~

N\ National
College
Ireland

Forecasting Residential Electricity Load
Demand using Machine Learning
Configuration Manual

MSc Research Project
Data Analytics

Arun Kumar Panigrahi
Student ID: x18186840

School of Computing
National College of Ireland

Supervisor: Dr. Manaz Kaleel

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Arun Kumar Panigrahi
Student ID: x18186840
Programme: M.Sc. Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Manaz Kaleel
Submission Due Date: 28/08/2020
Project Title: Forecasting Residential Electricity Load Demand using Ma-
chine Learning Configuration Manual
Word Count: XXX
Page Count: 2]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Forecasting Residential Electricity Load Demand
using Machine Learning Configuration Manual

Arun Kumar Panigrahi
x18186840

1 Introduction

The configuration manual includes a comprehensive overview of the device specifications
and various prerequisites along with detailed description of the programming language
utilized and the number of libraries, bundles and packages considered for the research
study:

“Forecasting Residential Electricity Load Demand using Machine Learning.”

This manual also provides a detailed description of the procedures that had been
followed to obtain the required data, clean and transform the collected data, and use the
data for the implementation of proposed machine learning models.

2 System Configuration

2.1 Hardware Specification

The entire project has been implemented in a PC with the system configuration as presen-
ted in the Table [

Operating System: WINDOWS 10 (2020 Microsoft Corporation)
Processor: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90GHz
RAM: 8GB

System Type: 64-bit Operating System, x64-based Processor

Hard Disk: 1TB

Table 1: System Configuration

2.2 Software Specification

The below mentioned programming tools with different packages was used for the com-
plete execution of the project. RStudio was used as framework to execute the R program-
ming code and Jupyter Notebook from the Anaconda Navigator was used for execution
of the Python Programming code.

2.2.1 R[

RStudidf]- Version 1.3.959 is used as an Integrated Development Environment (IDE) for
R Programming Language and installed packages are as mentioned below,

1. tseried]
Plotly ﬁ
jsonlitd’]
Prophet[f]
tidyversd]
Lubridate?]
Forecastl’
MLmetricd™

A A

2.2.2 PythonE| Version 3.7.4

- Jupyter Notebook - Version 6.0.3 from Anaconda Navigatoﬂ - Version 1.9.12 is used
for python programming

Libraries Utilised
1. Pandad®

Numpyﬁ
Kerad™|
Tensorflow™d]

MatplotliH"]
Scikit-Learn™

S A T

thttps:/ /www.r-project.org/

Zhttps://rstudio.com /products/rstudio/download /
3https://rdrr.io/cran /tseries/
4https://www.rdocumentation.org/packages/plotly /versions/4.9.2.1
Shttps://rdrr.io/cran/jsonlite/

Shttp://facebook.github.io/prophet /docs/installation.html
Thttps://www.rdocumentation.org/packages/tidyverse/versions/1.3.0
8https://www.rdocumentation.org/packages/lubridate/versions/1.7.9
9https://www.rdocumentation.org/packages/forecast /versions,/8.12
Ohttps://rdrr.io/cran/MLmetrics/
Uhttps://www.python.org/
2https:/ /www.anaconda.com/
13https://anaconda.org/anaconda/pandas
“https:/ /anaconda.org/anaconda/numpy
Bhttps://anaconda.org/conda-forge /keras
https://anaconda.org/conda-forge/tensorflow
17https: //anaconda.org/anaconda/matplotlib
8https:/ /anaconda.org/anaconda/scikit-learn

3 Data Source

3.1 Electricity Load Consumption Data]

Below Mentioned Figure [1) and Figure [2]is the snippets of the electricity and the weather
dataset that has been considered for the analysis

