=S

)
National

Collegeor
Ireland

Configuration Manual

MSc Research Project
Data Analytics

Garima Gupta
Student 1D: X18182160

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Garima Gupta
Student ID: X18182160
Programme: Data Analytics Year: 2019-2020
Module: MSc Research Project
Supervisor: Dr. Catherina Mulwa
Submission
Due Date: 17/08/2020
Project Title: Mid Term Forecasting of Solar Power Generation in India: A

Statistical Approach - Configuration Manual
Word Count: ... Page Count 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Garima Gupta
Date: 17/08/2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, i

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Garima Gupta
x18182160

1 Introduction

This report will give a detailed explanation of all the steps taken to successfully complete this
project. All the hardware and software requirements will also be discussed in to get the same
results at every run.

2 System Configuration

2.1 Hardware Requirements

This project was implemented on Windows 10 machine with 8GB RAM and 512 GB of hard
disk with the Ryzen 7 processor. Hardware specification is shown below in Figure 1:

Windows edition
Windows 10 Home

© 2019 Microsoft Corporation. All rights reserved.

System
Processor: AMD Ryzen 7 3700U with Radeon Vega Mobile Gfx -~ 2.30 GHz
Installed memory (RAM): 8.00 GB (5.94 GB usable)
System type: 64-bit Operating System, x64-based processor
Pen and Touch: No Pen or Touch Input is available for this Display

Computer name, domain, and workgroup settings

Computer name: LAPTOP-TF72POJ6
Full computer name: LAPTOP-TF72P0OJ6
Computer description:

Workgroup: WORKGROUP

Figure 1: Hardware Requirements

2.2 Software Specification
Below mentioned software with specified versions were used for executing the project.

e Microsoft Excel 2019 was used for initial pre-processing of data which helped in saving
time required for coding. The unnecessary columns and rows were dropped from the
dataset and initial data check such as correct data types was checked at this stage using
Excel.

e Python 3 Jupyter Notebook (Anaconda 3) was used for exploratory data analysis
(EDA), such as scatterplot, heatmap. Jupyter notebook provides a lot of libraries that
are very effective for data analysis and manipulation such as pandas, NumPy. For EDA
visualizations matplotlib and seaborn libraries were used.

e Conversion of preprocessed data into time-series format was done using R
programming language in Rstudio Integrated Development Environment. Different
machine learning models were applied to time-series datasets using R. This
programming language facilitates various time series and forecasting packages, which
was the main reason for choosing R as development software for this project. The time-
series plots and other forecast results were plotted using R.

e Tableau 2020.2 was used as a visualization tool for presenting the forecast results of
the best-chosen model to help government authorities in making decisions for solar
plant installation.

In R studio few packages were installed data cleaning, preprocessing, and applying forecasting
models. A summary of addon packages is shown below in Figure 2:

#Installation of required packages
install.packages("forecast")
install.packages("chron™)
install.packages("tseries")
install.packages("Tubridate™)
install.packages("zoo")
install.packages("Tattice")
install.packages("ggplot2™)
install.packages('prophet’, type="source")
install.packages("nnfor™)
install.packages("Metrics"™)
install.packages ("CombMSC™)
install.packages("ggpubr™)
install.packages("TTR")
install.packages("Metrics"™)
install.packages("tsbox")

Figure 2: Required Add-on R packages

3 Project Development

To develop this research project, all tools specified above were used in data cleaning,
preprocessing, and data modelling.

3.1 Data preparation

The raw data of Andhra Pradesh and Rajasthan was taken from the Central Pollution control
board?, initially, datasets were having 26304 rows and 5 columns. To achieve the goal of
univariate time series analysis of solar irradiance forecasting project, Exploratory data analysis
was performed on datasets using python 3. The raw data of both states can be seen below in
Figure 3 and 4:

1 1https://app.cpcbccr.com/ccr/#/caagm-dashboard-all/caagm-landing/data/%7B%22state%
22:%22Rajasthan%22,%22city%22:%22Jaipur%22,%22station%22:%22site_134%22%7D

4

CENTRAL POLLUTION CONTROL BOARD

vnﬂq,\

i g.' CONTINUOUS AMBIENT AIR QUALITY

i Date: Wednesday, Aug 05 2020

nEh) Time: 08:34:08 AM
Parameter SR,BP,RH, WS
AvgPeriod 24 Hours
From 14-06-2017T00:00:00Z 00:00
To 14-06-2020T00:00:55Z 00:00

