ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Lavneet Janeja
Student ID: x18199445

School of Computing
National College of Ireland

Supervisor: Dr Catherine Mulwa

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: LAVNEET JANEJA
Student ID: X18199445
Programme: MSc. DATA ANALYTICS Year: 2019 - 2020
Module: MSc. RESEARCH PROJECT
Lecturer: Dr Catherine Mulwa
Submission Due
Date: 17/08/2020
Project Title: Identification of defects in the fabrics using deep Convolutional

Neural Networks
Word Count:1077 Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Y e T 1= 1 o T =TSRSS

(D 1 1 o -

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Lavneet Janeja
Student ID: x18199445

1 Introduction

The main objective of carrying out fabric defect detection is to develop a model which is
capable of identifying the defects in the fabrics and classify them at a higher detection rate
which eventually will boost up the accuracy and make the model more efficient than the state
of the art.

The document contains complete step of procedures that needed to be followed for executing
five pre-trained models for identifying the defects in fabrics. The manual starts from
hardware configurations required for setting up the environment and ends at showing the
prediction at the testing part.

2 Setting up hardware

The configuration of the hardware (laptop) which is used for implementing the project is
mentioned in figure 1. It is a Lenovo laptop installed with windows 10 operating system
having 8 GB of RAM and has an intel i5-9300H processor with a processing speed of 2.4
GHz.

= System - O x

T = > Control Panel > System and Security > System v O

Control Panel Home . . .
View basic information about your computer

& Device Manager Windows edition

Remaote setti
G emote seftings Windows 10 Home Single Language

ml \\/;
& System protection © 2019 Microsoft Corporation. All rights reserved. .. Wl n d OWS 1 0

& Advanced system settings

System
Processon Intel(R) Core(TM) i5-9300H CPU @ 240GHz 2.40 GHz
Installed memory (RAM): 8.00 GB (7.88 GB usable)
System type: 64-bit Operating System, x64-based processor m
Pen and Touch: No Pen or Touch Input is available for this Display

Computer name, domain, and workgroup settings
Computer name: Lavi change settings
Full computer name; Lavi
Computer description:
Warkgroup: WORKGROUP

Windows activation

Windows is activated Read the Microsoft Software License Terms
Security and Maintenance

Product ID: 00327-35849-88651-AACEM Wchange product key

Figure 1: Hardware configuration

3 Setting up the environment

Two environments were used for implementing the models viz.

a. Spyder (Anaconda 3)
b. Google Colaboratory

First we need to install Anaconda3 using Anaconda navigator figure2. We have strictly used
only conda environment in the command line terminal and have not used pip3 anywhere.

) Anaconda Navigator

File Help

J ANACONDA NAVIGATOR

Run a cmd.exe terminal with your current
enwironment From Navigator activated

Documentation Powershell Prompt

0.0.1
Run a Powershell terminal with your
current envirenment From Navigator
activated

Dewveloper Blog

A Home o
Applications on | base (root) v‘ Fere
. Environments
o o
i
o
* Learning ‘s
F'k
a4
- Community CMD.exe Prompt JupyterLab
.11 113

An extensible envirenment For interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture

Ply

i

Qt Console
473
PyQt GUI that supports inline figures,
proper multiline editing with syntax
highlighting, graphical calltips, and more.

Sign in to Anaconda Cloud

Refresh

-
Jupyter
L]
Notebook
6.0.3
web-based, interactive computing
notebook envircnment. Edit and run

human-readable docs while describing the
data analysis.

Lo

Spyder
A 43
Scientific P'fthon Development
EnviRenment. PowerfFul Python IDE with

adwanced editing, interactive testing,
debugging and introspection Features

Figure 2: Overview of anaconda navigator

Now we install and launch spyder for running python. We have used python 3.7.7. Once the
spyder is installed we create a new environment in spyder to install packages only for
tensorflow and keras figure 3.