= Leud day energy median energy mean energy_max energy_count energy std energy_sum energy_min
1| MACD00131 | 2011-12-15 0.4850 0.4320455 0.868 22 | 0.23914580 9.505 0.072
2 | MACOD0131 | 2011-12-16 0.1415 0.2961667 1176 48 | 0.28147132 14216 0.031
3 | MACD00131 | 20171-12-17 0.1015 0.1898125 0.685 48 | 0.18840469 2.111 0.064
4 | MACD00131 | 2011-12-18 0.1140 0.2189792 0676 48 | 0.20291928 10.511 0.065
5 MACD00131 20171-12-19 0.1910 0.3259792 0.788 48 | 0.25920496 15647 0.066
6 MACO00131 | 2011-12-20 0.2180 0.3575000 1.077 48 | 0.28759657 17.160 0.066
7 | MAC000131 | 2011-12-21 0.1305 0.2350833 0.705 48 | 0.22206965 11.284 0.065
8 | MACD00131 | 2011-12-22 0.0830 0.2213542 1.094 48 | 0.26723888 10625 0.062
9 MAC000131 2011-12-23 0.1605 0.2911250 0.749 48 | 0.24907605 13.974 0.065
10 MACD00131 | 2011-12-24 0.1070 0.1690000 0.613 47 | 0.15068467 7.943 0.065
11 | MACDO00131 | 2011-12-25 0.2175 0.3391875 0.866 48 | 0.26310120 16.281 0.069
12 | MACD00131 | 2011-12-26 0.1495 0.2617083 0.838 48 | 0.24479274 12.562 0.066
12 | MACDO00131 | 2011-12-27 0.1430 0.2740000 0778 48 | 0.25212746 13.152 0.068
14 MACD00131 | 2011-12-28 0.1455 0.3005208 1.207 48 | 0.29868029 14.425 0.066
15 MACD00131 | 2011-12-29 Q.1520 03070417 0.888 48 | 0.26445463 14.738 0.066
Showing 1 to 18 of 3.510.433 entries, 9 total columns

Figure 1: Electricity Load Consumption Data

3.2 Daily Weather Data

< weather_daily_darksky.csv (333.2 KB) S B oo
Detail Compact Column 10 of 32 columns ~
+ temperatureMax = ™ temperatureMax... = +H windBearing = A icon

partly-cloudy-day

wind
11.96 2011-11-11 23 :00:08 123 fog
8.59 28011-12-11 14 :96:08 198 partly-cloudy-day
18.33 2811-12-27 82 :88:88 225 partly-cloudy-day
8.87 2811-12-82 23 :88 :88 232 wind
8.22 2011-12-24 23 :006 :00 252 partly-cloudy-nig

Figure 2: Electricity Load Consumption Data

Yhttps:/ /www.kaggle.com/jeanmidev /smart-meters-in-london?select=daily_dataset.csv.gz
20https://www.kaggle.com/jeanmidev/smart-meters-in-london?select=weather_daily_darksky.csv

4 Project Implementation

After the selection of the appropriate dataset, it has imported into RStudio for Data Pre-
Processing, Data Transformation and Model implementation as described in the report.

4.1 Selecting the Working Directory

Run the below mentioned code snippets in Figure |3| to select the working directory and
import the dataset into the Rstudio.

wroking_dirc <- choose.dir(getwd(), “Choose a suitable folder")
setwd (wroking_dirc)
getwd()

wth_daily <- read_csv("weather daily darksky.csv") #Reading daily weather report dataset
all_block <- read_csv("daily_dataset.csv") #Reading load consumtion dataset

Figure 3: Selecting the Working Directory

=rrE e === = o
Browse For Folder pd j

Choose the working directory
E:\CER _Thesis\Final_1

B Videos A
k e Windows (C:) 4
== RECOVERY (D:)

¥ m New Volume (E:)

Final_1
London

New_folder

COvid

Folder: Final_1

Make New Folder [ok] concel

Figure 4: Selecting the Working Directory

4.2 Data Pre-Processing

Computation of Missing Value

nnnnnnnnnnnn““““""nnnnnn-hecking For Null Values#H##HHRHAHHEHHFRHFHHEHHFEHIHHEHHFERE
apply(all_block, 2, function(x) any(is.na(x)))
apply(wth_daily, 2, function(x) any(is.na(x)))

HEF#HFH##HMIssing value and outlier adjustment ===

new_energy_sum <- ts(all_block[, c('energy_sum')])

#TS = The ts() function will convert a numeric vector into an R time series object.
all_blockf$energy_sum <- na.interpolation(new_energy_sum, option = "linear"™)
#na.interpolation() identifies and imputes the missing values

Figure 5: Missing Value Computation

4.3 Data Transformation

In this phase, at first, the daily average daily temperature was computed.

