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Text Classification using Graph Based Learning

Soumyadip Dipak Ghosh
x1819821

Abstract

Current text classification models based on deep learning increasingly rely on
local word occurrence information and sequential semantics. These techniques the
information residing long distance semantics and global word occurrence informa-
tion. Recently, numerous researchers have explored graph neural networks (GNN)
to apply on plethora of tasks as graph structures are particularly adept in capturing
complex and abstract relations between entities which may prove to be highly useful
in natural language processing related tasks. Convolution neural networks (CNN)
have been very effective in deep learning for highly structured data like texts and
images. Thus studies have recently begun to harness the power of convolution in
a manner which would be effective for application on graph-structured data with
GNNs. However, very less studies have explored the use of graph convolutional
networks (GCN) for the purpose of text classification. This study aims to con-
struct a graph from a corpus of text comprising of documents and words as nodes
and use it for text classification using GCN. This will enable the neural network to
learn from complex information residing in relationships between document-word
and word-word co-occurrences. The approach shows state-of-the-art performance
in multi-label classification on two out of the four popular benchmarking corpora
used in this work to test our approach.

1 Introduction

Text classification has continued to exist as one of the primary problems in the field
of Natural Language Processing (NLP). Numerous real world applications rely on text
classification algorithms. These applications include fake news detection, SPAM filtering,
document segregation and others (Jindal and Liu; 2007; Aggarwal and Zhai; 2012). Text
representation learning is an essential technique in solving any NLP related problem.
Widely used traditional methods which have proved very useful in text representation
learning include one-hot encoding, bag-of-words, Term Frequency-Inverse Document Fre-
quency (Tf-idf) and n-grams. Recently, text representation learning are employing deep
learning techniques including convolutional neural networks (CNN) (Kim; 2014) and
more popularly, an implementation of Recurrent Neural Network (RNN) known as Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber; 1997).

These methods rely more upon learning local and sequential information in text
(Battaglia et al.; 2018) which can capture features derived from semantics and syntax
residing only in local sequences of words. Information provided by global occurrences of
words from a corpus is also of great significance and value for purposes like text classifica-
tion (Peng et al.; 2018). Harnessing the information obtained from semantics which occur
non-consecutively and further away from each other might improve text classification.
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Recently, graph neural networks and graph embeddings has attracted wide attention
and has become an exciting research direction (Battaglia et al.; 2018; Cai et al.; 2017).
Graph neural networks have primarily proved to be effective in tasks with data which
possesses high relational structure. Such data are commonly found from sources like
social networks, biology, chemistry and others. For example, citation networks can reap
huge benefits by utilising the relations between research papers in the form of a graph
like structure. Another popular example would be the case of a social network as shown
in Figure 1, a user has numerous relations with several types of entities. The entities can
be but not limited to, another user, groups, pages, games and many others. All these
entities are tied up with each other with varying types and levels of relationships.

Figure 1: Graph data contains nodes, edges and attributes.

The entities can be modeled as nodes and the relationships as edges. The edges rep-
resent the connection between one node and another. An edge can be either directed or
undirected. Directional edges are generally used to preserve some sort of hierarchical in-
formation which may be present between the nodes. Attributes provide more information
about entities and their connections and thus can be present on both nodes and edges.
Edges are the key concept as the successfully capture an abstraction which would have
been lost otherwise if the data had been cast into a tabular format. These edges play a
vital role in harnessing the relationships between the entities.

In this research project, we propose a method for text classification via a GNN based
method. The first step is to construct a single large graph to represent the entire corpus of
texts. In this case, a piece of text can be a paragraph, a document or a group of sentences,
we will refer it as a document in this work. The words and documents will be represented
as nodes with each node having their respective attributes.The classification will take
place on the basis of document node attributes which will convert a node classification
into a text classification problem. This work is primarily inspired from the work of Yao
et al. (2019), on how this project constructs the graph and trains it using GCN (Kipf and
Welling; 2016). GCN is an effective and simple combination of GNN and CNN to gain
high order information of neighbourhoods.

