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Abstract 
Forecasting residential energy consumption using deep neural networks has been attempted in 
past researches. Typically, optimizing these networks relies on the operator’s prior knowledge. 
They are also affected by the size of the search space and the tuning parameters for the model. 
In this research, we integrate OPTUNA, an optimization algorithm that can automatically 
determine different frames of hyperparameters to tune a CNN-LSTM neural network for 
predicting electric power energy consumption. Our research findings indicate that the proposed 
model can be applied as a potential alternative forecasting framework for better forecast 
accuracy and a broader generalization potential. The OPTUNA hyperparameter can remove 
mutation operations and crossover in comparison to the traditional models. To validate the 
potential of our proposed algorithm, we have selected the household electric power 
consumption dataset from the UCI machine learning public repository. Our proposed 
OPTUNA CNN-LSTM model explores varying degrees of optimum forecasting frameworks 
automatically and presented a lower MSE compared to a result of past literature that 
implemented the particle swarm algorithm. 

 
 

1 Introduction 
 
The consumer demand for power supply is ever increasing on a global scale due to wide scale 
use of machinery including electric powered large-scale machineries, technological 
advancement such as cloud infrastructures powered with electricity. An important phase of 
everyday living is a constant access to uninterrupted power which may be better managed if 
the electric grids are can be networked (Li et al., 2017).  Comparably, gradual integration of 
smart meter infrastructure on a global scale has set the course for the establishment of smart 
grids with active power energy systems inbuilt in them (Kong et al., 2018). This 
implementation has carved out a niche for electrical energy forecasting on a short or long term, 
as it is also very necessary for efficient utilisation and management of power grids, especially 
for household users (Moriarty & Honnery, 2019).  
Demand for electric power is impacted by some factors including weather conditions, 
consumer attitude and how they utilise their respective electrical household appliances. 
Therefore, it is necessary to consider the need to discover and develop new frameworks for a 
well-planned and efficient management of power consumption in residential and industrial 
structures that will control and manage energy demands. Different energy prediction models 
have been implemented over the years in the electric power domain to forecast electricity 
demand over hours, days, weeks, months and years so as to supply the right amount of power 
into electric grids improve efficient use and management of electrical grid. With this view in 
mind, different researchers have built forecast models to maximise the use of electrical energy 
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and enhance power grid quality. In Khosravani et al., (2016), this research implemented a 
support vector machine model to run a regression analysis to forecast electricity consumption 
of a residence. In Ullah et al., (2018), this research implemented the adaptive neuro-fuzzy 
inference system (ANFIS) to forecast electricity power usage. 
 
Recently, the deep learning framework has been proven to be more efficient as a predictive 
model than classical prediction algorithms because it can easily learn non-linear patterns and 
map non-linear functions. Many neural network models have been proposed to forecast the 
consumption of energy, but for practical applications, there must be an adequate network 
structure. Methods to look for the best fitting hyperparameters are non-trivial and complex. 
Also, even though neural networks can map non-linear patterns in energy consumption 
attributes, they may suffer from vanishing gradient problems thus loosing past information. 
Therefore, as the data size grows larger over time, classical deep learning networks may suffer 
overfitting. Currently, conventional neural networks have been further advanced by recurrent 
neural network and convolutional neural network. CNN extracts feature while learning the 
weights of attribute maps composed of layers and retains the connections between different 
attributes (Ronao & Cho, 2016). In similar fashion, recurrent neural networks have a hidden 
memory in which it stores dynamic features (Greff et al., 2017). In the prediction of energy 
consumption, CNN has the ability to extract input features wrapped in temporal contexts so as 
to reduce the dimension of the variables. The long short-term memory network (LSTM) has 
the ability to memorise past information in time series data over time and maps the complex 
non-linear energy consumption patterns. The combination of this two models CNN-LSTM 
architecture converts multidimensional space to predict a time series related power 
consumption. However, there may be a need to adjust the hyperparameters as a result of this 
combination. 
 
