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Prediction of Suspended Particulate Matter Using
Machine Learning-Configuration Manual

Vinayak Kolekar
x18185797

1 Introduction

The configuration manual consists of a detailed description of the environmental setup
while implementation of the research project: Prediction of Suspended Particulate Matter
Using Machine Learning-Configuration Manual.

The configuration manual section 2 is about hardware and software configuration.
Section 3 is about data source, whereas section 4 is about implementation.

2 System Configuration

2.1 Hardware Specification

Operating system: Windows 10 Education (2019 Microsoft Corporation)

Processor: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
RAM: 16 GB

System type: 64- bit Operating System, x64-based processor

Hard drive: 1TB

2.2 Software Specification

The research implemented based on two software environment R studio for statistical
methods based on R language, whereas the Jupyter notebook of Anaconda used for
machine learning models based on Python language. The libraries used during research
implementation are as follows.

2.2.1 R studio

The R studio version 1.3.959 and R version 4.0.2 is used for implementation of R code.
The installed packages in R studio are as follows.

o dplyf]
"https://cran.r-project.org/web/packages/dplyr/dplyr.pdf



https://cran.r-project.org/web/packages/dplyr/dplyr.pdf

o ggplotf]

e imputeTS’
o tseried]

[ ] uI‘CaE]

o forecast]

[ ] VardZ]

e tsDyn f]

o TSAF

e lubridatd™
e MLmetricd"]

2.2.2 Anaconda

The Anaconda version used is 1.9.12 and Jupyter notebook 6.0.3 web application plat-
form is used to demonstrate the python code. The Python environment used in Jupyter
notebook is 3.7.6. The installed python libraries are as follows.

e Pandas 1.0.1[™

Numpy 1.19.0 [

Scikit-learn 0.22.1M

Keras 2.4. [19]

Matplotlib 3.1.3[-1;6]

Tensorfow 2.2.007]

Zhttps://cran.r-project.org/web/packages/ggplot2/ggplot2. pdf
3https://cran.r-project.org/web/packages/imputeTS/imputeTS. pdf
Yhttps://www.rdocumentation.org/packages/tseries/versions/0.10-47
Shttps://cran.r-project.org/web/packages/urca/urca.pdf
Shttps://cran.r-project.org/web/packages/forecast/forecast.pdf
"https://www.rdocumentation.org/packages/vars/versions/1.5-3
Shttps://www.rdocumentation.org/packages/tsDyn/versions/0.9-44
9nttps://www.rdocumentation.org/packages/TSA/versions/1.2.1
YOhttps://www.rdocumentation.org/packages/lubridate/versions/1.7.9
Yhttps://cran.r-project.org/web/packages/MLmetrics/MLmetrics.pdf
?https://pandas.pydata.org

Bhttps://www.numpy.org

Yhttp://scikit-learn.org

https://keras.io/

https://matplotlib.org

"https://www.tensorflow.org/


https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf
https://www.rdocumentation.org/packages/tseries/versions/0.10-47
https://cran.r-project.org/web/packages/urca/urca.pdf
https://cran.r-project.org/web/packages/forecast/forecast.pdf
https://www.rdocumentation.org/packages/vars/versions/1.5-3
https://www.rdocumentation.org/packages/tsDyn/versions/0.9-44
https://www.rdocumentation.org/packages/TSA/versions/1.2.1
https://www.rdocumentation.org/packages/lubridate/versions/1.7.9
https://cran.r-project.org/web/packages/MLmetrics/MLmetrics.pdf
https://pandas.pydata.org
 https://www.numpy.org
 http://scikit-learn.org
https://keras.io/
https://matplotlib.org
https://www.tensorflow.org/

3 Data Sources

The water quality data from the Environmental protection agency (EPA)H and precip-
itation data from Met Eirean, combined and formed the data set for forecasting of
pH level. The data repository consists of multiple data sets for counties in Ireland, the
Wicklow county data from 2015 to 2018 is considered. Similarly, the rainfall of the sample
site from Wicklow county is considered from Met Eireann. On the other side, the water
quality data from New York’s open dataFE] and the daily precipitation data from the Na-
tional Climate Data Center’’] combined and formed the data set for turbidity forecasting,
the similar sample site is considered for water quality and rainfall amount data. Table
shows the data repository.