D
i) ANACONDA NAVIGATOR
M Home a Instatied <] [lcnannets | | Updateindex a
by I > ame ~ -
Ftren
- Communit: y -
@
= o
<4 J b
- o S
>
] D
= . > § =5
w Ly 2 [+ = =a w =

Figure 3: Setting up a new environment

We created a new environment with the name ‘thesis’ and installed all necessary classes and
libraries. Two of the most important packages that needed to be installed were Tensorflow
and Keras figure 4.

>conda list t on
nent at C:\U \Anaconda3\envs\thesis

Build Channel

er\Anaconda3\envs\thesis

Build Channel
%]

applications ;1
base
s-preprocessing

(thesis) C:\Users\user>

Figure 4: Installing Tensorflow amd Keras

4. Data Source

The dataset was fetched from www.kaggle.com

5. Code Implementation

Before implementing the codes, all the necessary packages are needed to be imported in the
spyder environment for all the five models [1] [2]. Out of five models, four models (VGG16,
VGG19, MobileNet and DCCNN) use tensorflow at the backend and keras at the frontend.
Packages required to be imported for running these four models are mentioned in figure 5.

7 import string

8 import numpy as np

9 from PIL import Image

10 import os

1 from pickle import dump, load

12 import pickle

13 import pandas as pd

14 from tensorflow.keras.applications.xception import Xception, preprocess_input
15 from tensorflow.keras.applications.vggl6 import VGG16

16 from tensorflow.keras.preprocessing.image import img_to_array, load_img
17 from tensorflow.keras.preprocessing.text import Tokenizer

18 from tensorflow.keras.preprocessing.sequence import pad_sequences

19 from tensorflow.keras.utils import to_categorical

20 from tensorflow.keras.models import Model, load_model

21 from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout, Conv2ﬂ
22 from tensorflow.keras.layers import MaxPooling2D, Flatten, Add

23 from tensorflow.keras.preprocessing.image import ImageDataGenerator

24 import matplotlib.pyplot as plt

25 import tensorflow as tf

26 from tgdm import tgdm

27 from tensorflow.keras.utils import plot_model

28 from tensorflow.keras.layers import add

29 from torchvision import datasets, transforms, models

30 import cwv2

31 import multiprocessing as mp

32 import pickle

22

Figure 5: Importing the libraries for VGG16, VGG19, MobileNet and DCCNN

On the other hand only AlexNet uses only keras without using tensorflow at the backend. The
packages needed to be imported for this model is mentioned in figure 6.

http://www.kaggle.com/

8 import string

9 import numpy as np
10 from PIL import Image
11 import os
12 from pickle import dump, load
13 import pickle
14 import pandas as pd
15 from tensorflow.keras.applications.xception import Xception, preprocess_input
16 from tensorflow.keras.applications.vggle import VGG16
17 from tensorflow.keras.preprocessing.image import img_to_array, load_img
18 from tensorflow.keras.preprocessing.text import Tokenizer
19 from tensorflow.keras.preprocessing.sequence import pad sequences
20 from tensorflow.keras.utils import to_categorical

21 from tensorflow.keras.models import Model, load model

22 from tensorflow.keras.preprocessing.image import ImageDataGenerator
23 import matplotlib.pyplot as plt

24 import tensorflow as tf

25 from tqdm import tqdm

26 from tensorflow.keras.utils import plot_model

27 from tensorflow.keras.layers import add

28 from torchvision import datasets, transforms, models

29 import cv2

3@ import multiprocessing as mp

31 import pickle

32 from keras.applications.vgglé import VGG16

33 from keras.preprocessing import image

34 from keras.applications.vgglé import preprocess input

35 from keras.layers import Input, Flatten, Dense

36 from keras.models import Model

37 import keras

38 from keras.models import Sequential

39 from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D
40 from keras.layers.normalization import BatchNormalization

11 import numpy as np

42

Figure 6: Importing libraries for AlexNet

Once libraries and classes are imported then we can download the data from the below url
“https://www.kaggle.com/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection”.
Then it is imported into python and rescaled using training and validation datagen by using
the following code in figure 7 (It is valid for all the five models).