This research therefore investigates the extent of improvement a new hyperparameter tuning 
algorithm OPTUNA can bring when used to optimise a CNN-LSTM approach to household 
power consumption prediction. Optuna is an open-source hyperparameter tuning optimization 
developed in 2019 which has the extensive capacity to automate the fit-trial-and-error-
calculation process of hyperparameters optimization (Akiba et al., 2019). Optuna finds the best 
or optimal hyperparameter values using a targeted approach which can be defined in an API 
style. This is the first research to adopt the Optuna hyperparameter framework to in this domain 
of research. The objectives identified to answer the research question are; 

• Carry out a series of data visualisations to understand the seasonal trends in the data. 
• Investigate the effect of seasonality on the results using statistical methods such as 

SARIMA. 
• Implement neural network backed methods to improve results. 
• Evaluate the models using RMSE and further optimise the best performing approach 

using the OPTUNA framework. 
The major contribution of this research is the use of the novel OPTUNA hyperparameter 
optimisation algorithm to improve the CNN-LSTM approach to prediction of household power 
consumption and this is the first time OPTUNA will be used in this domain.  
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The rest of this research is presented as follows. Section 2 discusses related work while sections 
3 and 4 present the proposed methodology and implementation of the research. Sections 5 and 
6 present the results and conclusion respectively. 
 

2 Related Work 
 
This section reviews works from past and recent relevant literature in the time series, deep 
neural networks and machine learning domain. Research works that have experimented power 
load forecasts using various procedure and models. This research review focuses on the CNN-
LSTM framework and traditional time series model, the SARIMA model.  
 
2.1 Statistical time series methods 
In the study of time series and load prediction, one of the most widely used methods in past 
literature is Auto Regressive Integrated Moving Average (ARIMA) due to the effectiveness of 
the model on historical data (Mirjat et al., 2017). An autoregressive integrated moving average 
is a statistical time series model used t forecast future trends and have a better understanding 
of the time series datset. Even though the ARIMA model is known to have efficient forecast 
capabilities, it only works best with datasets that are stationary in nature. 
 Erdogdu (2007), applied the ARIMA model, Using the co-integration of the demand for 
electric power in Turkey and the result gained from this framework was evaluated and the result 
showed link with the actual data with a less tolerance score. 
To forecast the electric power energy peak load in Saudi Arabia, El Desouky and Elkateb 
(2000) adopted ARIMA and ANN. Their research proposed both algorithms to decrease 
prediction errors and their results outcome showed lesser forecast errors. An ARIMA model 
used to perform an electricity consumption forecast in China was proposed by Yuan et al., 
(2016), their research applied a vector regression framework to decompose the seasonality of 
the data, results inferred that the model is effective for time series forecast.  
To predict the outflow of electric power energy load in a hydroelectric plant, Cassiano et al., 
(2016) presented an ARIMA model and integrated principal compenet analysis associated with 
hierarchical clustering to reduce dimensionality in their data. To forecast electric power energy 
peak load prediction for seven buildings in a Thailand university, Kandananond (2019) used 
Auto-regressive integrated moving average (ARIMA). The ARIMA was applied to map the 
time series data to show the extra information of energy usage of the international students 
living In the building. This research. Also presented an Auto-regressive model (ARX) with 
exogenous output, their research adopted a very limited data ARX outperformed ARIMA but 
the constraint of a limited data may question the validity of their model. Other research has 
constructed a model which merged ARIMA with an exponential smoothing model (ESM) with 
seasonality to predict electric power energy peak load for an electric provider with unstable 
and dynamic growth (Barakat et al. 1992). Other researches also developed similar models 
have been developed to predict short term demand for electricity using minutely demand 
observation from a British related data (Taylor 2008). Fernández et al., (2011) presented a 
comparative analysis of ARIMA, ANN, SVM, multiple linear regression models to predict the 
short term electric peak load for a residential building. 
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2.2   Traditional Machine Learning Methods 
In the modelling of electric power consumption prediction, machine learning methods have 
remained popular over the years. To mention a few, Wang et al., (2018) implemented a random 
forest model to forecast the usage of electrical energy for two buildings in Florida over a very 
short period of time (hourly consumption of electricity). Candanedo et al., (2017) experimented 
a comparative analysis with different models including support vector machine, random forest, 
gradient boosting algorithm and multiple linear regression to forecast energy consumption, the 
research findings concluded that Gradient boosting algorithm performed best as compared to 
other models. In some extant literature, conclusions that electricity consumption is impacted 
by human behaviour has been documented. For example one of these researchers have adopted 
support vector regression (SVR) to correctly forecast the electrical energy consumption for an 
office building in China (Wang and Ding, 2015), and also another paper documented a multiple 
regression machine learning framework which was used to forecast a residential buildings daily 
electrical energy usage (Fumo and Biswas 2015). Furthermore, Cai et al., (2019) used the data 
collected from 16000 residential homes from an entire region to correctly classify electric 
power consumption rates of residents in this region. Their research recorded the patterns of 
electrical consumption by applying data mining models and also adopted particle swarm k-
means algorithm, to perform clustering. Also, after clustering the electricity usage patterns 
were split using the centres of recorded clusters, and support vector machine was applied for 
classification purpose. 
 