Our implementation involves a masking technique to differentiate between word and
document nodes. The edges will be of two types to represent the both document-word and
word-word connections. Word co-occurrence information will be calculated using point-
wise mutual information (PMI) and will be used to represent word-word edges, similar
to that of TextGCN (Yao et al.; 2019). But our model will use document-word edges
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calculated using an enhanced version of Term Frequency-Inverse Document Frequency
(TF-IDF). This work will also analyse the effect of reduction of word-word edges on the
performance of the model to construct a smaller but effective graph as smaller graphs
occupy less memory and reduces training time.

The rest of the report is organised as follows, Section 2 discusses the types of popular
GNNs and what are the key concepts behind them. Section 3 contains information on
datasets, the evaluation metrics to be used for model performance evaluation and which
other models will be considered for accuracy comparison, This is followed by Section 4,
which discusses the novel approach to solve the problem, and what changes have been
introduced to improve the pre-existing model and why. Then 5 contains all the granular
details about model implementation, various configuration details so that the reader can
easily reproduce the results. In Section 6, we compare our model performance with other
models as per discussion in Section 3 followed by some discussion on where it fails and
why. Report is concluded with future scope in Section 7.

1.1 Research Question

RQ: How well can Graph Convolutional Networks perform compared to traditional neural
networks in text classification? Different neural network architectures will be compared
to assess the performance of our model.

Sub-RQ1: Can an enhanced scoring mechanism for document-word edges improve the
performance of TextGCN?

Sub-RQ2: Can removal of insignificant word-word edges improve the performance of
the model? Different reduction proportions will be implemented and their effectiveness
will be evaluated.

2 Related Work

Incorporating information from a graph-structure which can be fed to a trainable model is
one of the fundamental areas of research in graph learning (Hamilton et al.; 2017b). More
recently, numerous researchers are working on projects that aim to learn representations
from the structural information of a graph. A basic graph learning problem for node
classification can be summarised as following:

• A graph holds a given set of nodes with numeric attributes xi for each of them.

• Output label yi for each node has to be predicted.

• The nodes are related to other nodes by weighted edges, represented in the form of
an adjacency matrix A.

• The attributes and relationships of related nodes put forward information from the
additional context, the key concept is prediction of output yi for node i.

2.1 Embedding Nodes

Representational learning for graphs or sub-graphs can be achieved by learning from a
mapping of points in a lower dimensional space representing node embeddings in a vector
space Rd (Hamilton et al.; 2017b).
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The goal is to optimise these mappings so that the geometric relationship in the
mapping best reflects the structure of the original graph, so that it can be used as feature
inputs to a machine learning model. To extract information of graph structure, summary
graph statistics are generally used(e.g., clustering or degrees coefficients) (Bhagat et al.;
2011), kernel functions (Vishwanathan et al.; 2008) and manually engineered features
which can be used to measure neighbor structures (Liben-Nowell and Kleinberg; 2007).
These features being inherently hand-engineered, have limited ability as they tend to be
inflexible and not great for learning processes.

The manner in which the task of representing graph structures is approached is the
key difference of representation learning with the traditional approach. Previous works
treated it as a pre-processing step, relying on statistical information and features which
are manually engineered to draw out structural information. Whereas, representation
learning tries it as a machine learning task that emphasises on an approach that is data-
driven for optimisation of embeddings to preserve the structure as close as possible to
the real graph (Hamilton et al.; 2017b).

2.2 Graph Neural Networks

Along with graph embeddings, graph neural networks (GNN) was proposed as a novel
approach by (Scarselli et al.; 2008), especially designed for graph-like structured data.
The key concept can be considered as an algorithm responsible for message exchanging
between nodes. every node is provided with a random embedding h0i , and then GNN
accumulates input for every node according to equation 1.

hk
i =

∑
vj∈N(vi)

h(hj,xi,xj) (1)

where h is an arbitrary differentiable function of the form h : Rd ×Rm ×Rm → Rm .Until
the embeddings converge, eq 1 is applied recursively and h must be a contraction map.
Embedding convergence will occur after K iterations, after which the final output will be
computed using zvi = g(hK

i ). Here g is an arbitrary differentiable function of the form
g : Rd → Rd . The work further discussed on various parameters of h and g based on
the basic concept of the multi-layer perceptrons (MLPs). However, the algorithm has
some limitations, the primary one being convergence of message passing iterations and
the requirement of h to be a contraction map.