70 dataset_images = 'Train’

71 dataset_test = 'Test’

72

73

74

75 train_datagen = ImageDataGenerator(rescale=1./255)
76

77 train_generator = train_datagen.flow_from_directory(
78 dataset_images,

79 target_size=(224, 224),

20 batch_size=32,

81 class_mode="binary")

82

83 test_datagen = ImageDataGenerator(rescale=1./255)
84

85 test_generator = test_datagen.flow_from_directory(
86 dataset_test,

87 target_size=(224, 224),

88 batch_size=32,

89 class_mode="binary")

9@

Figure 7: Loading images to train and test generator

5

Then we move on to training and testing phase, the top convolutional layers of each of the
model needs to be freezed so that there weights don’t get changed/ manipulated while
training the model with our dataset. Figure 8 illustrates how the weights of MobileNet
(picked at random out of 5 models) are freezed by running a for loop and iterating through all
the layers of the model and making the training layers to be false.

28 img_rows, img _cols = 224, 224

31 MobileNet = MobileNet{weights = ‘imagenet’,

32 include_top = False,

33 input_shape = (img_rows, img_cols, 3))
34

35

36 for layers in MobileNet.layers:

37 layers.trainable = False

Figure 8: Setting convolutional blocks to false

Then from which ever layer we want the training to start happening again, we just need to
mention the name of the layer to be true inside layer.name. For Example in VGG16 and
VGG19 we want the training to resume from the first convolution of the fifth block.

“block5 convl™, as depicted in figure 9.

177

172 = for layer in model wvggl9 conv.lavers:
174 - if layer.name == 'block5 convl':
175 set_trainable = True

176 « if set_trainable:

177 layer.trainable = True

178 = else:

179 layer.trainable = False

Figure 9: Setting the threshold till where the convolutional blocks would be false

One additional step is required in DCCNN i.e. to explicitly extract the features of VGG16
(the shallow channel) so that it can be further clubbed to three convolutional blocks (figure
10).

48 def extract_featuresl(imagelist):

49 model = VGGl6(weights="imagenet’, include_top=False, pooling = ‘avg')
50 features = list()

51 for img in imagelist:

52 image = Image.fromarray(img, ‘RGB")}

53 image = image.resize((224,224))

54 image = np.expand_dims(image, axis=0)

55 image = preprocess_input(image)

56 feature = model.predict(image)

57 features.append(feature)

58 features = np.array(features)

59 features = features.reshape((len{imagelist), 512))
60 return features

Figure 10: Extracting features for DCCNN

Next we define an Image Data_Generator for parsing a set of 100 images in a batch along
with the label whether it is defected or not (Figure 11).

113

114 def data_generator(image generator):
115 while 1:

116 temp = image generator.next()
117

118 wield ([temp[@]], temp[1])
119

1268

Figure 11: Defining Image_Data_Generator

Finally we define the model. For VGG16, MobileNet and VGG19 it is only five line code
where we define the input shape of the image, the actual model to be defined, then the model
is flattened, added dense layer to it and finally complied (figure 12).

180

181 input = Input(shape=(224,224,3),name = "image_input')
182

183 output vggl9 conv = model vggl9d conv(input)

184

185

186

187 x = Flatten(name="flatten")(output_veggl9 conv)

188 x = Dense(4896, activation='relu’, name="fcl')(x)

189 x = Dense(2048, activation="relu’, name="fc2')(x)

190 x = Dense(1, activation="sigmoid', name='predictions')(x)
o

192

193 my_model = Model(input=input, output=x)

194

195

196

197 my_model.compile(loss="binary crossentropy', optimizer='adam', metrics = ["accuracy'])
198

199 my model.summary()

200

201

202

el

Figure 12: Defining the model for VGG16

For AlexNet the model is not available inside the Keras package so we have to write the
whole set of architecture block instead (figure 13).