2.3 Deep neural network methods 
 
2.3.1 Long Short-Term Memory  
Long short-term memory (LSTM) is an extension to the recurrent neural network according to 
Shaikh et al., (2019) is used to learn context from input sequences. They have been shown to 
extract and map non-linear patterns within data (Liu et al., 2017). Gugulothu and Subramanian 
(2019) in their work used two LSTM based algorithms (sparse ED and sparse LSTM) to 
determine electricity consumption.  In their approach, they used a fully connected feed-forward 
layer that performs feature selection and dimensionality reduction of the input data. The 
LASSO sparsity constraint is used to introduce sparsity on the weights of the feed-forward 
layer. In the work conducted by Wang et al. (2016), an electric load forecasting model with 5 
hidden layers of LSTM neural network was presented. In this model, to combat overfitting, 
dropout was added after each LSTM layer before a dense layer was used as an output layer. 
Similar research conducted by Yuan et al. (2019) introduced a stacked LSTM approach to 
forecast future load values for power generation. In their paper, they implemented a probability 
density prediction method which provided more information for the LSTM model to make 
more accurate predictions. 
 
Kim et al. (2018) conducted further research proposing a short-term electricity load forecast 
created a daily consumption sequence using an LSTM. In this approach, each daily 
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consumption pattern is converted into a representative form. This is then used as an input to 
pass a vector implant into the model and results showed 82.5 performance on testing data. They 
implemented the approach without consideration for missing values which may have posed a 
challenge on the results due to inconsistent time steps within the data sequence. Ermatita et al. 
(2019) further showed the use of parameters in the LSTM layers to train the forecasting model 
effectively. Scaled and normalised historical data from an Indonesian substation was used in 
the implementation of their research and their results indicate a high accuracy for determining 
consumption for the week ahead. 
 
Wang et al. (2019) implemented an LSTM backed electricity load forecast model for a large 
building in Alaska. In their model architecture, they used five-layers and a min-max 
normalization to scale the values. Their model outperformed traditional machine learning 
approaches such as support vector machines and random forest when the results were 
compared.  However successful, the did not take into consideration the lagged electricity 
consumption data as this might have further improved performance. Ud Din et al. (2019) used 
an LSTM architecture to generate 24 hours forecasts for independent bi-variate time series 
data. Their work also implemented an LSTM forecasting performance for deployed with 
different weight optimizing methods including adaptive moment estimation, stochastic 
gradient descent and root mean square propagation. Exogenous features alongside data features 
from the collected time series were used.  
 