Li et al. (2015) improves the GNN implementation (Scarselli et al.; 2008) by extending
it through addition of Gated Recurrent Units (GRU) paired with back propagation which
takes place through time (Cho et al.; 2014). This enables the elimination of the require-
ment of equation 1 for convergence. GNN framework is modified to use GRUs in a way
that node attributes perform initialisation so that intermediate sub-graph embeddings’
output can be used.

Li et al. (2015)’s Gated-GNN initialises h0
i vectors from node attributes (i.e., h0

i = xi)
to update equations of the form,

hk
i = GRU

hk−1
i ,

∑
vj∈N(vi)

Whk−1
j

 , (2)
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where W ∈ Rd×d denotes a trainable weight matrix. Gilmer et al. (2017)’s implementation
brings a new level of abstraction for GNNs, like the form,

,hk
i = U

hk−1
i ,

∑
vj∈N(vi)

q(hk−1
i ,hk−1

j )

 , (3)

where q : Rd × Rd → Rd′ denotes a differentiable function responsible for performing
computations on messages incoming from neighbours and U : Rd × Rd′ → Rd is a differ-
ential function to update node embeddings. This approach is widely known as Message
Passing Neural Networks (MPNNs) further generalising Li et al. (2015)’s Gated-GNN for
example. Gilmer et al. (2017) also discussed on other MPNN variants and implementa-
tions (e.g., incorporating edge features) based on molecular property prediction based on
their structure.

2.3 Graph Convolutional Networks

Kipf and Welling (2016) have proposed the use of a graph convolution network primar-
ily aimed at solving the node classification problem. The approach basically proposes a
neural network that uses xj input features from all nodes j lying in the local neighbour-
hood of the node i. The output for the node i is its associated label yi. The information
acquired from the neighbours is combined using graph convolutions. The key concept
is applying the convolutions across the entire graph, to accumulate features from the
relevant neighbourhood for each node.

A GCN with a multi-layer propagation rule can be defined as follows:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2H(l)W(l)) (4)

where Ã = A+ IN denotes the adjacency matrix of an undirected graph G and IN is the
identity matrix which is added to the original matrix to represent self-loops. D̃ii =

∑
j Ãij

is the degree matrix and W (l) is a weight matrix specific for layer l. σ(.) is used to denote
an activation function and activation matrix is denoted by H(l) ∈ RN×D in the lth layer.

Convolutions in neural nets can be easily applied on 1d, 2d or 3d tensors. It is
similar to graphs, in a way that a node has uniform connectivity with its neighbouring
nodes. Defferrard et al. (2016) provided a spectral take on the same by using it in the
Fourier domain with Chebyshev filter. Spectral transforms generalise graph convolutions
therefore can define as point-wise multiplication of signal spectral.

Exact convolution computation across a graph often becomes a computationally ex-
pensive and intensive process due to involvement of matrix diagonalisation. Kipf and
Welling (2016) use only first order approximation of polynomials from Chebyshev fil-
ters to limit the amount of convolutional kernels. This quickens the computation and to
prove it some popular datasets of the graph-domain were used to provide competitive res-
ults. Feature representations from graphs are learnt which is useful for node classification
problems.

2.4 GraphSAGE

Inductive learning capability is important for production machine-learning systems as
they require high-throughput and also possess the ability to work on changing graphs
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and unseen nodes(Hamilton et al.; 2017a). The name GraphSAGE is extracted from the
operation of sample and aggregation methodology highly useful for node embedding in
an inductive manner by making use of node features to construct an embedding function
which generalises on unseen nodes.