Police Commissionerate, Jaipur - RSPCB

Prescribed Standards NA NA NA NA
Exceeding Standards NA NA NA NA
Remarks
From Date To Date SR BP RH WS
14-06-2017 00:00 15-06-2017 00:00 119.12 767.36 34.67 0.89
15-06-2017 00:00 16-06-2017 00:00 94.87 767.22 45.67 0.8
16-06-2017 00:00 17-06-2017 00:00 94.79 767.24 38.44 111
17-06-2017 00:00 18-06-2017 00:00 91.82 767.2 40.59 0.96
18-06-2017 00:00 19-06-2017 00:00 89.85 767.17 41.78 0.8
19-06-2017 00:00 20-06-2017 00:00 100.27 767.13 40.75 0.78
20-06-2017 00:00 21-06-2017 00:00 95.66 767 42,73 1
21-06-2017 00:00 22-06-2017 00:00 105.41 767.05 42.88 0.96
22-06-2017 00:00 23-06-2017 00:00 B88.02 766.94 51.25 1.01
23-06-2017 00:00 24-06-2017 00:00 B84.22 766.9 50.01 0.94
24-06-2017 00:00 25-00-2017 00:00 MNone 794.25 50.96 0.94
25-06-2017 00:00 26-06-2017 00:00 MNone B823.77 45.12 0.86
26-06-2017 00:00 27-06-2017 00:00 MNone 833.86 47.66 1
27-06-2017 00:00 28-06-2017 00:00 Mone 820.02 63.57 1.07
28-06-2017 00:00 29-06-2017 00:00 1586.84 777179 87.2 0.93
29-06-2017 00:00 30-06-2017 00:00 65.61 766.7 92.17 1.06

Figure 3: Rajasthan's Raw data

n“"‘"ﬂ-\

CENTRAL POLLUTION CONTROL BOARD

GVYM Corporation, Visakhapatnam - APPCB

Prescribed Standards NA NA NA NA

Exceeding Standards NA NA NA NA

Remarks

From Date To Date SR BP RF WS

14-06-2017 00:00 15-06-2017 00:00 18.62 742,05 0.06 1.43
15-06-2017 00:00 16-06-2017 00:00 72.64 741.07 0.01 2.41
16-06-2017 00:00 17-06-2017 00:00 76.24 738.83 0.01 2.35
17-06-2017 00:00 18-06-2017 00:00 184.81 736.5 1] 3.01
18-06-2017 00:00 15-06-2017 00:00 179.7 734.4 0 2.95
15-06-2017 00:00 20-06-2017 00:00 115.42 731.84 1] 2.25
20-06-2017 00:00 21-06-2017 00:00 169.01 731.85 1] 2.5
21-06-2017 00:00 22-06-2017 00:00 144.11 733.83 1] 2.03
22-06-2017 00:00 23-06-2017 00:00 193.22 731.13 1] 212
23-06-2017 00:00 24-06-2017 00:00 180.17 732.03 0.13 1.53
24-06-2017 00:00 25-06-2017 00:00 123.8 729.5 0.07 1.32
25-06-2017 00:00 26-06-2017 00:00 36.33 729.91 0.02 0.96
26-06-2017 00:00 27-06-2017 00:00 71.1 730.75 0 2.92

fe——1 CONTINUQUS AMBIENT AIR QUALITY
o Date: Friday, Aug 07 2020
@b Time: 02:59:40 AM
State Andhra Pradesh
City Visakhapatnam
Station GVM Corporation, Visakhapatnam - APPCB
Parameter SR,BP,RF, WS
AvgPeriod 24 Hours
From 14-06-2017T00:00:00Z 00:00
To 14-06-2020T00:00:59Z 00:00

Figure 4: Andhra Pradesh Raw data

From Date is of no use in the analysis of the project, so it was dropped from the datasets, and
data was imported to Jupyter notebook for exploratory data analysis. Figure 5 and 6 shows the
first 5 rows of imported datasets:

Importing Rajasthan data

import pandas as pd

RI_df = pd.read_excel('Rajasthan_jaipur_daily.xlsx')
RI_df.head()

To Date SR BP RH Ws

0 15-06-2017 00:00 119.12 767.36 34.67 0.89
1 16-06-2017 00:00 94.87 767.22 45.67 0.8
2 17-06-2017 00:00 94.79 767.24 38.44 1.1
3 18-06-2017 00:00 91.82 767.2 40.59 0.96