2.3.2   CNN-LSTM 
Kim and Cho (2019) proposed a CNN LSTM framework for the prediction of power 
consumption, their model introduced a hyper parameter selection model particle swarm 
optimization algorithm to optimise the number of kernels and units in the CNN and LSTM 
layers respectively. Their result showed an improved root mean square error when evaluated 
against contemporary time series models. Similar research done by Alejandro (2020) proposed 
a mix architecture of convolutional neural network and artificial neural network combinations 
to predict energy of consumption for a French grid. The model was trained and then utilized in 
a real setting to provide a French energy demand prediction.   The final result of experiment 
showed that their approach outperforms the ARIMA model it was benchmarked with using the 
mean absolute error  
 
2.5 Hyper-Parameter Optimization 
Depending on the dataset, electric power consumption forecast can be experimented with 
various neural network framework and learning process. the learning process in neural network 
applies a set of hyper-parameters so that adjustments can be done to tune the model 
performance depending on the nature of the problem. So, we may have different neural network 
frameworks just by tuning hyper-parameters for a particular problem and to find the best 
parametric combination for optimum results. The procedure of investigating hyper-parameters 
demands a manual engineering process which may be non-trivial and may take a lot of time. 
As the possibility to build the frameworks of neural networks expands, prevailing manual 
processes are being replaced by search algorithms. Traditional frameworks for finding hyper 
parameters are random search and grid search (Li et al., 2017 and Gonzalez et al., 2005). Grid 
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search models is a machine learning method that is used for hyper parameter adjustment, this 
process seeks for parameter combinations within a specified range by a grid, and then 
systematically evaluates the neural network model.  The notion of a grid search is based on a 
priori knowledge which determines the scope of the grid and analysing the problem, this makes 
it possible to search effectively. Howbeit, there is a risk that the optimal hyper-parametric 
combinations may be outside of the range specified by the grid. To tackle the risk of grid search, 
random Search as oppose to the grid search and its range is much broader to explore 
hyperparameters. Random search supplies statistical distributions that can randomly samples 
discrete values for each specified hyperparameter. When compared to the grid search, random 
search within a predefined range can efficiently search for the best combinations of 
hyperparameters. Howbeit, even though statistical notion of random sampling is proposed to 
be non-bias, sample selections bias may happen.  
 
In deep neural networks, there are a number of parameters which can be tuned such as learning 
rate, batch size, and number of training iteration, activation function and optimizer algorithm 
in general. In addition, for special architectures such as CNN or LSTM, there are ore 
hyperparameters which can be tuned, such as in CNN, number of filters in convolutional layer, 
the size of the filter and the stride are common hyper-parameters. In LSTM, the number of 
units in the layer, whether to return sequence or not, are common hyper-parameters which 
should be tuned. They are not, however, just numerical values but also categorical values such 
as the optimizer could be a Momentum SGD or Adam. It is almost impractical to make a 
machine learning model do a task without tuning hyperparameters. The amount of 
hyperparameters tends to be high, especially in deep learning, and it is believed that the 
performance of neural network model relies on how the model is tuned. In this research, we 
propose to use OPTUNA, which is a next level hyperparameter tuning framework for 
parameter optimization introduced by Akiba et al., (2019). The Optuna framework is efficient 
for both pruning and searching procedures.  This research thus proposes a novel OPTUNA 
CNN-LSTM model. 
 
 

3 Research Methodology 
 
This research methodology is based upon related and relevant existing literature. Therefore, 
some notions that have been investigated by past literature will be applied for the course of the 
research and the reasons for applying them will be listed therein. 
 