It trains a aggregate function group information from a node’s neighbourhood features.
The distinguishable factor lies in the manner it performs information aggregation by
taking into account several factors like different hop counts, search depths. A graph-
based loss function is used for output representations, zu,∀u ∈ V . Then the aggregator
function’s parameters and weight matrices are tuned, Wk,∀k ∈ {1, ..., K} via stochastic
gradient descent. The loss function tries to achieve similar representations for nodes and
disparate representations for distinct nodes. The loss function is given by equation 5.

JG(zu) = − log(σ(zuzv))−Q.Evn∼Pn(v) log(σ(−zuzvn)), (5)

where v is a node and u is a node that occurs on fixed length random walk.σ here is the
sigmoid function. Pn denotes a negative sampling distribution whereas Q is the number of
negative samples.zu is the representation generated from the features of the neighbouring
nodes.

Node classification results on Citation1 and Reddit2 data were provided and evaluated.
Performance of GraphSAGE was found superior to that of GCN for the above tasks.

For evaluation, the authors compared four algorithm variants, differentiated by the
aggregator functions being used. The aggregator functions used were Mean, LSTM based
on Hochreiter and Schmidhuber (1997) and Max pooling.Convolution aggregator similar
to the GCN framework (Kipf and Welling; 2016) was the fourth variant. Implementation
was done using TensorFlow3 (Abadi et al.; 2016) with the Adam optimizer (Kingma and
Ba; 2014). The authors tested supervised variant using 5 as loss function and unsuper-
vised variant using cross-entropy loss to show the algorithm’s performance on unseen
nodes.

2.5 FastGCN

A major drawback in GCN is the inclusion of neighbourhoods across layers requiring
expensive recursive computations. Scalability for large and dense graphs become a bot-
tleneck as large amount of data is involved even in mini-batch training.

These challenges were addresed by Chen et al. (2018), they propose a different ap-
proach by interpreting embedding functions as integral transforms under probabilistic
measures. This forms the basis of inductive learning by using loss formulation and
stochastic gradient.The loss in each convolution layer is calculated by interpreting it as
integrals with respect to embedding functions. Monte Carlo approximation are used for
integral evaluation to define the sample loss and gradient. They also state that approx-
imation variance can be decreased by altering sample distribution. Chen et al. (2018)’s is
primarily based on GraphSAGE (Hamilton et al.; 2017a) which learns representation by
aggregating information from neighbourhoods. Chen et al. (2018) also recognise the prob-
lem of memory bottleneck in GCNs and thus propose an ad-hoc sampling methodology
to restrict the size of neighbourhoods.

1http://snap.stanford.edu/graphsage/ppi.zip
2http://snap.stanford.edu/graphsage/reddit.zip
3https://www.tensorflow.org/
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3 Methodology

3.1 Datasets

To assess the performance of our model, we have selected four widely used datasets.
These datasets have been repeatedly used by researchers for node and text classification
purposes in numerous deep learning based works. These datasets are well suited to serve
as benchmark corpora.

• R8 and R52 data4 - This is a collection of news articles from the Reuters 21578
data. There are 8 categories of articles in R8 and is split into 5,485 training and
2,189 test documents. R52 has 6,532 and 2,568 training and test documents re-
spectively and has 52 categories.

• Ohsumed corpus5 - is a bibliographic dataset of medical literature maintained
by National Library of Medicine. Each piece of literature is associated with one or
more categories from the 23 cardiovascular disease categories.The first set containing
20,000 abstracts are selected for consistency. As the research will focus on text
classification which is single-label, documents containing multiple labels will be
excluded.

• MR6 - This datasets contains movie reviews for binary sentiment classification..
Each review holds only one sentiment (Pang and Lee; 2005). There are total 10,662
reviews with equal number of positive and negative reviews. For consistency, the
train-test split is kept as in Tang et al. (2015)7.

The complete statistics of the pre-processed data can be found in Table 1.

