature (degree C)
Current charge Current measured at charger (Amps)
Voltage charge Voltage measured at charger (Volts)

Time Time vector for the cycle (secs)

• Impedance Cycle: Impedance measurements are taken by Electrochemical Im-
pedance Spectroscopy (EIS) and selected frequency are from 0.1 Hz to 5kHz (Goebel
et al.; 2008). Each Impedance Cycle has parameters as shown in Table 2;4

Table 2: Impedance Cycle Parameter
Sense current Current in sense branch (Amps)

Battery current Current in battery branch (Amps)
Current ratio Ratio of the above currents

Battery impedance Battery impedance (Ohms) computed from raw data
Rectified impedance Calibrated and smoothed battery impedance (Ohms)

Re Estimated electrolyte resistance (Ohms)
Rct Estimated charge transfer resistance (Ohms)

3https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
4https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

3

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

3.2 Data Pre-processing

Once data is selected it is necessary to under stand the structure of .mat file in order to
convert it into appropriate format (json).

3.2.1 Overview of .mat File

For Each Elements in .mat Data File

Element [0] = charge/discharge/impedance

• If element [0] = charge/discharge

– element [1] = ambient temperature

– element [2] = date/time

– element [3] = data

• Data Fields:

– Voltage measured

– Current measured

– Temperature measured

– Current charge

– Voltage charge

– Time

• If element [0] = impedance

– element [1] = ambient temperature

– element [2] = date/time

– element [3] = data

• Data Fields:

– Sense current

– Battery current

– Current ratio

– Battery impedance

– Rectified Impedance

– Re

– Rct

4

3.2.2 Conversion of .mat File to json Format

This .mat file is converted into json format as shown below. .

#Importing Al l the r equ i r ed l i b r a r i e s
import pandas as pd
import numpy as np
from sc ipy . i o import loadmat , whosmat
import numpy as np
import matp lo t l i b . pyplot as p l t
import datet ime
import j son
import os

#Creat ing D i c t i o n a r i e s
de f b u i l d d i c t i o n a r i e s (bat) :

d i scharge , charge , impedance = {} , {} , {}

f o r i , e lement in enumerate (bat) :

s tep = element [0] [0]

i f s t ep == ’ d i scharge ’ :
d i s cha rge [s t r (i)] = {}
d i s cha rge [s t r (i)] [” amb temp ”] =
s t r (element [1] [0] [0])
year = i n t (element [2] [0] [0])
month = i n t (element [2] [0] [1])
day = i n t (element [2] [0] [2])
hour = i n t (element [2] [0] [3])
minute = i n t (element [2] [0] [4])
second = i n t (element [2] [0] [5])
m i l l i s e c o n d = i n t ((second % 1)∗1000)
date t ime = datet ime . datet ime
(year , month , day , hour , minute , second ,
m i l l i s e c o n d)
d i s cha rge [s t r (i)] [” date t ime ”] =
date t ime . s t r f t i m e
(”%d %b %Y, %H:%M:%S”)

After converting .mat to json, three files for each batteries are created for charging,
discharging and impedance respectively. These file should be saved at appropriate folder
as in next stage this folder path is required. Structure of created json file can be seen in
Figure 3. This research uses only charging and discharging cycle.

5

Figure 3: .mat to json File

3.3 Feature Extraction

As the file are converted into json file, now it can be opened in jupyter notebook. The
next step is to extract features based on geometric feature of Li-ion batteries as discussed
in research report. To execute this files are read in the jupyter notebook and based on
various equation presented in research report coding for feature extraction is performed
as shown below. Similarly operation is performed on each battery data.

#Feature Extract ion o f Battery B006

with open (’D:\SEM−3\Research\BatteryAgingARC−FY08Q4
/ B0006 charge . json ’) as f :

charg ing data = json . load (f)

charg ing data . keys ()
l en (charg ing data . keys ())
170

Feature Extarct ion For Charging Cycle

#Feature e x t r a c t i o n f o r te rmina l Voltage
cvoltage max =[]
t cvo l tage max =[]

f o r i in charg ing data . keys () :

f o r j in range (l en (charg ing data [i] [’ vo l t age ba t t e ry ’])) :
#pr in t (l en (charg ing data [i] [’ vo l t age ba t t e ry ’]))
i f charg ing data [i] [’ vo l t age ba t t e ry ’] [j]>=4.2:

temp=charg ing data [i] [’ vo l t age ba t t e ry ’] [j]

6

Finally extracted data along with corresponding capacity feature converted into a
dataframe and saved into CSV format (as shown below). Appropriate folder path is
needed as these file will be used during model creation.

In similar way four csv files are created.