##a##Calculation of average Temperature of the day######s####RFHHFIFHE
wth_daily$avg_temperature <- (wth_daily$temperatureHigh + wth_daily$temperatureMin)/2

Figure 6: Average Daily Temperature Computation

As mentioned in the research report, Figure[7] presents the code snippets of the further
data transformation processes, such as grouping of target attributes of both the dataset
as per date followed by the concatenation of both the dataset.

sEassssssssss#s#s#Creating a Final DataFr

#Grouping of Electricity consumption records in accordance to date

all_block.year_month_grp_eng <- all_block %>%
group_by(year_month_day) #&>%

summarise(LCLid_uniqg_count = length(unique(LCLid)),#accumulating the MeterID
energy_sum_mean = mean(energy_sum), #calculating the mean of daily electricity consumption
energy_sum_total = sum({energy_sum), #calculation the total electricity consumption in a day
n=n()})

#Grouping of average daily temp in accordance to date
wth_daily.year_month_grp_wth <- wth_daily %>%
group_by(year_month_day) %>%
summarise(avg_temp_mean = mean(avg_temperature),
n=n())

#joining temperature and electricity consumtion dataframe

all_year_month_eng_wth <- inner_join(all_block.year_month_grp_eng,
wth_daily.year_month_grp_wth,
by ="year_month_day")

Figure 7: Dataset Concatenation

After the transformed data has been gathered, the data is analysed and features like
those of seasonal variation and trend is observed by creating various plot as mentioned
in Figure [§] and Figure [0

Average Temperature of Each Day

20

104

Average Temperature (Degree Celcious)

2012-01
2012-07
2013-01 1
2013-07
2014-01

Year Month

Figure 8: Average Temperature Per day (°C)

Average Electricity Consumed by Residential Building Per Day at Londen

Totdl Erergy consumed (kWh)

0
2012-07
13-01
013-07

Year Month

Figure 9: Average Electricity Consumption Per Day (KWH)

4.4 Modeling
4.4.1 R Programming

Figure [10] presents the snippet of calling and cunning of Complete Data Pre-Processing
codes at one go, instead of executing all the code one-by-one.

#HFHEFHERHPrerequis itessdsasaadaisg
print(“Please Run the Data PreProcessing Code File Before running this modelling code - dat

wroking_dirc <- choose.dir(getwd(), "Choose the working directory"™)
setwd(wroking_dirc)

getwd()

source("Data_Pre_Processing.r")

options(warn=-1)

Figure 10: Execution of initial Pre-Processing codes

Pre-Processing for ARIMAX and SARIMAX

A number of tests were conducted prior to implementation of the ARIMAX Model to
check whether the data comprises of appropriate knowledge or random noise at all. As,
stated in the code snippet present in Figure [11] Initially the decomposition of the time
series data into seasonal, trent and irregular components using Loess (STL) has been
done. Next, using the seasadj() function seasonal adjustment was performed. Finally,
as described in the research report the Dickey Fuller test (adf.test) , Autocorrelation
Function (ACF) and Partial Autocorrelation (PACF) plots has been carried out.

#STL = Decompose a time series into seasonal, trend and irregular components using loess, acronym STL.
decomp = stl(count_er,s.window="periodic")
plot(decomp)

decomp_wether = stl(count_wethe,s.window="periodic")

plot(decomp_wether)

#seasadj = Returns seasonally adjusted data constructed by removing the seasonal component.
deseasonal_cnt <- seasadj(decomp)
deseasonal_cnt_wether <- seasadj(decomp_wether)

#HFHEHAHFHHHFF ADF test test for Electricity Data###H##########

adf.test(deseasonal_cnt, alternative = "stationary")
par{mfrow = c(1,2))
Acf(deseasonal_cnt, main="", lag.max = 1@@)

Pacf(deseasonal_ent, main="", lag.max = 18@)