Table 1: Summary attributes of datasets

Dataset Total Train Test Vocab #Classes Avg Length #Nodes/Edges
R8 7,674 5,485 2,189 7,688 8 65.72 15,362/3.165M
R52 9,100 6,532 2,568 8,892 52 69.82 17,992/3.574M

Ohsumed 7,400 3,357 4,043 14,157 23 135.82 21,557/7.456M
MR 10,662 7,108 3,554 18,764 2 20.39 29,426/1.701M

3.2 Evaluation Metrics

TPt, FPt, FNt denotes the true-positives, false-positives and false-negatives respectively.
t denotes t− th label in label set L.

• Macro-F1 - This F1 score is calculated by averaging F1 scores across all class
labels. Macro-F1 score gives equal weightage to each label. Mathematically, it can
be defined as Pt = TPt

TPt+FPt
, Rt = TPt

TPt+FNt
. Thus Macro− F1 = 1

L
∑

t∈L
2PtRt

Pt+Rt
.

4https://www.cs.umb.edu/∼smimarog/textmining/datasets/
5http://disi.unitn.it/moschitti/corpora.htm
6http://www.cs.cornell.edu/people/pabo/movie-review-data/
7https://github.com/mnqu/PTE/tree/master/data/mr
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• Weighted Average F1 - calculates weighted precision and recall scores which

is then used to calculated the final F1 score. P =
∑

t∈L TPt

TPt+FPt
, R =

∑
t∈L TPt

TPt+FNt
, hence

Weighted Average -F1 = 2PR
P+R

• Micro-F1 - is another F1 metric which considers overall precision and recall for

all the class labels. The micro-averaged F1 is P =
∑

t∈L TPt∑
t∈L TPt+FPt

, R =
∑

t∈L TPt∑
t∈L TPt+FNt

.

Thus Micro− F1 = 2PR
P+R

.

3.3 Comparison Methods

• TF-IDF+LR: TF-IDF is a traditional algorithm but very effective in scoring the
importance of a word for a document in a corpus. Logistic Regression is used on
top of the classifier after applying TF-IDF. This technique is very simple, com-
putationally inexpensive but very effective nonetheless. It is the most common
benchmarking algorithm for text classification related tasks.

• CNN based model: The implementation of CNN for sentence classification pro-
posed by Kim (2014) will be used for comparing the results with th results of our
model. Kim (2014) uses 4 CNN variants for sentence classification. CNN-rand is
the method in which random weights are initialised and modification takes place
during training. CNN-static on th e other hand uses the widely-used pre-trained
word embedding word2vec (Mikolov et al.; 2013). The embeddings from word2vec
are left unchanged and rest of the model parameters are tuned during training.
CNN-non-static also follows the same approach as CNN-static but it also fine tunes
the word vectors during training. For our evaluation, we have considered CNN-rand
and CNN-non-static because of their superior performance.

• LSTM based model:LSTM rose to popularity because of its inherent nature
to preserves information from inputs that has already passed through the hidden
state.Liu et al. (2016) applied three variants of LSTM for text classification. For
the purpose of comparison, We use the LSTM model defined in Liu et al. (2016)
which uses the last hidden state as the whole text representation. The model with
pre-trained embeddings has been used as it had the best performance among all
the LSTM based models.

• Bi-LSTM based model: Unidirectional LSTM has the power to only use inform-
ation which has passed through its network. Bi-directional LSTMs, have become
immensely popular in complex NLP related tasks which require high orderly ac-
curacy like translation and sentiment analysis. This is because of its unique ability
to use information from both past and future. Zhou et al. (2016) performed text
classification with Bi-LSTM stacked with 2D max pooling enabling capture of more
textual features on both time and feature vector domain. It has been used as one
of our benchmarking models due to its immense performance improvements over
LSTM-based text classification.

• fastText:is a very efficient and simple algorithm for thetext classification process
(Joulin et al.; 2016). It grew in popularity it is quicker for training many orders of
magnitude. Evaluation is also very fast even while retaining competitive perform-
ance with sophisticated algorithms and deep learning techniques.The authors have
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stated that fastText has the ability to train on a billion words in an approximately
ten minutes time-frame and classify half a million sentences that too with approxim-
ately 312K classes on standard home computer with multi-core CPUs in a minute.
fastText use a very efficient combination of technique comprising of combining bag-
of-words and n-grams to retain useful partial information from local sequences of
words. Hierarchical softmax is used as the classifier. We use the bag-of-words
model for fastText for evaluation as it has superior performance than bi-grams for
our datasets.