4 19-06-2017 00:00 89.85 767.17 41.78 0.8
Figure 5: First 5 rows of Rajasthan data

Importing Andhra Pradesh data
AP_df = pd.read_excel('AP_Vizag_daily.xlsx')
AP_df.head()

To Date SR BP RH WS

0 15-06-2017 00:00 18.62 742.05 0.06 1.49
1 16-06-2017 00:00 72.64 741.07 0.01 2.41
2 17-06-2017 00:00 76.24 738.83 0.01 2.35
3 18-06-2017 00:00 184.81 736.9 0 3.01

4 19-06-2017 00:00 179.7 7344 0 295

Figure 6: First 5 rows of Andhra Pradesh's data

To find the relationship between the columns, the scatterplot of each variable with solar
irradiance was drawn. The scatterplots along with code to draw it are shown in Figure 6, 7, 8
for Rajasthan’s data and 9, 10, 11 for Andhra Pradesh's data.

In [7]: #Drawing Scatterplot
import matplotlib.pyplot as plt
plt.plot(RI_df['SR"'],RI_df['BP"'], marker = '.', linestyle = 'None')
plt.xlabel("Solar irradiance™)
plt.ylabel("Bar pressue")

Out[7]: Text(®, ©.5, 'Bar pressue')

800 -

.y

780

% ’
. >
720 N

700

-
ry
o

Bar pressue
o
a
=]
'
z.?
*ee % e

o 200 400 600 800 1000 1200 1400 1600
Solar irradiance

Figure 7: Scatter plot of Rajasthan’s Bar pressure

In [8]: | plt.plot(RI_df['SR'],RI_df['RH'], marker = '.", linestyle = 'None")
plt.xlabel("Solar irradiance")
plt.ylabel("Relative humidity")

Out[8]: Text(e, 8.5, 'Relative humidity')

Relative humidity

0 200 400 60 80 1000 1200 1400 1600
Solar irradiance

Figure 8: Scatter plot of Rajasthan's Humidity

[9]: plt.plot(RI_df['SR'],RI_df['WS'], marker = '.', linestyle = 'None')
plt.xlabel("Solar irradiance")
plt.ylabel("Wind Speed")

t[9]: Text(e, 0.5, 'Wind Speed')

351

—
wn

Wind Speed

10 1

051

0.0 1

0 200 400 600 BOO 1000 1200 1400 1600
Solar irradiance

Figure 9: Scatter plot of Rajasthan’'s Wind speed

. | #Drawing Scatterplot

plt.plot(AP_df['SR'],AP_df['BP'], marker = '.', linestyle = 'None')
plt.xlabel("Solar irradiance")

plt.ylabel("Bar pressue")

. Text(e, 0.5, 'Bar pressue')

760
750
3 0 N
@ .
8 730 . '
a o e
0 AR
70 1 b
700 LI '.. - .
0 00 20 00 40 500
Solar irradiance
Figure 10: Scatter plot of Andhra Pradesh's Bar pressure
plt.plot(AP_df['SR'],AP_df['RH'], marker = '.', linestyle = 'None')

plt.xlabel("Solar irradiance")
plt.ylabel("Relative humidity")

Text(@, 0.5, 'Relative humidity')

144 ¢
12 4
QLD' .
° .
€ 081
< B
v
2 061 00
5 .
€04 N,
.
¢ .0 1.
. L)
021 o+ % &
ﬁ ﬂ.'“'t
00 .‘.

0 100 200 300 400 500
Solar irradiance

Figure 11: Scatter plot of Andhra Pradesh's Humidity

plt.plot(AP_df['SR'],AP_df['WS'], marker = '.', linestyle = 'None')
plt.xlabel("Solar irradiance")
plt.ylabel("wind Speed")

Text(@, ©.5, 'wind Speed')

6 .

wind Speed

0 100 200 300 400 500
Solar irradiance

Figure 12: Scatter plot of Andhra Pradesh's wind speed

Figure 13 and 14 has been drawn to check the correlation between the individual parameters
and it was found that there is a weak relationship between parameters, hence solar irradiance
was only considered for analysis.