#H#FHAAFEHSHE ADF test test for temerature Data####a###E###EH
adf.test(deseasonal_cnt_wether, alternative = "stationary")
par(mfrow = c(1,2))

Acf(deseasonal_cnt_wether, main='", lag.max = 28)
Pacf(deseasonal_cnt_wether, main=""', lag.max = 28)

Figure 11: Data Testing

The Graphs in Figure [12] represents the seasonal, trend and irregular components of
the daily average residential Electricity consumption and daily average temperature.

seasonal data
048 12
= o
24001 2
seasonal data
o5 15 25
o "]
105 0 5 M

remainder trend
o0 oa ue
L
4
E
£
F
3
3
&
3
e
o
o 202 E
remainder trend
105 115 125
5 2 1 8

Figure 12: STL Graph for Electricty and Weather data

ARIMAX Modelling - Figure [13| presents the code snippet for the implementation
of the ARIMAX model and Figure [14] represents the evaluation of the ARIMAX model
outcomes.

mEEEEEEE # Arimax Modeling#########H#E$SSEEEEHHBRAHHHHRH#H
training_electricity <- subset(deseasonal_cnt, end=566)
test_electricity <-subset(deseasonal_cnt, start =567)

training_weather <- subset(deseasonal_cnt_wether, end = 566)
test_weather <-subset(deseasonal_cnt_wether, start =567)

multivari_arima <- arima(training_electricity, xreg = training_weather, order = ¢(9,0,7))
summary (multivari_arima)

preds.temporal <- predict(multivari_arima, newxreg = test_weather, n.ahead = 261)

result <- cbind(test_electricity,preds.temporalépred)
#View(result)

plot(result, plot.type="single", col = 1l:ncol(result))
legend("bottomleft", colnames(result), col=1:ncol(result), lty=1, cex=.65)

Figure 13: ARIMAX Modelling

sHnnassaRAERsHEREa#Evaluation of Arimax Model########H 444804 HHRERRELRER#RHEY
library(MLmetrics)

MAPE (preds.temporalfpred, test_electricity)

MSE(preds.temporal$pred, test_electricity)

RMSE (preds.temporalfpred, test_electricity)

MAE(preds.temporal$pred, test_electricity)

Figure 14: ARIMAX Modelling

SARIMAX Modelling -

The graph in Figure represents the ACF and PACF test of the daily average
temperature attribute.

@ @]
[a=) o
w | w |
[a=) o
L
= _| (&} = _|
[T = =< [=1
[yl
o | ‘; o o~ |
= “}>I.T-‘| T = |_|T-||L' \||||“‘ i
T T T T T T T T
5 10 15 20 5 10 15 20
Lag Lag

Figure 15: ACF and PACF Plot of Weather Data

Figure presents the SARIMAX model specification and accuracy testing proced-
ures. As mentioned in the report it is being treated identical as of the ARIMAX model.

fitl = arima(training_electricity, xreg=training_weather, order=c(9,0,7), seasonal=list(order=c(9,0,1), period=3))
summary (fitl)
preds.temporall23 <- predict(fitl, newxreg = test_weather, n.ahead = 261)

result_sarimax <- cbind(test_electricity,preds.temporall23fpred)

plot(result_sarimax, plot.type="single", col = l:ncol(result))
legend("bottomleft”, colnames(result), col=1:ncol(result), lty=1, cex=.65)

library(MLmetrics)

MAPE (preds.temporall23ipred, test_electricity)
MSE(preds.temporall23$pred, test_electricity)
RMSE(preds.temporall23ipred, test_electricity)
MAE(preds.temporall23$pred, test_electricity)

™ . o bbb bbb i

Figure 16: SARIMAX Modelling

PROPHET Implementation - Figure [I7, indicates the pre-processing steps along
with the specification and accuracy testing procedures for PROPHET model.