• Graph-CNN: CNN when applied on graph-structured data are generally termed
as Graph-CNNs. Most graph-CNNs use a similar approach on graphs by apply-
ing filters in the spectral domain. Defferrard et al. (2016) use Chebyshev filters,
which was the first work to apply GCNs for the purpose of text classification. The
performance result was better than the traditional CNN approaches. Other filter
widely used are Spline(Bruna et al.; 2013) and Fourier filters(Henaff et al.; 2015).
We only use Graph-CNN using Chebyshev filters for evaluation as it has proved to
have the best performance among all of them.

• Text-GCN:This is one of the most popular works of using GCN for the purpose
of text classificationYao et al. (2019) and this work and can be identified as an
extension of their work hence we use it for bench-marking the performance of our
model.

4 Design Specification

A heterogeneous graph structure is constructed which comprises of word and document
nodes. This enables us to capture information on global word co-occurrences throughout
the corpus as shown in Figure 2. The total number of nodes in the graph |V | will be
equal to the number of documents added to the total number of unique words, also called
as vocabulary which was the approach taken in the work by Yao et al. (2019).

However, there are two drawbacks in their approach. It will give rise to a large number
of edges due to its unrestrained nature on edge construction and thus the model proposed
by Yao et al. (2019) will suffer from high memory consumption. The second drawback is
use of TF-IDF score as, we cannot adjust TF-IDF score according to average length of
texts or the term-frequencies of words in a corpus.

This work proposes the use of the Lucene8 scoring system which is an enhanced version
of the conventional TF-IDF scoring system, which we will refer to as L-TF-IDF in this
project. Once a document is saturated with occurrences of a particular word, the impact
of occurrences on the score can be controlled by the value of k. This enables us to control
the contribution of term-frequency (TF) in a tunable way. This means that if we increase
the value of k, the value of TF/TF + k decreases.

But if a document is shorter than the average length, then saturation of TF should
lesser than those with longer than average lengths. This tunability is achieved by intro-
ducing another parameter b. As the value of b increases from 0 to 1, the score becomes
more sensitive to the length of the document. To summarise, k is the knob that controls
the term saturation curve, and b controls the contribution of document length to the

8https://lucene.apache.org/core/
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Figure 2: Example represents the Ohsumed corpus. ’O’ denotes nodes containing docu-
ments and the rest are words. Thin grey edges represent word-word edges and the black
bold edgees represent document-word edges. Just for example, ’CVD’, ’Neo’, ’Resp’ and
’Immun’ are document labels for classification. (Only 4 class labels shown due to space
limitation)

score. To calculate the the value of L-TF-IDF we use the equations 6-8.

L-IDF(w) = log(1 + (N − n+ 0.5)/(n+ 0.5) (6)

L-TF(w) = f/(f + k(1− b+ (b× (l/L)) (7)

L-TF-IDF(w) = L-TF(w)× L-IDF(w) (8)

where, N is the total number of documents and n is the number of documents where word
w is present. f denotes the frequency of word w in a document, l is the document length
and L is the average document length of the corpus. k and b are the tunable parameters
as discussed earlier.