Data source Description Features Target variables
Category
Weather data | Met Eireann | Meteorological Daily  rainfall | Rainfall amount
data amount in mm | (mm)
Water quality | Environmental| Water — quality | Sample  Date, | pH level
monitoring protection monitoring data | Water supplier,
data agency (EPA) Scheme code
,Water quality
parameters
Weather data | National Cli- | Meteorological Daily rainfall | Rainfall amount
mate  Data | data includ- | amount in mm | (mm)
Center ing Rainfall,
temperature
Water quality | NYC open | Water  quality | Sample  Date, | Turbidity(NTU)
monitoring data monitoring data | Water  quality
data parameters,
Sample site,
location

Table 1: Data repository

8http://erc.epa.ie/safer/resourcelisting. jsp?0ID=10206&username=EPA%20Drinking}

20Water

Yhttps://wuw.met.ie/climate/available-data/historical-data

20https://data.cityofnewyork.us/Environment/Drinking—Water—Quality—Distribution—Monitoring—Dat/

bkwf-xfky

2lhttps://www.ncdc.noaa.gov/cdo-web/



http://erc.epa.ie/safer/resourcelisting.jsp?oID=10206&username=EPA%20Drinking%20Water
http://erc.epa.ie/safer/resourcelisting.jsp?oID=10206&username=EPA%20Drinking%20Water
https://www.met.ie/climate/available-data/historical-data
https://www.ncdc.noaa.gov/cdo-web/

4 Implementation

The collected data from water quality monitoring databases and meteorological stations
merged for forecasting Turbidity and pH level. Two separate code execution maintained
for forecasting of Turbidity and pH level. The autoregressive models (VAR, VECM,

ARIMAX) are implemented in R, whereas for LSTM python programming is used.

4.1 Data Pre-processing

Mean values of Turbidity and pH level per top 10 sites are plotted, and filtration is done
on one sample site to make research analysis more meaningful as described in research

report.

#Mean Turbidity According to sample site

Mean_plot <- finaldata_NYC %%
group_by(Sample_site) %%
summarise(Mean_Turbidity = mean(Turbidity))

# Plot the graph

ggplot (Mean_plot %%
top_n(10, Mean_Turbidity), aes(x=reorder(sample_Site,-Mean_Turbidity), y = Mean_Turbidity))+
geom_bar (stat="identity",color="skyblue',fil1="steelblue")

#Filter the data according to sample site
NYC_Water_10230 = finaldata_NyC[(finaldata_nyC3sample_site=="10250"),]
View(NYC_water_10250)

Figure 1: Turbidity data set Filter

Similarly, on pH level Data

#Mean pH According to sample site

Mean_plot_pH <- Tinaldata_wick =%
group_by(5scheme.Code) %%
summarise(Mean_pH = mean{pH))

# Plot the graph

ggplot(Mean_plot_pH %%
top_n(10, Mean_pH), aes(x=reorder(Scheme.Code,-Mean_pH), y = Mean_pH))+
geom_bar (stat="identity",color="skyblue" ,fill="steelblue’)

#filter with respect to scheme code
wick_water_pPuBl001l = Tinaldata_wick[(finaldata_wickischeme.Code=="3400PUB1001"],]
view(wick_water_pusl00l1)

Figure 2: pH Level data set Filter



After filtration on sample sites, the plots of Turbidity and pH level as shown below.
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Figure 3: plots of Turbidity and pH level

The daily data obtained and filled with the linear interpolation with the help of ”im-
puteTS” package as described in research report.

#F111 NA in between data to make Daily data set
Daily_data_wyC <- data.frame(Date = seq(Data_wCY_102503Date[1],
Data_NCY_102503Date[nrow(Data_NCY_10250)], by = 1)) &=%
full_join(pata_NCy_10250 , by = "Date")
#check Missing values
view(Daily_data_nyc)

#T5 Indivisual
Turbidity_daily<-ts(paily_data_NYC$Turbidity)
rRain_daily<-ts(Daily_data_nvcirain)

#Fi11 missing values with interpolation
Turbidity_interpol<-na.interpolation(Turbidity_daily, option = "linear")
Rain_interpoled<-na. interpolation(Rain_daily, option = "linear")

Figure 4: Interpolation in Turbidity data

#F111 NA in between data to make Daily data set
Daily_data_wick «<- data.frame(Sample_Date = seq(Data_wickisample_pate[1],
Data_Wick$Sample_Date[nrow(Data_wick)], by = 1)) %%
full_join(pata_wick, by = "Sample_Date")
fcheck missing values
view(paily_data_wick)