#Plotting Heatmap

import seaborn as sns

sns.heatmap(corr, annot =True, cmap="Blues")

plt.show()
100
0.75
-0.50
-0.25
-0.00
--0.25

Figure 13: Heatmap of Rajasthan data

#Plotting Heatmap

import seaborn as sns

sns.heatmap(corrl, annot =True, cmap="Y1lGnBu")
plt.show()

100

-0.75

-0.50

-0.25

-0.00

Figure 14: Heatmap of Andhra Pradesh'’s data

After EDA data was imported to Rstudio for data cleaning and preprocessing of converting the
dataset into time-series data. Figure 15 shows the code for cleaning and preprocessing of
datasets:

setwd("C: /Users/garim/Desktop/NCI/Semester 3/Research Project”)

Rajasthan <- read.x1sx("Rajasthan_Jaipur_Daily_SR.x1sx",1)
summary (Rajasthan)
str(Rajasthan)

#Feature Engineering to convert To.Date column (containing timestamp) into Date column

Rajasthan = separate(Rajasthan, col = To.Date, into = c("Date"), sep = 10, remove=T)
Rajasthan$Date=strptime (Rajasthanspate, format= "f%d-%m-%v")

Rajasthan$sR = as.numeric(as.character(Rajasthan$sr))

str(Rajasthan)

summary (Rajasthan)

#Defining zoo variable for creating time series

temp= zoo(Rajasthan %% select(2), order.by = RajasthanSDate)
tempSSR <- tsclean(tempisr)

Rajasthan.ts <- ts(temp, start= c(2017, 06, 15), frequency=365)

autoplot(Rajasthan.ts) +
ggtitle("solar irradiance data of Rajasthan(2017-2020)") +
xlab("Year") +
ylab("solar irradiance (w/m2)")

Figure 15: Cleaning and preprocessing of Rajasthan's dataset

10

Plots of time series dataset of both states were plotted with or without seasonality as shown in
Figure 16 and 17.

Solar irradiance data of Rajasthan(2017-2020)

400-

o
&
a

[
S
=1

Solar irradiance {(YWm2)
5

' ' ' '
2017 2018 2019 2020

Year

Figure 16: Rajasthan’ s time-series data

Solar irradiance data of Rajasthan(2017-2020) without seasonilty

(=]

=1

=
'

o
=
'

Solar irradiance (WWm2)

| ' ' '
2017 2018 2019 2020

Year

Figure 17: Rajasthan's time-series data without seasonality

From the comparison of both figures, it can be observed that Figure 16 was seasonal data but

17 is non-seasonal. Figure 18 shows the code of different tests performed on time series data
to make it ready for modelling.

11

#Dickey-Fuller test for Stationarity check
adf.test(RJadj)

#Ljung-Box Test for white noise
Box.test(RJadj, lag = 24, fitdf = 0, type = "Ljung")

#Checking normality using wilk shapiro test
shapiro.test(RJadj)

Q-Q plot for checking data Tinearity
ggqaplot(tempSSR)+
ggtitle("Rajasthan Solar irradiance Data Linearity")
#spliting the original data for training and testing dataset with a ratio of 75-25 -> S¢

Rajasthanl <-splitTrainTest(RJadj, numTrain = length(rRJadj) - 274)

#spliting the original data for training and testing dataset with a ratio of 80-20 -> Ss¢
Rajasthan2 <-splitTrainTest(RJadj, numTrain = length(RJadj) - 220)

4 Model Implementation and results

This section discusses the implementation of selected models and their results. As the code of
both datasets is the same, so details of Rajasthan state analysis has been shown here.

4.1 ARIMA Model:

Figure 19, 20, and 21 shows the code for model implementation, residual plot and forecast
results of ARIMA model respectively.

###HFUSTAG TraTiATRg ST 1 #FFFFFaFF

RJarimal <-auto.arima(Rajasthanl$train, Tlambda= NULL, stationary = T,
stepwise=F, trace=F, approximation=F, biasadj=F)
checkresiduals(RJarimal)

#By Tlooking at the residuals, it can be seen that it is white noise, so the model -s
RJarimal.forecast <-forecast(RJarimal,h = 274)

autoplot(RJarimal.forecast) +
Xlab("yvear™) +
ylab("Solar irradiance(wW/m2)")

RJarimal.acc<-accuracy(RJarimal. forecast)

####Using Training Set 2 ####FHHHFFHHHEY

RJarima2 <-auto.arima(Rajasthan2%train,lambda=NULL, stationary = T,
stepwise=F, trace=F, approximation=F, biasadj=F)

checkresiduals(RJarima2)