1. test1.csv

2. test2.csv

3. test3.csv

4. test4.csv

df=pd . DataFrame (
{ ’ Charge Voltage ’ : cvoltage max ,

’ Charge Voltage t ime ’ : t cvo l tage max ,
’ Charge Current ’ : ccurrent drop ,
’ Charge Current t ime ’ : t c cu r r en t d rop ,
’ Charge Temperature ’ : ctemperature max ,
’ Charge Temperature time ’ : t ctemperature max ,
’ Charge Loadcurrent ’ : c cur rent loaddrop ,
’ Charge Loadcurrent Time ’ : t c cu r r en t l oaddrop ,
’ Charge Loadvoltage ’ : cvoltage loadmax ,
’ Charge Loadvoltage Time ’ : t cvo l tage loadmax ,
’ Discharge Voltage ’ : dvoltage max ,
’ Discharge Voltage Time ’ : t dvoltage max ,
’ Discharge Current ’ : dcurrent max ,
’ Discharge Current Time ’ : t dcurrent max ,
’ Discharge Temperature ’ : dtemperature max ,
’ Discharge Temperature Time ’ : t dtemperature max ,
’ Discharge Loadcurrent ’ : dcurrent loadmax ,
’ Discharge Loadcurrent Time ’ : t dcurrent loadmax ,
’ Discharge Loadvoltage ’ : dvo l tage loaddrop ,
’ Discharge Loadvoltage Time ’ : t dvo l tage l oaddrop ,}

)

#Capacity Ca l cu l a t i on f o r cor re spond ing Features
df [’ capac i ty ’]= df [’ Discharge Voltage ’] ∗

df [’ Discharge Current ’]

#Exporting the f i n a l f i l e in d e s i r e d path
df . t o c s v (’D:\\SEM−3\\Research \\ t e s t 2 . csv ’)

These files have 21 dimensions, which will be used in model creation step.

7

3.4 Modelling

• Model creation is done in google colab. At the start all the required libraries were
imported into the colab and then all extracted parameter file loaded into the colab
environment (see codes below).

Importing a l l the r equ i r ed l i b r a r i e s
from keras . l a y e r s import Input , Dense
from keras . models import Model
from s k l e a rn . p r ep r o c e s s i ng import MinMaxScaler
import pandas as pd
import numpy as np
from s k l e a rn . met r i c s import r 2 s c o r e
from s k l e a rn . met r i c s import mean squared error
from math import s q r t
#Loading data f i l e from the saved path to the
co lab Environment
d a t a f i l e 1=pd . r ead c sv (’/ content / t e s t 1 . csv ’)
d a t a f i l e 2=pd . r ead c sv (’/ content / t e s t 2 . csv ’)
d a t a f i l e 3=pd . r ead c sv (’/ content / t e s t 3 . csv ’)

#t e s t f i l e=pd . r ead c sv (’/ content / t e s t 4 . csv ’)
d a t a f i l e 1 . drop (’Unnamed : 0 ’ , i n p l a c e=True , a x i s =1)
d a t a f i l e 2 . drop (’Unnamed : 0 ’ , i n p l a c e=True , a x i s =1)
d a t a f i l e 3 . drop (’Unnamed : 0 ’ , i n p l a c e=True , a x i s =1)

#t e s t f i l e . drop (’Unnamed : 0 ’ , i n p l a c e=True , a x i s =1)

• Once the data is in the colab environment, all 21 dimension battery files are con-
catenated and the format of the file can be seen in below codes.

#Combining a l l the f i l e s
d a t a f i l e 1 [’ ru l ’]= temp2
d a t a f i l e 2 [’ ru l ’]= temp2
d a t a f i l e 3 [’ ru l ’]= temp2
data=pd . concat ([d a t a f i l e 1 , d a t a f i l e 2 , d a t a f i l e 3])
(data)

#Output
Charge Voltage Charge Voltage t ime RUL

0 4.207509 712.453 1.500215 168
1 4.211770 3397.672 167
2 4.212005 3381.891 166
.
163 4.208010 2031.812 5
164 4.207997 2027.657 4

8

• RUL for each reading is stored into ’train y’. This is the target variable which is
used during the training of the prediction model (see codes below).

t r a i n y=t r a i n y . va lue s
p r i n t (t r a i n y)

#Output
[168 167 166 165 164 163 162 161 160 159 158 157 156 155
154 153 152 151 150 149 148 147 146 145 144 143 142 141
140 139 138 137 136 135 134 133 132 131 130 129 128 127
126 125 124 123 122 121 120 119 118 117 116 115 114 113
112 111 110 109 108 107 106 105 104 103 102 101 100 99
98 97 96 95 94 93 92 91 90 89 88 87 86 85
84 83 82 81 80 79 78 77 76 75 74 73 72 71
70 69 68 67 66 65 64 63 62 61 60 59 58 57
56 55 54 53 52 51 50 49 48 47 46 45 44 43

• At this stage data was normalized using minimum-maximum scalar (see codes be-
low).

#Normal izat ion o f the data

s c a l e r = MinMaxScaler (f e a t u r e r a n g e =(0 , 1))
datase t = s c a l e r . f i t t r a n s f o r m (data)

• Once data is normalized, next step is to split the data into training and testing
subset (see codes below).

#S p l i t Data in Train ing and Test ing Subsets

from s k l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t
X train , X val , y t ra in , y va l = t r a i n t e s t s p l i t
(dataset , t r a in y , t e s t s i z e =0.10 , random state =42)

• As the data is split in training and testing data. Now we move to the autoencoder
training part. It is trained for the 1000 epoch with batch size of 12 (see below
codes).