HAARBABHFHBHAAFRFAARFFPROPHET Mode L#H###F#HEFH AR HAHFHERHIIAAARHIHFH TSRS
dataset_prof <- datasetl23

names (dataset__prof) [names(dataset_prof) == "wyear_month_day"™] <- "ds"
names(dataset_prof)[names(dataset_prof) == "energy_sum_mean™] <- "y~

m <- prophet(dataset_prof, daily.seasonality=FALSE)
Ffuture <- make_future_dataframe(m, periods = 365)
predt <- predict(m, future)

View(predt)
plot(m, predt)

prophet_plot_components(m., predt)
dyplot.prophet(m, predt)

HEHHHFHFEHREER#EH#HEvaluation of Prophet Model## HHH HHHFHHS HHH FHHHHHH

df.cv <- cross_vwvalidation(m, initial = 4ee, period = 3@, horizon = 365, units = ‘"days")
df.cw

hAPE(d‘F.cvSy, df.cviyhat) #Y = Real Value and Yhat = Predicted wvalue

MSE(df.cviy, dFf.cviyvhat)
RMSE(df.cwsy, df.cviyhat)
MAE(df.cviy., df.cviyhat)

Figure 17: PROPHET Modelling

4.5 Python Programming
Pre-Processing for LSTM Model Implementation

As presented in the Figure[1§ and Figure before the implementation of the LSTM
model, the dataset is import into the Python programming environment - Jupyter note-
book. Initially the pre-proceeded file was exported from rstudio and stored as csv file,
this csv file was imported into the jupyter notebook for LSTM model implementation

In [3] M weather_energy = pd.read_csv("LSTM.csv")
weather_energy

Oout[3]: year_month_day LCLid_unig_count energy_sum_mean energy_sum_total avg_temp_mean
o 2011-11-23 13 6.952692 '90.385000 7.085

1 2011-11-24 25 8.536480 213.412000 10.745

2 2011-11-25 32 9.499781 303.993000 9.865

3 2011-11-26 41 10.267707 420.976000 9.985

4 2011-11-27 41 10.850805 444.883001 2.005

822 20140224 4975 9.802926 48769.557646 11110

823 2014-02-25 4975 9.644231 47980.048978 8.550

824 20140226 4972 9.450112 47184.835606 7.730

825 2014-02-27 4969 9.488395 47147836575 7.120

826 20140228 4925 0.211628 1042.266000 5.390

827 rows x 5 columns

In [4] M weather_energy = weather_energy[['vear_mon th_day', " energy_sum_mean']].copy()
weather_energy.set_index('year_month_day', inplace=True)
weather_energy.head()

Out[4]: energy_sum_mean
year_month_day

2011-11-23 6.952692
2011-11-24 2535480
2011-11-25 9.499781
2011-11-26 10267707
2011-11-27 10.850805

Figure 18: Data Importing

10

In [7]: M scaler
scaled

MinMaxScaler(feature_range=(@, 1))
scaler.fit_transform(weather_energy)

In [8]: M train_size = int(len(scaled) * 0.78)
test_size = len(scaled - train_size)
train, test = scaled[@:train_size, :], scaled[train_size: len(scaled), :]
print('train: {}\ntest: {}'.format(len(train), len(test)))

train: 578
test: 249

In [15]: M def create_dataset(dataset, look_back=1):

print(len(dataset), look_back)

dataX, data¥ = [1, []

for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), @]
print(i)
print('X {} to {}'.format(i, i+look_back))
print(a)
print ('Y {}'.format(i + look_back))
print(dataset[i + look_back, @])
dataset[i + look_back, 8]
dataX.append(a)
dataY.append{dataset[i + look_back, ©])

return np.array(dataX), np.array(dataY)

In [16]: M look_back = 1
X_train, y_train = create_dataset(train, look_back)
X_test, y_test = create_dataset(test, look_back)

Figure 19: Data Preprocessing

LSTM Modelling - The code snippet present in Figure

. describes the LSTM

model implementation Procedure. The model summary has also be displayed.