#By looking at the residuals, it can be seen that it is white noise, so the model -1is
RJarimaz.forecast «<-forecast(RJarimaz2,h=220)

autoplot(RJarima2.forecast) +
Xlab("yvear™) +
ylab("Solar irradiance(wW/m2)")

RJarimaz.acc<-accuracy(RJarima2. forecast)

Figure 19: Code for ARIMA model

12

Residuals from ARIMA(3,0,0) with non-zero mean

2018

2019

L t
b 3 s0-
0.2-
25-
03-
04 : p : ! ! O T U 0 — 1 0900 0000
0 50 100 150 200 250 -10 5 0 5 10
Lag residuals

Figure 20: Residual plot of ARIMA Model

Forecast from ARIMA (3,0,0) with non-zero mean

Solar Irradiance (W/m2)

Forecast from ARIMA (3,0,0) with non-zero mean

100-

Solar Irradiance (W/m2)

2018

Test ::‘:rl Testset 2
Figure 21: ARIMA forecast Plot
4.2 Simple Exponential Smoothing Model
Figure 22 and 23 shows the code for model implementation, and forecast results of Simple

exponential smoothing model respectively.

13

RJIsesl <- ses(RajasthanlStrain, h = 274, lambda = NULL, initial="optimal"”, biasadj=F)
#Checking the errors to evaluate the model
RJIsesl.acc<-accuracy(RJIsesl)
Add the one-step forecasts for the training data to the plot
autoplot(Rajasthanlftrain) + autolayer(fitted(RJIsesl), series = "ses") +
xlab("Year™) +
ggtitle("simple Exponential Smoothing forecast of Rajasthan training setl") +
ylab("solar dirradiance(wW/m2)")
FHEHUSTING Training Set 2 ##EEEHEHHHHHHEEE
RIses2 <- ses(Rajasthan2%train, h = 220, lambda = NULL, initial="optimal"”, biasadj=F)
#Checking the error to evaluate the model
RJIses2.acc<-accuracy(RJses2)
Add the one-step forecasts for the training data to the plot
autoplot(Rajasthan2ftrain) + autolayer(fitted(RIses2), series = "ses") +

xlab("Year") +

ggtitle("simple Exponential sSmoothing forecast of Rajasthan training set2") +
ylab("solar dirradiance(w/m2)")

Figure 22: R code for SES model

)

f \ A
\f{\w‘\f My)
v Uf

Solar Irradiance (W/m2)
Solar Irradiance (W/m2)

N "

2017 2018 2019 2012, 2035, 2019
Year
Year :

Trainingset 1 Trainingset 2

Figure 23: Forecast plots of SES

4.3 Dynamic Harmonic Regression Model

Figure 24 and 25 shows the code for model implementation, and forecast results of the
Dynamic Harmonic regression model respectively. The Value of K was selected by trying
different values and K =2 gave the least AICc value, so it was chosen.

14

WEEAUSTNG Training Set 1 HFH##EHEEHHEHHEY

RIdhrl<- auto.arima(Rajasthanlstrain, xreg= fourier(Rajasthanl$train, K=2),
lambda = 0, stationary = T,stepwise=F, trace=F, approximation=F, bias

#Checking for the minimum AICc value to determine the value of K
summary (RIdhrl)
checkresiduals(RIdhrl)

R1dhrl.forecast<-forecast(RJdhrl, xreg= fourier(RajasthanlStrain, K=2, h=274))
RIdhrl.acc<-accuracy(Rldhrl. forecast)

autoplot(Rldhrl.forecast) +

xlab("year™) +

ylab("Solar irradiance(W/m2)")
WiHHUSTNg Training Set 2 HH#HHHHHHHHHHHHEE

RIdhr2<- auto.arima(Rajasthan2s$train, xreg= fourier(Rajasthan2$train, K=2),
lambda = 0, stationary = T,stepwise=F, trace=F, approximation=F, bi:

#checking for the minimum AICc value to determine the value of K
summary (R1dhr2)
checkresiduals(RIdhr2)

Rthrz.forecast<—forecas;(RJ@hrz, Xreg= fourier(Rajasthan2strain, K=2, h=220))
Figure 24: R Code for DHR model

Forecasts from Regression with ARIMA (3,0,0) errors Forecasts from Regression with ARIMA (3,0,0) errors

ey

-
00~
201

Solar Irradiance (W/m2)

2018 2019 2020 2017 2018 2019 2020
Year

Trainingset 1

Year

Trainingset 2

Figure 25: SES Forecast Plot

4.4 TBATS Model

Figure 26 and 27 shows the code for model implementation, and forecast results of TBATS
model respectively.