This paper adapts the Knowledge discovery in databases (KDD) approach is applied. This 
approach outlines several stages for conducting research. These are data selection, processing 
and transformation, data mining, data Interpretation, data modelling and model selection and 
evaluation as seen in figure 1.  
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Figure 1: Steps of the proposed KDD process 
 

3.1 Dataset 
The dataset adopted for this research is an individual household electricity consumption data 
collected from the UCI Machine Learning Library1. The measurements in the dataset are 
collated from the smart meter readings from a residential building situated in France and it 
spans 47 months of minutely recorded meter readings from December 2006 to November 2010. 
It constitutes a multivariate time-series of electricity related variables, that may be adopted for 
the prediction of future electricity consumption and is a standard dataset that has been used in 
reviewed literature (Nishida et. al., 2017). The dataset contains 2,075,259 instances and has 9 
attributes that can be leveraged to predict future electricity consumption. 
 

3.3 Data Processing 
To get the best out of the chosen dataset, it is necessary to clean and transform data into the 
right format. Outlined below are the steps taken to clean dataset and ensure optimum model 
performance. The data processing steps are outlined in the following sections. 
 

3.3.1 Missing Values and Outliers 
Outliers and missing values can impact the integrity of the research outcome and the selected 
dataset does appear to have missing values. There is about 2-3 days’ worth of missing data 
values around 28th of April 2007. Critically investigating the dataset, we infer  that the 
information supplied in the dataset is associated to the active electric power energy and In the  
data transformation stage, we obtain a new columns which indicates the remaining of the active 
current not recorded in the listed submeters and the new column was named Sub_metering_4. 
 
3.3.2 Data Visualization 
After data cleaning, to gain further understanding of the data, visualizations such as line plots 
for each of the data variables to see the trend across the entire time period are done. Further 
visualizations are done to check the distribution of the data variables. Dickey Fuller test is also 

 
1 https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption 
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conducted to test for stationary status of the data. Further visualizations are done to check the 
distribution of the data variables. 
 

3.4 Data Mining 
For the data mining stage of the research, different modelling approaches were adopted to 
model the data and predict electricity consumption. The models adopted are discussed herein.  
 

3.4.1 SARIMA 
The Seasonal Autoregressive Integrated Moving Average extends the notion of ARIMA. 
Unlike ARIMA which is applicable to only stationary data. SARIMA Is applicable to  seasonal  
and non- stationary data which is the kind of data used for this experiment. To implement 
SARIMA for the proposed experiment, we will require selecting hyperparameters for seasonal 
and trend factors of the data. Furthermore, new hyperparameters will also be examined to show 
autoregression (AR), Differencing (I), moving average (MA).  to an ARIMA model, the trend 
factors such as the trend autoregression order, trend difference order and trend moving average 
order is configured for this model. Different from the ARIMA model, the proposed SARIMA 
model will further configured for seasonal elements in the selected dataset including merging 
a global holiday dataset to improve the mode accuracy to reveal the seasonality of the data. 

Therefore, where the selected hyperparameters for the proposed SARIMA are indicated, 
the reopresentation of the hyperparameters for the proposed model are shown as  

 
SARIMA (Trend factor) (seasonal factor) =  SARIMA(p,d,q)(P, D, Q)m.  
 
where the time steps (m) will have an effect on the seasonal Autoregressive order (P), 

seasonal difference (D) and seasonal moving average (Q). For instance, our research chooses 
a time of 7 which represents a weekly cycle. 
 