#75 Indivisual
pH_daiTy<-ts(Daily_data_wickSpH)
Rain_daily_wic<-ts(Dpaily_data_wickirain)

#add interpolated values in dataframe
Daily_data_wickiInterpolate_pH<-na.interpolation(pH_daily, option = "Tinear")
Daily_data_wickiInterpolate_rain<-na.interpolation(Rain_daily_wic, option = "Tinear™)

Figure 5: Interpolation in pH level data



The seasonal plots are plotted to check the seasonal effect of Turbidity and pH level.
The Line and polar seasonal plots are formed on two data sets. Code for visualization of
seasonal plots is as follows.

#Seasonal plots
Daily_data_NYCiyear =- year(Daily_data_NyCiDate)
Daily_data_NyCimonth =- month(paily_data_nvCiDate)

# calculate the sum Tfor each month
sum_rain_turbidity <- paily_data_MyC =%
group_by(month, year) %=%
summarise(summarise_tur = mean(Interpolated_turbidity),
summarise_rain = mean(Interpolated_rain))

time_series_tur_plot<- ts(sum_rain_turbidityisummarise_tur,frequency =12,start = 2015)
time_series_rain_plot<- ts{sum_rain_turbidity$summarise_rain,frequency =12,start = 2015)

ggseasonplot(time_series_tur_plot, polar=TRUE) +
ylab("Mean Turbidity") +
ggtitle("Polar seasonal plot:Turbidity")

ggseasonplot(time_series_tur_plot, year.labels=TRUE, year.Tlabels.left=TRUE) +
ylab("Mean Turbidity") +
ggtitle(” Turbidity Seasonal plot™)

Figure 6: Seasonal plots for Turbidity data

#seasonal plots
Daily_data_wickiyear <- year(Daily_data_wickisample_pate)
Daily_data_wickimonth <- month(Daily_data_wick$sample_bate)

# calculate the sum for each month
sum_rain_pH <- Daily_data_wick #=3]
group_by(month, year) =%
summarise(summarise_ph = mean(Interpolate_pH],
summarise_rain_wick = mean(Interpolate_rain))

time_series_pH_plot<- ts(sum_rain_pHisummarise_ph,frequency =12,start = 2015)
time_series_rain_wick_plot<- ts({sum_rain_pH$summarise_rain_wick,frequency =12,start = 20153)

ggseasonplot(time_series_pH_plot, polar=TRUE) +
ylab("Mean pH") +
ggtitle("pPolar seasonal plot:pH")

ggseasonplot(time_series_pH_plot, year.labels=TRUE, year.labels.left=TRUE) +
ylab("Mean pH") =+
ggtitle(” pH Seasonal plot™)

Figure 7: Seasonal plots for pH level data



The following plots are polar

seasonal plots of Turbidity and pH level.
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Figure 8: Polar seasonal plots of Turbidity and pH level

4.2 Data transformation

The data transformation transforms data from one form into another to make it suitable
for model construction. The data conversion into a time-series format is done as described
in research report. The seasonality check is done with the help of ”st]” function and

adjustments are done with ”seasadj” function from ”forecast” package.

#Remove seasonality from data and make it deseasonal
Seasonality_tur =
deseasonal_turt <- seasadj(Seasonality_tur)
plot(Seasonality_tur)
plot(deseasonal_turt)

#ACF and PACF plots
act(deseasonal_turt, main="")
Pacf (deseasonal_turt, main="")

#Remove seasonality from data and make it deseasonal
Seasonality_rain =
deseasonal_rain <- seasadj(Seasonality_rain)
plot(Seasonality_rain)

plot(deseasonal_rain)

#ACF and PACF plots
Acf(deseasonal_rain, main="")
Pacf (deseasonal_rain, main="")

stl(time_series_turbidity, s.window="periodic")

st1(time_series_Rain, s.window="periodic")

Figure 9: Seasonality adjustment in Turbidity data



#Remove seasonality from data and make it deseasonal
Seasonality_ph = stl{time_series_ph, s.window="periodic™)
deseasonal_ph <- seasadj(seasonality_ph)
plot(seasonality_ph)

plot(deseasonal_ph)

#ACF and PACF plots
acf (deseasonal_ph, main="",lag.max = 150)
pacf (deseasonal_ph, main="",Tlag.max = 20)