15

#using training set 1 #####FHHHHHE

RJthatsl <- tbats(Rajasthanl$train, use.box.cox = NULL,
use.trend = NULL, biasadj = FALSE)

RJItbatsl.forecast<- forecast(RJItbatsl, h=274)
RJtbatsl.acc<-accuracy(RJtbatsl.forecast)
autopTlot(RItbatsl.forecast) +

xlab("year") +

ylab("solar irradiance(w/m2)")

#using training set 2 H#####HFHHHHH

RJthats2 <- tbats(Rajasthan2$train, use.box.cox = NULL,
use.trend = NULL, biasadj = FALSE)

RJItbats2.forecast<- forecast(RJtbats2, h=220)
RJtbats2.acc<-accuracy(RItbats2.forecast)
autopTlot(RItbats2.forecast) +

xlab("year") +
ylab("solar irradiance(w/m2)")

" Figure 26 R code for TBATS model

Forecastsfrom BATS(1,{3,0),-,-) Forecastsfrom BATS(1,{3,0),-,-)

™

2017 2018 2019 2020 2017 2018 2010 2020
Year Year

Solar Irradiance (W/m2)

Solar Irradiance (W/m2)

Testset 1 Testset 2

Figure 27: TBATS forecast plot

4.5 Neural Network Model

Figure 28 and 29 shows the code for model implementation, and forecast results of Neural
Network respectively.

16

#using training set 1 ##HFEEHHHHEHEHHEEE

RInnl=nnetar (Rajasthanl$train,p=10,P=2,size =6,repeats=100,
Tambda = NULL, scale.inputs=F)

RInnl.forecast <-forecast(RInnl, h=274)
RInnl.acc<-accuracy(RInnl. forecast)
autoplot(RInnl.forecast) +

xlab("Year"™) +

ylab("solar dirradiance(wW/m2)")

#using training set 2 ##HEEHHHHEHEHHEEE

RInn2=nnetar (Rajasthan2%train,p=10,P=2,size =6,repeats=100,
Tambda = NULL, scale.inputs=F)

RInn2.forecast <-forecast(RInn2, h=220)
RInn2.acc<-accuracy(RInn2.forecast)
autoplot(RInn2.forecast) +

xlab("Year"™) +
ylab("sSolar dirradiance(W/m2)")

Figure 28: R code for Neural Network Model

Forecastsfrom NNAR(10,2,6)[365]

/ll’vk ,l WJU J\JW\ / H 'WA

Forecastsfrom NNAR(10,2,6)[365]
‘ P (t
W\

| LU | u\\‘ /J'W'Wlf \Jﬂw‘»\ hj/ \;MM}J -

1
|

I

)

Solar Irradiance (W/m2)
Solar Irradiance (W/m2)

2017 2018 2019 2020 2017 2018 2019 2020

Year Year

Testsetl Testset 2

Figure 29: Forecast plot of Neural Network

4.6 Prophet Model

Figure 30 and 31 shows the code for model implementation, and forecast results of Prophet
model respectively. An extra step is added in code for making a dataframe that is accepted by
the prophet model for data modelling. Dataframe with 2 columns named as “ds” and “y” was
created by converting time-series data back to dataframe.

17

HEHREEE A R R AR Prophet Mode| A R R

#Creating a dataframe with column named as ds(datestamp)and y(solar irradiance)
Rajasthan.df <- ts_df(RJadj)
Rajasthan.df <- separate(Rajasthan.df, col = time, into = c("ds"), sep = 10, remove=T)
Rajasthan.df <- rename(Rajasthan.df, y = value)
Rajasthan.temporal <- Rajasthan.df
##H##USINg Training Set 1 ##dEHHEHHEHEHEE
Loading Metrics package for evaluation parameters
Tibrary(Metrics)
RJ.prophetl<-prophet(Rajasthan. temporal[1:811,], changepoints = NULL,
seasonality.mode = 'additive', daily.seasonality=F,fit = T)

#Creating test dataset
#RIfuturel <- make_future_dataframe(RJ.prophetl, periods

274, freq = "day")

RIfuturel <- data.frame(ds Rajasthan. temporal[812:841,1])
RIfuturel <- separate(RJIfuturel, col ds, into c("ds™),
RIfuturelfds=strptime(RIfuturelsds, format= "%Y-%m-%d")

sep = 10, remove=T)