Global word co-occurrence is calculated using a fixed size window which slides through
all the documents(Yao et al.; 2019). Point-wise mutual information (PMI) will be used
to calculate edge weights between word nodes as they have better performance than just
using co-occurrence count. The PMI for a pair of word i, j is calculated as:

PMI(i, j) = log
p(i, j)

p(i)p(j)
(9)

p(i, j) =
#W (i, j)

#W
(10)

p(i) =
#W (i)

#W
(11)

where, the count of sliding windows in a corpus for word i is given by #W (i). #W (i, j)
is the count of sliding windows in a corpus for both word i and j occurring in a window.
The total number of windows is denoted by #W . Thus the edge weight between node
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i, j can be calculated as:

Aij =


PMI(i, j) = log p(i,j)

p(i)p(j)
i, j are words, PMI(i, j) >0

L-TF-IDFij i is document, j is word

1 i = j

0 otherwise

(12)

High semantic correlation between words is indicated by high PMI value, whereas a
negative value indicates negative correlation so no edge will be formed. After constructing
the text graph, an adjacency matrix will be created which will be used as an input to a
two layer GCN as in (Kipf and Welling; 2016). The node (word/document) embeddings
from second layer will have the same length as labels set which will be fed to the ’softmax’
classifier:

Z = softmax(Ã ReLU(ÃXW0)W1) (13)

where Ã = D̃−
1
2 ÃD̃−

1
2 represents the normalised symmetric adjacency matrix. W0 and

W1 are the weight matrix for first and second layer respectively. Now, we can see that
it becomes similar to Equation 4. In Equation 13, E1ÃXW0 denotes the first layer of
nodes with ReLU as the activation function. ReLU stands for Rectified Linear Unit, the
function makes the output equal to the input if it is greater than 0 or else 0. The output
from the first layer is fed to the second layer, defined as E2 = Ã ReLU(ÃXW0)W1

and then activated using Softmax function. Softmax takes a vector input of some length
and gives a vector of same length as the output containing the normality probability
distribution proportional to the exponential of the numbers in the input vector.

To perform text classification, the GCN will allow message passing between nodes
which are two step away since it is a two-layer GCN. Even though there are no edges
connecting document nodes to each other, the two-layer GCN will enable information
exchange between document node pairs. Cross-entropy error over all document nodes
will be used as the loss function:

L = −
∑
d∈YD

F∑
f=1

Ydf loge Zdf (14)

where YD denotes the set of document indices and F is the number of output features
which will be equal to the number of class labels.

5 Implementation

Before constructing the graph, all the texts have to be preprocessed. For consistency,
data cleaning and tokenisation is carried out as Kim (2014). Stopwords are removed as
per definition in NLTK9. Low frequency words with frequency less than 5 are removed
except in MR as the documents are very short. This is because these datasets are widely
used to get benchmarking scores and assess a models performance. We want to maintain
the same number of words and vocabulary so that performance comparison is as relevant
and admissible as possible. This also helps us to use the performance scores of different
models, which have been generated in other works Validation set is extracted by random

9http://www.nltk.org/
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Table 2: Accuracy % comparison. All models have been run 10 times and the values
represent mean ± standard deviation. Results of some models have been taken directly
from Yao et al. (2019).

Model R8 R52 Ohsumed MR
TF-IDF + LR 93.74 ± 0.00 86.95 ± 0.00 54.66 ± 0.00 74.59 ± 0.00

CNN 94.02 ± 0.57 85.37 ± 0.47 43.87 ± 0.01 74.98 ± 0.70
CNN-non-static 95.71 ± 0.52 87.59 ± 0.48 58.44 ± 1.06 77.75 ± 0.72
LSTM (pretrain) 93.68 ± 0.82 85.54 ± 1.13 41.13 ± 1.17 75.06 ± 0.44

Bi-LSTM (pretrain) 96.31 ±0.33 90.54 ± 0.91 49.27 ± 1.07 77.68 ± 0.86
Graph-CNN-C 96.09 ± 0.19 90.48 ± 0.86 51.10 ± 1.50 77.33 ± 0.89

fastText 96.13 ± 0.21 92.81 ± 0.09 57.70 ± 0.49 75.14 ± 0.20
Text-GCN 97.07 ± 0.10 93.56 ± 0.18 68.36 ± 0.56 76.74 ± 0.20

(Soumyadip, 2020) 97.65 ± 0.05 94.02 ± 0.11 67.73 ± 0.35 76.61 ± 0.27

Table 3: Mean F1 scores after running model on each dataset 10 times.
Dataset Weighted-Average-F1 Macro-F1 Micro-F1

R8 0.9763 0.9407 0.9765
R52 0.9335 0.6881 0.9393

Ohsumed 0.6697 0.6035 0.6735
MR 75.99 75.99 75.99

selection of 10% of the training set which is also a widely used convention followed for
our datasets.