#Remove seasonality from data and make it deseasonal
Seasonality_Rain_wick = stl(time_series_Rain_wick, s.window="periodic")
deseasonal_Rain_wick =- seasadj(Seasonality_Rain_wick)
plot(seasonality_Rain_wick)

plot(deseasonal_Rain_wick)

#ACF and PACF plots
Acf (deseasonal_Rain_wick, main="")

Pacf(deseasonal_Rain_wick, main="")

Figure 10: Seasonality adjustment in pH level data
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Figure 11: Seasonality in Turbidity and pH level




Autocorrelation (ACF) and Partial Autocorrelation (PACF) plots for Turbidity are
as follows.
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Figure 12: ACF and PACF plots of Turbidty level

Autocorrelation (ACF) and Partial Autocorrelation (PACF) plots for pH level are as
follows.

= =
oo
[}
P =
==
5o 2
=T = 1‘(:.; _________________________________
g o g —— _|__| ____________________________
f
=
e
T T T T = T T T T
(0] 50 100 150 S 10 15 20
Lag Lag

Figure 13: ACF and PACF plots of pH level



4.3 Model building and evaluation

The time series objects stationarity check has been done with the help of Augmented
Dickey-Fuller (ADF) test.

> #ADF test for stationarity
> adf.test(deseasonal_turt, alternative = c("stationary”, "explosive"),
- k = trunc{{Tength(({deseasonal_turt)-1)A{1,/3))))

Augmented Dickey-Fuller Test

data: deseasonal_turt
Dickey-Fuller = -5.8333, Lag order = 12, p-value = 0.01
alternative hypothesis: stationary

warning message:

In adf.test(deseasonal_turt, alternative = c("stationary”, "explosive”),
p-value smaller than printed p-value

> #ADF test for stationarity

> adf.test(deseasonal_rain, alternative = c("stationary”, "explosive"),

- k = trunc{{length({({deseasonal_rain)-1)A{1,/3))))

augmented Dickey-Fuller Test

data: deseasonal_rain
Dickey-Fuller = -8.2268, Lag order = 12, p-value = 0.01
alternative hypothesis: stationary

warning message:
In adf.test(deseasonal_rain, alternative = c("stationary”, "explosive"),
p-value smaller than printed p-value

Figure 14: ADF Test on Turbidity and Rainfall data

= #ADF test for stationarity
> adf.test(deseasonal_ph, alternative = c("stationary”, “"explosive"),
+ k = trunc({({length(({deseasonal_ph)-1)A(1/3))))

Augmented Dickey-Fuller Test

data: deseasonal_ph
Dickey-Fuller = -5.0408, Lag order = 11, p-value = 0.01
alternative hypothesis: stationary

Warning message:

In adf.test(deseasonal_ph, alternative = c("stationary”, "explosive"),
p-value smaller than printed p-value

= #ADF test for stationarity

= adf.test(deseasonal_Rain_wick, alternative = c("stationary”, "explosive”),

+ k = trunc{({length({deseasonal_Rain_wick)-1)A(1/3)1)))

Augmented Dickey-Fuller Test

data: deseasonal_Rain_wick
Dickey-Fuller = -5.9814, Lag order = 11, p-value = 0.01
alternative hypothesis: stationary

warning message:
In adf.test(deseasonal_Rain_wick, alternative = c("stationary"”,
p-value smaller than printed p-value

Figure 15: ADF Test on pH level and Rainfall data
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4.3.1 VAR

The optimal lag selected with the help of VARselect and the model VAR is implemented
as shown in the figure [I§ and [I9] The forecast plots of actual versus predicted values are
described in the research report.

> varselect=-vaArRselect (Combined_time_series)
> varselect$selection
AIC(n) HQ(n) sc(n) FPE(N)
10
> varselect$criteria
2 3 4 3 6 7
AIC(Nn) -1.319200e+01 -1.447854e+01 -1.447802e+01 -1.449670e+01 -1.452107e+01 -1.454803e+01 -1.454587e+01
HQ(n) -1.318566e+01 -1.446798e+01 -1.446323e+01 -1.447770e+01 -1.449784e+01 -1.452057e+01 -1.451419e+01
sc(n) -1.317477e+01 -1.444983e+01 -1.443782e+01 -1.444502e+01 -1.445790e+01 -1.447337e+01 -1.445973e+01
FPE(n) 1.865470e-06 5.152862e-07 .155574e-07 5.080139e-07 4.938330e-07 4.806989%e-07 4.817375e-07
8 9 10
AIC(n) -1.455096e+01 -1.454908e+01 -1.455126e+01
Ha(n) -1.451506e+01 -1.450895e+01 -1.450691e+01
sc{n) -1.445334e+01 -1.443997e+01 -1.443066e+01
FPE(N) 4.792884e-07 4.801930e-07 4.791468e-07
-

wn

Figure 16: Varselect on Turbidity data

= varselectwick<-varselect(Combined_time_series_wick)
> varselectwickiselection
ATC(n) Ha(n) scin) FPE(N)