3.4.2 CNN-LSTM Encoder decoder model 
Long short-term memory (LSTM) neural networks have shown the potential to learn features 
from sequential data and map the non-linear pattern discovered within data.. The research 
proposes a hybrid model comparable to the Encoder-Decoder LSTM (ED-LSTM) model but 
the Encoder layer is replaced by a 1D-CNN layer. Our proposed model will replace the 
encoder layer with a CNN layer  and  the 1D-CNN layer can be fit into the framework by 
supplying each variable in the dataset to the layer as  different one-dimensional time-series 
sequence of inputs. The layer then learns an internal pattern and representation for each 
sequence input that is then collectively interpreted by the decoder. This research refers to this 
hybrid model as a OPTUNA CNN-LSTM model.  
To overcome the problem of overfitting, three regularization methods, L1, L2 and dropout 
regularization are experimented as part of the model architecture. In the deep learning 
framework, dropout can improve model performance and eliminate the activation values of 
randomly selected neurons during the process of training which amount in no overfitting and a 
more robust algorithm. This restriction on the training process lets the highly complex model 
to map more robust features instead of depending on the predictive potential of a small group 
of neurons in the network. 
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Further hyperparameter optimization to determine the hyperparameter settings for the proposed 
CNN-LSTM model to achieve optimum performance is explored using the Optuna framework. 
The advantages offered by the Optuna hyperparameter optimization include easy specification 
of length of optimization duration, easy integration of results, saving computational cost by 
pruning low performing trials early. Other advantages include ease of implementation and 
integration into various machine learning frameworks hence the choice was made to use it for 
this research. 
 

3.5    Model Evaluation 
This section explains the evaluation methods applied to measure the performance of the models 
built for this research purpose.  
The proposed model will consist of values for a week ahead. Our research implements a 
multistep prediction procedure whereby model evaluates the days of the week separately to 
know which of the days the model predicts better by adopting a learning curve. 
It will be helpful to understand how our model predicts each days of the week. Furthermore, 
we adopt the residual mean squared error which is a scale dependent error to evaluate the 
performance of our proposed model. The scale-dependent error has error scale at the same lvel 
to the data (Bauer et.al; 2019) and examples are Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE). 
 

4 Implementation 
 
The implementation process of the proposed research is presented in detail in this section of 
the report.  

4.1 Setup 
First, the host computer is a MacBook Pro with 8GB RAM, core i5 processor and 256GB SSD.. 
The anaconda environment and Jupyter notebook is used to run the codes to implement this 
research. Other libraries used include Keras, sklearn and Pandas. 
 

4.2 Dataset 
The selected dataset was retrieved from UCI public repository. The data was separated using 
semicolons with each row representing a minutely smart-meter recorded data. The variables 
contained in this dataset are described as follows: 
 
 
 

Table 1: Dataset variables 

Variable Description 
Global active power global averaged active power per minute (in kilowatt) for the 

household  
 

Voltage Average voltage per minute 
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4.3 Data Handling 

4.3.1 Data cleaning 
 
The data was downloaded as a text file and then converted to csv file before processing. For 
the data cleaning process, few rows with missing dates were removed as they weren’t 
significant enough to cause an impact on the performance of the model.  Also, new columns 
were created for the date and time and sub_metering_4 which represented household usage 
appliances that weren’t accounted for in the recorded sub_meters (e.g TV, Radio). 

4.3.2 Data visualization 
To have a clear view and understanding of a multivariate time series dataset of this nature, 
visual plots for each variable in the dataset over 4 years were created. These plots supply 
pictorial information about trend and seasonality as there are predicting models that may be 
incompatible with seasonal data, which this data appears to be. Also, the distribution of the 
data is revealed with the help of visuals. 
For instance, the line plot created for each data variable revealed some information on sub 
metering 3 which is the climate control that may not directly with the weather conditions in 
the month of august. Perhaps, this home may have installed new systems. While, global 
active power displayed some wave of seasonal influence in the data visualization. 
 

 

Figure 1: Average daily consumption each month in 4 years 
 

Global reactive power This is the global averaged reactive power per minute (in 
kilowatt) for the household  
 

Sub_metering_1 Electricity consumption for kitchen appliances 
Sub_metering_2 Electricity consumption for laundry room. 
Sub_metering_3 Electricity consumption for climate control appliances 
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Figure 2: Average Consumption of each day in 4 years 
 
Furthermore, density plots were created to check the distribution of each data variables and it 
was seen that only voltage was normally distributed while the rest were somewhat skewed as 
shown in the figure below. It was observed that the data distribution was skewed, and the data 
was scaled appropriately.   
 