model = Sequential()

model.add(Conv2ZD(Filters=956, input_shape=(224,224,3), kernel_size=(11,11), strides=(4,4), padding='wvalid'))
model.add(Activation(' relu’))

model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add{Conv2D(Filters=256, kernel_size=(11,11), strides=(1,1), padding='wvalid'})
model.add(Activation(relu’))

model.add({MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add{Conv2D(Filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'})

model.add{Activation(relu’))

model.add{Conv2D({Ffilters=384, kernel_size=(3,3), strides=(1,1), padding='valid"))
model.add{Activation{ relu’))

model.add({Conv2D({Ffilters=256, kernel_size=(3,3), strides=(1,1), padding='valid’})
model.add(Activation(' relu’))

model.add{MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))

(R

model.add{Flatten())

WA R &

model.add(Dense(4995, input_shape=(224+224*3,)))
model .add{Activation{ 'relu'))

model.add(Dropout(@.4))
model.add(Dense{2@438))
model.add(Activation(' relu’))
model.add(Dropout (8.4)
model . add(Dense (188873)
model.add(Activation(' relu’))
model . add({Dropout (8.4)

model.add{Dense(1})
model.add{Activation{ sigmoid’)

model . summary ()

Figure 13: Defining model for AlexNet

Similarly as DCCNN is our developed model, so we had to define a model with whole set of
block by combining VGG16 with another channel of convolutions. In figure 14, we can see
the whole set of architectural coding block.

£
3 def define_model():
114
5 inputsll = Input(shape=(224, 224, 3))
(=) layerl = Conwv2D(32, (2,32), activation="relu ')}(inputsll)
7 layer2 = MaxPooling2D((2,2))(layerl)
8 layer3 = Conv2D(64, (2,32), activation="relu’')}(laver2)
=] layerd = MaxPooling2D((2,2))(layer3)
120 layer5 = Conwv2D(128, (3,3), activation="relu’)({layera)
121 layere = MaxPooling2D((2,2))(layers5)
122 layer7 = Conwv2D(128, (3,3), activation='relu’)({layere)
123 layver8 = MaxPooling2D((2,2)){(laver?)
4 layer9 = Flatten(){layers)
125 layerl® = Dropout(®.5)(layer9)
126 layerll = Dense(256, activation="relu’')}(layverlo)
127
128 inputs21 = Input(shape=(512,))
129 fe21 = Dropout(@.5)(inputs21)
130 fe22 = Dense(256, actiwvation='relu')(fe21)
131
132 decoder = add([layerll, fe22])
133 decoder?2 = Dropout(®.5) (decoder)
134 decoder3 = Dense(256, activation="relu’) {(decoder2)
135 decoderd = Dense(128, activation='relu’){(decoder3)
136 outputs = Dense(l, activation="sigmoid") {(decodera)
137
138 model = Model(inputs=[inputsll, inputs21], outputs=outputs)
139 model.compile(loss="binary crossentropy’', optimizer="adam’', metrics = ['accuracy'])
146
141 print(model.summary ()}
142 plot _model(model, to file="model fabric.png’, show shapes=True)
143 return model
144
145 model = define_model()
146

Figure 14: Defining model for DCCNN

8

Finally after defining and compiling the models, they were trained upon 10 epochs with a
batch size of 100. The steps per epochs were validation set (4995) divided with the batch size
(100). The models were trained using model.fit_generator() function as depicted in figure 15.
Once the models were trained the training and validation accuracy / loss were dumped in a
pickle file.

58

59 epochs = 10

60 batch = 100

62 steps_per_epoch = 4995 // batch

63

64 for 1 in range(epochs):

65 training_generator = data_generator(train_generator)

66 testing_generator = data_generator(test_generator)

67 mp.set start method('spawn’, force=True)

68 history = model.fit_generator(training_generator, validation_data = testing generator, epochs=epochs, steps_per_epoch= steps_per_epoch,
69 model.save("C: /Users/user/Desktop/Moodle/Research project/DCCNN/model TUE_" + str(i) + ".h5")
70

71 pickle.dump(history.history, open('history DCCNN.pkl®, 'wb'))

72

73

74

75

Figure 15: Training the model

After the model is trained the validation and training accuracy / loss needs to be visualized
using matplotlib as shown in figure 16.