6 3 2 6
> varselectwickScriteria
1 2 3 4 5 6 7

AIC(n) -8.1552076901 -9.535118e+00 -9.541630e+00 -9.5425726032 -9.544537e+00 -9.557494e+00 -9.55623%e+00

HQ(N) -8.1467383347 -9.521003e+00 -9.521868e+00 -9.5171645372 -9.513483e+00 -9.5207%94e+00 -9.513892e+00

sC(n) -8.1325621309 -9.497376e+00 -9.488791e+00 -9.4746359258 -9.461504e+00 -9.459364e+00 -9.443011e+00

FPE(Nn) 0.0002872356 7.226878e-05 7.179972e-05 0.0000717321 7.159133e-05 7.066972e-05 7.0758535e-035
8 9 10

AIC(n) -9.552989e+00 -9.549874e+00 -9.550031e+00

Ha(n) -9.504996e+00 -9.496235e+00 -9.490745e+00

SC(n) -9.424664e+00 -9.406452e+00 -9.391512e+00

FPE(n) 7.098891e-05 7.121046e-05 7.119942e-05

Figure 17: Varselect on pH data

# apply model vector autoregression
VAR_est <- VAR(y = training, p = 10)
summary (VAR_estT)

# Forecast future values
forecasts <- forecast(VAR_est,h=390)
plot(forecasts)

# Make data frame of predicted wvalues
pred_var=data.frame(forecastsiforecastideseasonal_turtimean)

#evaluation measures MSE, RSME, MAE and MAPE

MSE (pred_vARiforecasts. forecast.deseasonal_turt.mean, Dataframe_comb_series$deseasonal_turt)
RMSE (pred_variforecasts.forecast. deseasonal_turt.mean, Dataframe_comb_seriesfdeseasonal_turt)
MAE (pred_vARiforecasts. forecast.deseasonal_turt.mean, Dataframe_comb_series$deseasonal_turt)
MAPE (pred_variforecasts.forecast.deseasonal_turt.mean, Dataframe_comb_seriesideseasonal_turt)

Figure 18: VAR model on turbidity data set
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# apply model wvector autoregression
var_est_wick =- vaR(y = training_wick, p = &)
summary (VaR_est_wick)

# Forecast future values
forecasts_wick <- forecasti(var_est_wick,h=280)
plot(forecasts_wick)

# Make data frame of predicted values
pred_vAR_pH=data. frame(forecasts_wickiforecastideseasonal_phimean)

#Evaluation measures MSE, RSME, MAE and MAPE

MSE(pred_vAR_pHiforecasts_wick.forecast.deseasonal_ph.mean, test_wickideseasonal_ph)
RMSE (pred_var_pHiforecasts_wick.forecast. deseasonal_ph.mean, test_wickideseasonal_ph)
MAE (pred_vAr_pHiforecasts_wick.forecast.deseasonal_ph.mean, test_wickideseasonal_ph)
MAPE (pred_vaR_pHiforecasts_wick.forecast. deseasonal_ph.mean, test_wickideseasonal_ph)

Figure 19: VAR model on pH data set

4.3.2 VECM

The Johansen cointegration test is applied to multivariate series and the VECM model is
implemented as shown in figure 22| for turbidity and figure [23| for pH level. The forecast
plots of actual versus predicted values are described in research report.