The window size for PMI calculation is set to 20 and we found that varying window
size did not cause significant performance variation unless set below 10. The value of
k and b are set at 1.2 and 0.75 respectively for L-TF-IDF which is the default values
in Lucene. The hidden layer size for the first convolution layer is set to 200. Other
parameters were also tuned and learning rate was kept at 0.02, dropout rate was set at
0.5 and L2 loss weight as 0. The maximum number of epochs have been kept at 300 with
early stopping, if there is no decrease in validation loss for 10 consecutive epochs. For
baseline models, accuracy figures have been taken from Yao et al. (2019).

We also drop word-word nodes so that the model can only focus on important word
co-occurrence information. We run our models with different node dropout rates to test
if it has any significant effect on performance. We test our model with 5 node dropout
rates ranging from 0.25 to 0.95. If the value is set at 0.75, it means that only word-word
edges with values for more than 75 percentile will be retained, rest will be dropped.

6 Evaluation and Discussion

Our model achieves competitive performance and outperforms TextGCN on three
datasets except Ohsumed. While we do not get the best performance on MR, but we
get a marginally better result then TextGCN. Table 3 lists all the different types of
F1 socre for all datasets, since MR is a case of binary classification, the F1 scores are
same. Table 2 lists the performance of our model when compared with other models as

12



mentioned in Section 3.3. However, our model fails to outperform CNN based models
on MR. This might be due to the failure in retaining word order information in graphs
which are important for sentiment classification. Another reason might be the presence
of fewer edges in MR than other text graphs as documents are small giving rise to lesser
number of sliding windows. The two main reasons why it performs better than TextGCN
are :

• Use of L-TF-IDF is a better scoring mechanism for scoring document-word edges
than the traditional TF-IDF. It takes both word frequency saturation and document
length into consideration for generating the scores.

• Reducing redundant edges between words as low PMI scores do not contribute to
the model significantly hence the model does not generalise well. Retaining word-
word edges helps the model to focus only on important word co-occurrences.

Figure 3: Test Accuracy with different Node Dropout Rates

We also find that reducing the number of word-word edges have a positive impact
on model accuracy. Figure 3 depicts the performance on three datasets as we drop the
edges with low PMI values, accuracy increases gradually and then falls significantly. The
general trend we observed that our model gives the best performance when we retain
the top 50-75% of word-word edges. This has two advantages, one is that the size of the
graph reduces significantly so generalises better, secondly model convergence takes place
in lesser number of epochs. The average number of epochs with different dropout rates
can be seen in Figure 4. The mean number of epochs have been reported after running
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Figure 4: Change in number of Training Epochs with different Node Dropout Rates

them at least 10 times. We can see that graphs with lesser word-word edges will give
better performance and will converge faster.

7 Conclusion and Future Work

By studying the result from the experiments, our model can achieve very good text
classification results and thus learn predictive word and document embeddings. But this
approach has a major limitation as the model is transductive in nature, and will not be
able to generate prediction on unseen nodes.

In this study, we improve upon the previously proposed TextGCN, by building document-
word edges with a novel scoring mechanism which can be tuned as per the nature of the
corpus. Our approach also reduces graph size while increasing accuracy and reducing
training time, enabling the use of larger corpus of texts for training.

This provides the flexibility to use the model on documents of varying lengths and
thus can also be used on smaller textual units like paragraphs, abstracts and summaries
as well as larger texts like research papers and many others. However, over-smoothing of
GCN limits the abstraction ability which is required for deeper networks, so increasing
stacks of layer will not have any significant benefit. An interesting future direction will be
application of other GNN models for text classification with inductive abilities. However,
this approach is not limited only to text classification, it can also be applied to other
NLP related tasks in the future.
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