Model Training

In [124]: M model = Sequential()
validation_split = @.3
model . add(LSTM{5@, input_shape=z(X_train.shape[1], X_train.shape[2]}))
model . add(Dense{1})
model . compile(loss="mean_squ d_errer', optimizer='adam")
Fit network

model . summary ()

history = model.fit(X_train, y_train, epochs=58, batch_size=15, wvalidation_split=validation_split, verbosesz1l, shuffle=False)

rpacn wr
4837403 [

20Bus/step - loss: @.8826 - val_loss: @.8818

Epoch 4B/5@
43 /403 [- @s 208us/step - less: @.9026 - val_loss: @.0017
Epoch 49/50

208us/step - loss: @.0025 - val loss: 9.8017
Epach 58,58
493/403 [semsmsmessmsssszsmessssnmnmnEn] - @ 181us/step - loss: @.0825 - val_loss: @.0817

Model: "seguential 35"

Laver (type) Dutput Shape Paran #
1stm_35 {LSTM)} (Hone, 58) 18400
dense_35 (Dense) (Hone, 1) 51

Total params: 10,451
Trainable params: 12,451
Hon-trainable params: @

Figure 20: LSTM Modelling

11

After model fit, the Loss and Validation Loss of the Model during the training phase
has been plotted.

In [114]: M pyplot.plot(history.history['loss'], label='loss")
plt.plot{history.history["val_loss'], label='Validation Loss')
pyplot. legend()
pyplot.show(}

] — s
'Validation Loss
04 |

031 |
02{ |

oy

00

Figure 21: Plotting Loss and Validation Loss of the LSTM Model

The forecasting outcome are store into a data-frame in order to compare it with the
real values. Finally the accuracy of the forecasting outcome is checked.

In [22]: M import math
from sklearn.metrics impeort mean_squared_error

trainPredict = model.predict(X_train, batch_size=zbatch_size)
model.reset_states()

testPredict = model.predict(X_test, batch_size=batch_size)
model . reset_states()

invert predictions

trainPredict = scaler.inverse_transform(trainPredict)
y_train = scaler.inverse_transform([y_train])

testPredict = scaler.inverse_transform(testPredict)

v_test = scaler.inverse_transform([v_test])

In [23]: M from sklearn.metrics import mean_absolute_error
calculate root mean squared error
RSME_trainScore = math.sqrt(mean_squared_error(y_train[@], trainPredict[:,0]))
print('Real Train Score v/s Train Predicted : %.2f RMSE' % (RSME_trainScore))
RSME_testScore = math.sgrt(mean_squared_error(y_test[@], testPredict[:,8]))
print('Real Test Score w/s Test Predicted : %.2f RMSE' % (RSME_testScore))

train_MSE_Score = mean_squared_error(y_train[@], trainPredict[:,e])
print('Real Train Score v/s Train Predicted : %.2f MSE' % (train_MSE_Score))
test MSE_Score = mean_squared error(y_test[@], testPredict[:,8])

print('Real Train Score v/s Train Predicted : %.2f MSE' % (test_MSE_Score))

train_MSE_Score = mean_absolute_error(y_train[@], trainPredict[:,e])
print('Real Train Score v/s Train Predicted : %.2f MAE' % (train_MSE_Score))
test_MSE_Score = mean_absolute_error(y_test[®8], testPredict[:,08])
print('Real Train Score v/s Train Predicted : %.2f MAE' % (test_MSE_Score))

#test_MAE_Score = mean_absolute_error(test| 'predicted'], test['energy_ sum _mean'])

Real Train Score v/s Train Predicted : ©.47 RMSE
Real Test Score wv/s Test Predicted : @.39 RMSE
Real Train Score v/s Train Predicted : .22 MSE
Real Train Score v/s Train Predicted : ©.15 MSE
Real Train Score v/s Train Predicted : ©.35 MAE
Real Train Score w/s Train Predicted : 9.28 MAE

Figure 22: LSTM Model Accuracy Check

12

	Introduction
	System Configuration
	Hardware Specification
	Software Specification
	Rhttps://www.r-project.org/
	Pythonhttps://www.python.org/ Version 3.7.4

	Data Source
	Electricity Load Consumption Datahttps://www.kaggle.com/jeanmidev/smart-meters-in-london?select=daily_dataset.csv.gz
	Daily Weather Datahttps://www.kaggle.com/jeanmidev/smart-meters-in-london?select=weather_daily_darksky.csv

	Project Implementation
	Selecting the Working Directory
	Data Pre-Processing
	Data Transformation
	Modeling
	R Programming

	Python Programming

