

Configuration Manual

MSc Research Project

Data Analytics

Lavneet Janeja

Student ID: x18199445

School of Computing

National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

LAVNEET JANEJA

Student ID:

X18199445

Programme:

MSc. DATA ANALYTICS

Year:

2019 – 2020

Module:

MSc. RESEARCH PROJECT

Lecturer:

Dr Catherine Mulwa

Submission Due
Date:

17/08/2020

Project Title:

Identification of defects in the fabrics using deep Convolutional
Neural Networks

Word Count:1077

 Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Lavneet Janeja

Student ID: x18199445

1 Introduction

The main objective of carrying out fabric defect detection is to develop a model which is
capable of identifying the defects in the fabrics and classify them at a higher detection rate
which eventually will boost up the accuracy and make the model more efficient than the state
of the art.
The document contains complete step of procedures that needed to be followed for executing
five pre-trained models for identifying the defects in fabrics. The manual starts from
hardware configurations required for setting up the environment and ends at showing the
prediction at the testing part.

2 Setting up hardware

The configuration of the hardware (laptop) which is used for implementing the project is

mentioned in figure 1. It is a Lenovo laptop installed with windows 10 operating system

having 8 GB of RAM and has an intel i5-9300H processor with a processing speed of 2.4

GHz.

Figure 1: Hardware configuration

2

3 Setting up the environment

Two environments were used for implementing the models viz.

a. Spyder (Anaconda 3)

b. Google Colaboratory

First we need to install Anaconda3 using Anaconda navigator figure2. We have strictly used

only conda environment in the command line terminal and have not used pip3 anywhere.

Figure 2: Overview of anaconda navigator

3

Now we install and launch spyder for running python. We have used python 3.7.7. Once the

spyder is installed we create a new environment in spyder to install packages only for

tensorflow and keras figure 3.

Figure 3: Setting up a new environment

We created a new environment with the name „thesis’ and installed all necessary classes and

libraries. Two of the most important packages that needed to be installed were Tensorflow

and Keras figure 4.

Figure 4: Installing Tensorflow amd Keras

4

4. Data Source

The dataset was fetched from www.kaggle.com

5. Code Implementation

Before implementing the codes, all the necessary packages are needed to be imported in the

spyder environment for all the five models [1] [2]. Out of five models, four models (VGG16,

VGG19, MobileNet and DCCNN) use tensorflow at the backend and keras at the frontend.

Packages required to be imported for running these four models are mentioned in figure 5.

Figure 5: Importing the libraries for VGG16, VGG19, MobileNet and DCCNN

On the other hand only AlexNet uses only keras without using tensorflow at the backend. The

packages needed to be imported for this model is mentioned in figure 6.

http://www.kaggle.com/

5

Figure 6: Importing libraries for AlexNet

Once libraries and classes are imported then we can download the data from the below url

“https://www.kaggle.com/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection”.

Then it is imported into python and rescaled using training and validation datagen by using

the following code in figure 7 (It is valid for all the five models).

Figure 7: Loading images to train and test generator

6

Then we move on to training and testing phase, the top convolutional layers of each of the

model needs to be freezed so that there weights don‟t get changed/ manipulated while

training the model with our dataset. Figure 8 illustrates how the weights of MobileNet

(picked at random out of 5 models) are freezed by running a for loop and iterating through all

the layers of the model and making the training layers to be false.

Figure 8: Setting convolutional blocks to false

Then from which ever layer we want the training to start happening again, we just need to

mention the name of the layer to be true inside layer.name. For Example in VGG16 and

VGG19 we want the training to resume from the first convolution of the fifth block.

“block5_conv1”, as depicted in figure 9.

Figure 9: Setting the threshold till where the convolutional blocks would be false

One additional step is required in DCCNN i.e. to explicitly extract the features of VGG16

(the shallow channel) so that it can be further clubbed to three convolutional blocks (figure

10).

7

Figure 10: Extracting features for DCCNN

Next we define an Image Data_Generator for parsing a set of 100 images in a batch along

with the label whether it is defected or not (Figure 11).

Figure 11: Defining Image_Data_Generator

Finally we define the model. For VGG16, MobileNet and VGG19 it is only five line code

where we define the input shape of the image, the actual model to be defined, then the model

is flattened, added dense layer to it and finally complied (figure 12).

Figure 12: Defining the model for VGG16

8

For AlexNet the model is not available inside the Keras package so we have to write the

whole set of architecture block instead (figure 13).

Figure 13: Defining model for AlexNet

Similarly as DCCNN is our developed model, so we had to define a model with whole set of

block by combining VGG16 with another channel of convolutions. In figure 14, we can see

the whole set of architectural coding block.

Figure 14: Defining model for DCCNN

9

Finally after defining and compiling the models, they were trained upon 10 epochs with a

batch size of 100. The steps per epochs were validation set (4995) divided with the batch size

(100). The models were trained using model.fit_generator() function as depicted in figure 15.

Once the models were trained the training and validation accuracy / loss were dumped in a

pickle file.

Figure 15: Training the model

After the model is trained the validation and training accuracy / loss needs to be visualized

using matplotlib as shown in figure 16.

Figure 16: Plotting loss and accuracy using matplotlib

The accuracy and loss function are visualized in the form of line chart. We just randomly

took two visualizations from two different models (AlexNet- showing accuracy and

MobileNet- showing loss) in figure 17 and figure 18 respectively.

10

Figure 17: Accuracy graph of AlexNet

Figure 18: Loss graph of MobileNet

11

6. Testing

After training the model if you have closed the environment then you need to extract the

features again testing purpose. Once the features are extracted again, then we are going to

predict the result of the model. An example of DCCNN is shown that how do we make the

prediction on the basis of features extracted (shown in figure 19).

Figure 19: Extracting features for testing and implementing the prediction

Finally a confusion matrix is plotted with a threshold of 0.5 to check that how efficient our

model managed to predict the results (Figure 20).

Figure 20: Creating a confusion matrix

12

References

[1] https://keras.io/preprocessing/image/

[2] Ketkar, Nikhil. (2017). Introduction to Keras. 10.1007/978-1-4842-2766-4_7.

https://keras.io/preprocessing/image/