200 import matplotlib.pyplot as plt

201 plt.plot(training_acc, label='TRAINING ACCURACY")

202 plt.plot(validation_acc, label="VALIDATION ACCURACY")
203 plt.legend()

204 plt.show()

205

206 plt.plot(validation loss, label='"VALIDATION LOSS")
207 plt.plot(training_loss, label='TRAINING LOSS')

208 plt.legend()

209 plt.show()

211 plt.plot(history.history['loss'], label="training loss')
212 plt.plot(history.history['acc'], label= ‘testing loss')
3 plt.plot(history.history[accuracy'])
214 plt.legend()
5 plt.show()

Figure 16: Plotting loss and accuracy using matplotlib

The accuracy and loss function are visualized in the form of line chart. We just randomly
took two visualizations from two different models (AlexNet- showing accuracy and
MobileNet- showing loss) in figure 17 and figure 18 respectively.

= TRAIMING ACCURACY
0.70 - VALIDATION ACCURACY

.V \/“‘/ \/

066
064

! ! I I ! !

0 2 4 & 8 10

Figure 17: Accuracy graph of AlexNet
m— YWALIDATION LO55

09 - TRAINING LOSS
0.8 4
0.7 1
0.6
0.5 A

Figure 18: Loss graph of MobileNet

10

6. Testing

After training the model if you have closed the environment then you need to extract the
features again testing purpose. Once the features are extracted again, then we are going to
predict the result of the model. An example of DCCNN is shown that how do we make the
prediction on the basis of features extracted (shown in figure 19).

215

216

217

218

219

220 def extract_featuresl(img):

221 model = VGG1l6(weights="imagenet’, include_top=False, pooling = "avg')
222 image = Image.fromarray(img, 'RGE")

223 image = np.expand_dims(image, axis=0)

224 image = preprocess_input(image)

225 feature = model.predict(image)

226 return feature

227

228 def generate_prediction(model, photol, img):

229 pred = model.predict((img, photo_vgg), verbose=8)
230 return pred

231

232 test_datagen = ImageDataGenerator(rescale=1./255)

233

234 test generator = test datagen.flow from_directory(
235 dataset_test,

236 target_size=(224, 224),

237 batch_size=32,

238 class_mode="binary ")

239

246 model = load_model(C:/Users/user/Desktop/Moodle/Research project/DCCNN/model 1.h5")
241

242

243

244 1st = []

245 for i in tgdm(range(13)):

246 a = next(test_generator)

247 for j in range(len(al[1])):

248 photo_vge = extract_featuresl(al[®][j])

249 description = generate_prediction(model, photo_vgg, a[@®][j]-.reshape((1,224,224,3)))
2508 1st.append((description, a[1][j]1))

251 print("\n\n")

252 print(lst)

252

Figure 19: Extracting features for testing and implementing the prediction

Finally a confusion matrix is plotted with a threshold of 0.5 to check that how efficient our
model managed to predict the results (Figure 20).

(=

271

272

273 threshold = 8.5

274 predlist = list()

275 predproblist = list()

276 truelist = list()

277 for 1 in lst:

278 predprobList.append(np.ravel(i[@])[0])
279 truelList.append(i[1])

280 predList = np.array(predproblist)>threshold
281

282 from sklearn.metrics import confusion_matrix
283 cm = confusion_matrix(truelist,predlList)
284 tn, fp, fn, tp = cm.ravel()

285

286

Figure 20: Creating a confusion matrix
11

References

[1] https://keras.io/preprocessing/image/

[2] Ketkar, Nikhil. (2017). Introduction to Keras. 10.1007/978-1-4842-2766-4_7.

12

https://keras.io/preprocessing/image/