RJ.prophetlforecast <- predict(RJ.prophetl, RIfuturel, type="response")
dyplot.prophet(RJ.prophetl, RJ.prophetlforecast)

2 o

#####4## Error calculation
RJactuall<- Rajasthan. temporal[812:841,2]

RIprophetl.acc<-data.frame(rmse=rmse(RJactuall, RJ.prophetlforecast$yhat),
mae=mae(RJactuall, RJ.prophetlforecastsyhat),

mape=mape (RJactuall, RJ.prophetlforecast$yhat))
detach("package:Metrics", unload = TRUE)

Figure 30: R code for Prophet Model

Testset1 Actusl - Predicted
- - Actual - Predicted ual - Predicte

®

g

T

g

E &g & B 8

5 8

Solar Irradiance (W/m2)

¥ 5 8 8 8 8
Solar Irradiance (W/m2)

x5 & 8 B B

JJJJJ

JJJJJ S 20te

Aoe M0 e oz Jnane Ror 08

o
t

Ly

Time

Figure 31: Forecast Result of Prophet Model

18

5 Comparison of Model’s performance

Table 1 compares the performance of implemented models using RMSE, MAE, and MAPE

as evaluation metrics.

Table 1: Comparison of the result of implemented Models

Applied Rajasthan Andhra Pradesh

(VORI RMSE | MAE MAPE | RMSE | MAE MAPE
ARIMA 3429134 | 2.64023 | 1.870284 | 1.92607 | 1.39542 1.049723
SES 4346164 | 3.29734 | 2.26291 | 2.276351 | 1.642982 1.256257
DHR 3.443069 | 2.660631 | 1.861069 | 1.927582 | 1.396146 1.050017
TBATS 3.395737 | 2.625447 | 1.837209 | 1.978833 | 1.451111 1.097205
Neural 16.38944 | 12.70494 | 6.622763 | 8.938446 | 7.521864 5.851798
Prophet 21.23669 | 19.01291 | 0.097867 | 16.95289 | 13.98698 0.102526

6 Calculation of Solar Power

The solar power was calculated for both states using the ARIMA model for the next year, as
ARIMA outperformed every model. R code for the calculation of solar energy generation is

given in Figure 32. Figure 33 portrays the forecasted power of both states.

HHEHEF R FOrecasting solar drradiance of next one year##########EHEHHHEEIE

#As ARIMA performed best for forecasting on both datasets with 80-20 split training set
#so0 ARIMA will be used for forecasting irradiance of Rajasthan as well as

#Andhra Pradesh for next one year (365 days)

RIfit <-auto.arima(Rajasthan2Strain,lambda=NULL, stationary = T,
stepwise=F, trace=F, approximation=F, biasadj=F)
RISR.forecast <-forecast(R3Ifit,h=365)

USSR

APfit <-auto.arima(Andhra2$train,lambda=NULL, stationary = T,
stepwise=F, trace=F, approximation=F, biasadj=F)
APSR.forecast <-forecast(APfit,h=365)

cCalculating Solar Power with default parameter values

SP = A*r*H*pPR

#SP = Solar Power (Kwh)

#A = Solar Panel Area (m2) [average area of solar panel is 1.6 m2, so A will be 1.6]
#r = Solar panel Efficiency (%) [efficiency ranges between 10-15%,

#we will consider it as 15%, hence r = 0.15]

#H = Average solar irradiance(w/m2) [forecasted value]

#PR = performance ratio default 0.75

ForecastedSP<-data. frame("Rajasthan_solar_power"=(1.6 * 0.15 * 0.75 *
"AndhraPradesh_solar_Power"=(1.6 * 0.15 = Q.75 *
write.csv(ForecastedSP, 'Forecast_SR.csv')

RISR.forecastimean),
APSR.forecastSmean))

Figure 32: R code for Solar energy calculation

19

Comparison of Solar Power Generation

30

~
i

20

Forecasted Solar Power (KW)
e
&

w

1Jun20

Measure Names

M AndhraPradesh_Solar_Power
M Rajasthan_Solar_power

1Jul20 1Aug20 1Sep 20 10ct20 1Nov20 1Dec20

Date

1Jan21

1Feb21

1Mar21

1Apr21 1May2l

1Jun21 1Jul21

Figure 33: Forecasted Solar energy of Rajasthan & Andhra Pradesh

20