= # Johansens cointegration tTest

> jotest_NYC=ca. jo{data. frame({Ccombined_time_series), type="trace",
+ K=2, ecdet="none", spec="Tongrun™)

> summary { jotest_MNYC)

B I
# Johansen-Procedure #
Y T
Test Ttype: Ttrace statistic , with Tinear trend

Eigenvalues (lambda) :
[1] ©0.211037068 0.03733509

values of tTeststatistic and critical wvalues of test:
test 10pct Spct lpct

= 1 | F4.12 &6. 50 8.18 11.65
O | 301.94 15.66 17.95 23.52

I A

r
r

Eigenvectors, normalised to first column:
({These are the cointegration relations)

deseasonal_turt. 12 deseasonal_rain. 12
deseasonal_turt. 12 1. 00000 1. 000000000
deseasonal_rain. 12 20. 24988 -0. 003766074

weights w:
{(This +His the loading matrix)

deseasonal_turt. 12 deseasonal_rain.12
deseasonal_turt.d -7.557333e-05 -0.025978601
deseasonal_rain.d -2.539660e-03 —-0.004012495

Figure 20: Johansen Cointegration test for turbidity and rainfall
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> jotest_MNyCwick=ca. jo{data. frame(Combined_time_series_wick), type="trace",
+ k=2, ecdet="none", spec="longrun")
> summary({jotest_NyCwick)

B T TR
# Johansen-Procedure #
s s

Test type: trace statistic , with Tinear trend

Eigenvalues (lambda):
[1] ©.05694795 0.02326445

values of teststatistic and critical wvalues of test:

test 10pct 5Spct  1lpct
<=1 | 32.84 6.30 B8.18 11.65
=0 | 114.63 15.66 17.95 23.52

Eigenvectors, normalised to first column:
(These are the cointegration relations)

deseasonal_ph.12 deseasonal_Rain_wick.12
deseasonal_ph.12 1. 00000 1. 00000000
deseasonal_Rain_wick.12 -1.33088 0.01184508

weights w:
(This is the loading matrix)

deseasonal_ph.12 deseasonal_Rain_wick.12
deseasonal_ph. d 0. 0001729966 -0.01730233
deseasonal_Rain_wick.d 0.0200009313 0.02745730

Figure 21: Johansen Cointegration test for pH level and rainfall

#VECM model for turbidity
VECM_NYC=VECM(training,lag = 10,r=1,estim = "ML")
summary (VECM_NYC)

#Predict future test wvalues
pred_vecm<-predict (VECM_NYC,n. ahead = 3830)

# Make data frame of predicted values
hred_vECM=data.frame{pred_vecm}

#Evaluation measures MSE, RSME, MAE and MAPE

MSE (pred_vECMideseasonal_turt, Dataframe_comb_seriesideseasonal_turt)
RMSE (pred_vECMideseasonal_turt, Dataframe_comb_seriesideseasonal_turt)
MAE (pred_vECMideseasonal_turt, Dataframe_comb_seriesideseasonal_turt)
MAPE (pred_vEcMideseasonal_turt, Dataframe_comb_seriesideseasonal_turt)

Figure 22: VECM model on turbidity data set
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#VECM model for pH level
VECM_wick=vVECM(training_wick,lag = 6,r=1,estim = "ML")
summary (VECM_wick)

#Predict future test values
pred_vecm_wick<-predict (VECM_wick,n.ahead = 280)
plot(pred_vecm_wick)

# Make data frame of predicted wvalues
pred_vecMm_wick_ph=data. frame(pred_vecm_wick)

#Evaluation measures MSE, RSME, MAE and MAPE

MSE (pred_vECM_wick_phideseasonal_ph, test_wickideseasonal_ph)
RMSE (pred_vECM_wick_phideseasonal_ph, test_wickideseasonal_ph)
MAE (pred_vECM_wick_phideseasonal_ph, test_wickideseasonal_ph)
MAPE (pred_vECM_wick_phideseasonal_ph, test_wickideseasonal_ph)

Figure 23: VECM model on pH data set

4.3.3 ARIMAX

The ARIMAX model execution is as shown in figure [24] for turbidity and figure [25 for
pH level. The forecast plots of actual versus predicted values are described in research
report.

#Model trairn|
Arimax_nyc <- arimax{training_tur,xreg =training_rain ,order = c(10,0,10))
preds_arimax <- predict(arimax_nyc, newxreg = test_rain,n.ahead = 390)

#Evaluation measures MSE, RSME, MAE and MAPE
MSE(preds_arimaxipred, test_tur)
RMSE (preds_arimaxipred, test_tur)
MAE (preds_arimaxipred, test_tur)
MAPE (preds_arimaxipred, test_tur)

Figure 24: Arimax model on turbidity data set

#Model train|
arimax_wick =- arima(training_ph,xreg =training_rain_wcik ,order = c(6,0,4))
preds. temporal_wick <- predict(arimax_wick, newxreg = test_rain_wick,n.ahead = 280)