 

 

Figure 3: Data distribution 
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To gain further understanding of the data, we also looked at the annual periodicity in the data 
and It can be observed that annual periodicity exists for the Global Active Power. 
 

 

Figure 4: Global active power periodicity 
 

 

Figure 5: resampled global active power periodicity 
 

4.4 Modelling 
The main model implemented in this research is the encoder decoder 1D CNN-LSTM model 
aiming to predict household energy consumption. The encoder part of the model consisted of 
2 1D CNN layers before a maxpooling layer. To help battle overfitting, a dropout layer is 
introduced after the maxpooling layer. The output vector from this layer is flattened before 
being passed to a repeat vector layer to repeat the vector across the entire time steps. The 
decoder LSTM is introduced at this stage before another dropout layer is used to further tackle 
potential overfitting. The model architecture culminates in double time distributed dense layers 
with a further dropout layer between them as is the case for time series modelling. The model 
architecture is illustrated in the figure below. 
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The hyperparameters used for the model are detailed in the table below. 
 

Table: Model hyperparameters 
 

 
 

4.5 Training and Testing 
The chosen dataset for this research shows 47 months (4 yrs)of per minute readings of electric 
power energy consumption of a household. Therefore, for the training purposes of our proposed 
models, a 75:25 training and testing ratio was implemented to indicate the first 36 months to 
be used and training data and the last year which is the remaining months will be used as out 
test data to evaluate the performance of the forecast model. To simplify the dataset further, data 
is sub categorized into weeks. The reason for this is model our data to fit the purpose of this 
research which is the forecast electric power that will be consumed for a week ahead or for a 
certain day. 
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During training, we also defined the call back utility for the training of the neural network 
models which consists of optimizer for learning rate, early stopping of the training based on 
unchanging and stagnant loss to avoid the unusual training of the model and saving the 
computation time and also integrated tensor board to visualize the training losses and model 
architectures. 
 

5  Results and evaluation 
 
This section presents the results and evaluation of the conducted research. Overall, 3 
experiments were conducted over 2 base model architectures. Firstly, the results for the 
preliminary statistical methods are presented before the results for the neural networks are 
presented and discussed in the following sections. 

5.1 EXPERIMENT 1:  SARIMA model 

In this research a SARIMA model, was built for values of p=6, q=0, d=0 and the test predictio
ns are shown below. The mean absolute percentage error was found to be 23.28 % and Symm
etric mean absolute percentage error (SMAPE) was 20.91%. 
 

 

Figure 6: Test predictions for SARIMA 
 
Next, we consider SARIMA using other features in the data, and also added the holidays data 
to build a more robust model for which predictions are show in the figure below. In this mode
l, the mean absolute percentage error (MAPE) was found to be 16.37 % and Symmetric mean 
absolute percentage error (SMAPE) was 15.25% which can be considered as good drop in the 
error and SARIMA model is now also able to learn the fluctuation of the time series and predi
ct well. 
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Figure 7: Test Predictions for SARIMA with all features and Holidays consideration 
 
5.2 EXPERIMENT 2:  Neural network-based approaches 
We defined four different model architecture as our baseline models to test different 
architectures and evaluate them based on the least root mean squared error. The following were 
the architectures of the models.  

• LSTM model 
• Encoder Decoder LSTM model 
• Encoder Decoder CNN-LSTM model 
• Bidirectional LSTM 

The results of the above four model are shown in the figures below. 
 

Table: Neural network evaluation results 

 
It can be seen from the above table that Encoder-Decoder CNN LSTM model seems to be 
performing the best with the lowest average RMSE of 0.09175 as compared to the other 
models. In the next experiment, the model hyperparameters were tuned using the Optuna 
framework. 