9

encoding dim = 15

inpu t d f = Input (shape =(21 ,))
encoded = Dense (encoding dim , a c t i v a t i o n =’ re lu ’) (i npu t d f)
decoded = Dense (21 , a c t i v a t i o n =’ sigmoid ’) (encoded)

encoder
autoencoder = Model (input d f , decoded)

inte rmed ia t e r e s u l t
encoder = Model (input d f , encoded)

autoencoder . compi le (opt imize r =’ adadelta ’ ,
l o s s =’ mean squared error ’)

h i s t o r y=autoencoder . f i t (X train , X train ,
epochs =1000 ,
b a t c h s i z e =12,
s h u f f l e=True ,
v a l i d a t i o n d a t a =(X val , X val)
)

#Output
Epoch 1/1000
38/38 − 0 s 3ms/ step − l o s s : 0 .1238 − v a l l o s s : 0 .1165
Epoch 2/1000
38/38 − 0 s 1ms/ step − l o s s : 0 .1237 − v a l l o s s : 0 .1165
Epoch 3/1000
38/38 − 0 s 2ms/ step − l o s s : 0 .1237 − v a l l o s s : 0 .1164
Epoch 4/1000
38/38 − 0 s 1ms/ step − l o s s : 0 .1236 − v a l l o s s : 0 .1164
Epoch 5/1000
38/38 − 0 s 2ms/ step − l o s s : 0 .1236 − v a l l o s s : 0 .1163
Epoch 6/1000
38/38 − 0 s 2ms/ step − l o s s : 0 .1235 − v a l l o s s : 0 .1163
Epoch 7/1000
38/38 − 0 s 2ms/ step − l o s s : 0 .1235 − v a l l o s s : 0 .1162
Epoch 8/1000
38/38 − 0 s 1ms/ step − l o s s : 0 .1234 − v a l l o s s : 0 .1162
.
.
Epoch 998/1000
38/38 − 0 s 1ms/ step − l o s s : 0 .0778 − v a l l o s s : 0 .0719
Epoch 999/1000
38/38 − 0 s 1ms/ step − l o s s : 0 .0778 − v a l l o s s : 0 .0718
Epoch 1000/1000
38/38 − 0 s 1ms/ step − l o s s : 0 .0777 − v a l l o s s : 0 .0718

10

• At this stage 15-dimensional data from the autoencoder is combined with the target
variable. Next neural network for the prediction is coded and trained on the 15-
dimensional data with corresponding target variable (see codes below). This model
is trained for 500 epochs with the batch size of 12. This model uses ’adadelta’ as
optimizer and ’Mean square Error as loss function’

#Pred i c t i on Neural Network
from keras . l a y e r s import Input , Dense , Dropout
de f nn model () :

inp = Input ((1 5 ,))

dense = Dense (512 , a c t i v a t i o n =’ re lu ’) (inp)
dense = Dropout (0 . 2) (dense)
out = Dense (1 , a c t i v a t i o n =’ sigmoid ’) (dense)

model = Model (inputs=inp , outputs=out)
#p r i n t (model . summary ())

re turn model
#Taining the p r e d i c t i o n model
model = nn model ()
model . compi le (l o s s =’ mean squared error ’ , opt imize r =’adam ’)
h i s t o r y=model . f i t (X train , y t ra in ,

epochs =500 ,
b a t c h s i z e =16,

)

#Output
Epoch 1/500
29/29 − 0 s 1ms/ step − l o s s : 0 .0682
Epoch 2/500
29/29 − 0 s 1ms/ step − l o s s : 0 .0502
Epoch 3/500
29/29 − 0 s 1ms/ step − l o s s : 0 .0434
.
.
Epoch 497/500
29/29 − 0 s 1ms/ step − l o s s : 0 .0062
Epoch 498/500
29/29 − 0 s 1ms/ step − l o s s : 0 .0057
Epoch 499/500
29/29 − 0 s 1ms/ step − l o s s : 0 .0061
Epoch 500/500
29/29 − 0 s 1ms/ step − l o s s : 0 .0062

11

3.5 Model Evaluation

Model is tested on the testing subset for various combination. Below is the best result
from the model. Below code shows the coding of R-square and Mean Square Error (MSE).

#Evaluat ion o f the Pred i c t i on Model

r 2 s c o r e (pred , y t e s t)
mean squared error (y t e s t , pred)

#Output
0.003787241922082548

#R−square o f the model
r 2 s c o r e (pred , y t e s t)

#Output
0.9569411206628073

References

Goebel, K., Saha, B., Saxena, A., Celaya, J. R. and Christophersen, J. P. (2008). Pro-
gnostics in battery health management, IEEE Instrumentation Measurement Magazine
11(4): 33–40.

12

	Introduction
	Environment Specification
	Hardware
	Software

	Project Execution
	Data Selection
	Data Pre-processing
	Overview of .mat File
	Conversion of .mat File to json Format

	Feature Extraction
	Modelling
	Model Evaluation