#evaluation measures MSE, RSME, MAE and MAPE
MSE(preds.temporal_wickipred, test_ph)
RMSE (preds. temporal _wickipred, test_ph)
MAE (preds. temporal_wickipred, test_ph)
MAPE (preds. temporal _wickipred, test_ph)

Figure 25: Arimax model on pH data set
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4.3.4 LSTM

The pre-processed data extracted from R studio by names ”NewYork_LSTM1” for Tur-
bidity, ”"wicklow_LSTM1” for pH level separately, and loaded in Jupyter notebook to
implement LSTM model. The time-series data converted into supervised learning data

with the help of method, as shown below for

both Turbidity and pH data. The data is

scaled with the help of the "MinMaxScaler” function and divided into an 80:20 ratio as

shown below.

def series_to superwvised(data,
n_wvars

df DataFrame{data)
cols, names list(),
# input segquence (t-n,
=

n_in=1,

list()
. t-1)

Ffor i in range(n_in, -1):
cols.append(df.shift(i))
names += [ "warkd(t-%d)"

# forecast sequence (t,

for i in range(@, n_owut):
cols.append{df.shift(-1i))
if i == @:

g
sa

o
t+1,

names +=
else:
names += [{"wvarfPfd(t+X¥d)" %
put it all together
ags concat(cols, axis=1)
agg.columns names
# drop rows with NaV
if dropnan:
agg.dropna{inplace=True)
return agg
values dataset.values
# integer encode direction
# ensure all data is float
wvalues values.astype( "Tloat32")

# normalize fFeatures from @ to 1

[ varkd(t)"

&

values

=

scaled
# frame as supervised
reframed
# drop columns that don't want
reframed.drop(reframed.columns[[3]].,
print{reframed)

scaler.fit_transform(values)
Learning

1 if type{data) is list else data.shape[1]

(j+1,

t+r)

% (j+1)) for j din range(n_wvars)]

scaler = MinMaxScaler({feature_range=({8,

series_to supervised{scaled,
to predict
anis=1,

n_out=1, dropnan=True):

i)} for j in range(n_wvars)]

(j+1, 1)) for j im range(n_wvars)]

1)

1, 1)

inplace=True)

Figure 26: Supervised learning data

# split into train and test sets
values = reframed.values
n_train_hours = 1568

train = values[:n_train_hours, :]
test = values[n_train_hours:, :]

# split into input and outputs

train_X, train_y = train[:, :-1], train[:, -1]

test X, test_y = test[:, :-1], test[:, -1]

# reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[®], 1, train_X.shape[1])
test_X = test_X.reshape((test X.shape[8], 1, test_X.shape[1]))
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

(1560, 1, 2) (1566,) (389, 1, 2) (38¢,)

# split into train ond test sets
values = reframed.values
n_train_hours = 1117

train = values[:n_train_hours, :]
test = values[n_train_hours:, :]

# split into input and outputs

train_X, train_y = train[:, :-1], train[:, -1]

test X, test_y = test[:, :-1], test[:, -1]

# reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[8], 1, train_X.shape[1]))
test X = test X.reshape((test_X.shape[@], 1, test_X.shape[1]))
print(train_X.shape, train_y.shape, test X.shape, test_y.shape)

(1117, 1, 2) (1117,) (278, 1, 2) (279,)

Figure 27: Train test division of Turbidity and pH data
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The figure [28is LSTM network used for both Turbidity and pH data set.

In [31]:
# design network
model = Sequential()
model . add(LSTM(2, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense{1))
model.compile(loss="mae"', optimizer='adam')
model. summary ()

Model: "sequential 3"

Layer (type) Qutput Shape Param #
lstm_2 (LSTM) {Mone, 3} 72
dense_2 (Dense) {Mone, 1) 4

Total params: 76
Trainable params: 76
Men-trainable params: @

Figure 28: LSTM network for Turbidity and pH data set

After model training with the help of linear activation function, batch size of 32 and 200
epochs for both data sets, the loss of train and validation shows in the figure The
forecast plots of actual versus predicted values are described in research report.

— frain 035 — frain
0.30 test test
0.30
0.25
025
0.20
020
0.15 0.15
010 010
0.05 0.05
0.00 T T T T T T T T T 0.00 T T T T T T T T T
o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Epoch Epach

Figure 29: Loss plots train and test of Turbidity and pH level
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