5.3 EXPERIMENT 3:  OPTUNA CNN-ENCODER DECODER LSTM 

For the final experiment, the best performing neural network was further optimized using 
the OPTUNA framework. The hyperparameters are tuned for both the CNN and LSTM 
networks. 
From the results, ‘rmsprop’ with a learning rate of 0.00128 was found to be the best optimizer 
for the trial which gave the least value of RMSE as 0.894. We also plotted the optimization 
history of the Optuna study as shown in the figure below. It can be seen that the tuned model 
with the best trial has a few models which are below 0.90, which was the best and least RMSE 
value for our baseline models. 
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Figure 8: OPTUNA optimization history 

The slice plot for Optuna study shows the distribution of the Objective value or RMSE for the 
different trials based on the values of the various parameters which is also a good way to 
understand the contribution of different hyper parameters which contribute the accurateness 
and robustness of the model. It is clear that ‘relu’ is the activation function which is fitting best 
and affecting the model, 128 filter in CNN are providing the least value for the RMSE, ‘glorot-
uniform’ is the best kernel initializer and L2 regulariser is fitting the best for our encoder-
decoder CNN LSTM model. 
 

 

Figure 9: Optimum hyperparameters 
 
 
The model architecture for the tuned model is shown in the figure followed by the training an
d validation curve for the training of the tuned model shown in figure Finally, the RMSE for t
he weekly forecast of the tuned model with the Optuna is shown in the figure 11. It can be sho
wn that the model has outperformed all the baseline models and average RMSE of the model 
was found to be 0.09094. 
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Figure 10: Training history 
 

 

Figure 11: RMSE for the weekly forecast for tuned model 
 

5.4 Discussion 

In this research, 3 experiments are conducted aiming to predict household power consumption 
using different approaches. For the first experiment, a SARIMA model was used to test the 
effect of seasonality on the model and the residuals were further investigated to detect any 
hidden information. The SARIMA model had a MAPE of 23.28% and an SMAPE of 20.91%. 
Following the findings, this experiment was extended using a dataset with world holiday 
information to further neutralise the effect of the seasonality on the data and the MAPE and 
SMAPE scores reduced to 16.37% and 15.25% respectively.  
Aiming to improve the results, further experiments are conducted using neural networks. 
LSTM, encoder decoder LSTMs, encoder decoder CNN-LSTM and bidirectional LSTM 
models resulted in RMSE of 0.09349, 0.09637, 0.09175 and 0.09258 respectively. The encoder 
decoder CNN-LSTM model performed best amongst the architectures considered. In the final 
experiment, further hyperparameter tuning is done on the best performing model using the 
OPTUNA framework resulting in an even lower RMSE of 0.090. 
Comparing our results with the work done by Kim and Cho (2019) using particle swarm 
optimisation to tune the hyperparameters of a CNN-LSTM model, our approach using an 
OPTUNA model performed better. The results indicate that the Optuna approach is a better 
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algorithm for hyperparameter tuning compared to PSO. This also validates the ability of our 
approach to effectively predict future weekly electricity consumption. The Particle swarm 
Optimization algorithm a min value of 0.0879 MSE which is equivalent to 0.2964 RMSE and 
our model achieved a 0.090 RMSE. This shows that our OPTUNA approach performs better 
than the Particle Swarm Optimization algorithm which was presented in the previous work. 
 
 
 

6 Conclusion and future work 
 
In this research, Optuna CNN- Encoder Decoder LSTM neural network has been proposed for 
effective forecasting of electric power demand. To validate the proposed model, we have 
performed an experiment using the household electric power consumption dataset retrieved 
from the UCI machine learning repository and result of the experiment showed lower root mean 
square error in comparison to established models. We have adopted the presented model to 
probe for the best performing hyperparameters of the CNN-Encoder Decoder LSTM neural 
networks. Furthermore, we have also adopted SARIMA for the stationarity in our time series 
dataset to better get a true view of the dataset we are dealing with. Future research endeavour 
will look to adopting a new algorithm that can search for the best activation functions for 
converting the input sequence of the deep neural framework into the output sequence. 
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