

Configuration Manual

MSc Research Project

Data Analytics

Mrinmoy Dutta Choudhury

Student ID: x18182658

School of Computing

National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Mrinmoy Dutta Choudhury

Student ID:

x18182658

Programme:

MSc in Data Analytics

Year:

2019-20

Module:

MSc Research Project

Supervisor:

Dr. Catherine Mulwa

Submission
Due Date:

…….………

Project Title:

Automated Identification of Painters Over WikiArt Image Data Using
Machine Learning Algorithms

Word Count:

……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Mrinmoy Dutta Choudhury

X18182658

1 Introduction

This document elaborates the system specification; software and hardware used for the

implementation of the project. It also lays out the steps carried out in the implementation of

the research project, “Automated Identification of Painters Based on Style of Art Using

Machine Learning Algorithms”.

2 System Configuration

2.1 Software Specification

• Linux environment set up using Ubuntu plug in for windows to download required

image data of the relevant artists from wikiart files.

• Jupyter Notebook: Open source application, was used to split the downloaded data

into train, test, and validation splits.

• A Gmail account to access data uploaded to google drive.

• Google Colab, a python environment that uses google cloud.

2.2 Hardware Specification

• Lenovo IdeaPad C340, 256 GB SSD, 8 GB RAM.

• Processor: 1.8 GHz, Intel Core, i5

•

3 Data Generation Steps

• Download the scripts provided by Lucas David1 to your local machine.

• Execute the following lines of code in Linux shell from the same directory.

1 https://github.com/lucasdavid/wikiart

https://github.com/lucasdavid/wikiart

2

Figure 1 Download JSON File

• This downloads a JSON file containing the name of all the artists in the wikiart

database. Keep the names of artists of interest and remove others from the JSON file

and save the file.

• Then run the following piece of code that downloads all the paintings of the specified

artists from the wikiart database.

Figure 2 Fetching Images of Relevant Artists

• Run the script “Extract_Copy_Impressionist.ipynb” using a jupyter notebook. This

copies all the images of an artist inside their respective folders. Create the folders for

individual artists in the destination folder before running the script.

3

 Figure 3 Script to Extract and Copy Files

• The downloaded data was imbalanced in the sense that it contained non-uniform

distribution of images for each artist as shown in Figure 4.

Figure 4 Original Distribution of Images

• Create training, testing and validation folders in the destination path and create folders

for each artist inside each of these three folders.

• Now, run the script “impressionist_train_validation_split_impressionist.ipynb” from

jupyter notebook. This splits the dataset into specified numbers of train, test, and

validation images for each artist. The total number of images considered for the

project was 5000 (500 each of 10 painters). Inside this script, firstly a function is

defined that splits the data into train, test, validation splits.

4

• Secondly, a function is created to check if the files in train, test and validation folders

are unique.

5

• Figure 5 shows the distribution of data per class after pre-processing and balancing

the dataset.

Figure 5 Data Distribution Considered for Implementation

4 Upload Data to Google Drive

• The train, test and Validation folders were uploaded to google drive for data

processing using Google Colab.

5 Implemented Models

5.1 Implementation of Random Forest

Step 1: Import all the required libraries

6

Step 2: Mount the Google Drive

Step 3: Define the training directory and image size and specify the size of the test set.

Step 4: Write the feature extraction steps for Random Forest Classifier

7

Step 5: Generate the training labels and initializing empty lists to contain global

features and labels

Step 6: Club all the global features into one single list and append the labels and

global features list

8

Step 7: Encode the target labels and save the feature vectors and trained labels

9

Step 8: Import the feature vector and trained labels into the session.

Step 9: Split the data into train and test sets. Because the implementation of Random

Forest does not require a separate validation set. Hence, the training and test sets were

set to 4500 and 500 images, respectively.

Step 10: Create and fit the model on the train data. Also, specify the number of

decision trees (estimators)

10

Step 11: Make predictions on the test set and plot the classification report showing

precision, recall, F1 score and accuracy.

5.2 Implementation of SVM

Step 1: The same feature extraction techniques and train test splits (as in the case of

Random Forest) were used for the implementation of SVM. Step 1 to Step 9 to be

followed as per section 5.1 for the implementation of SVM.

Step 2: Specifying the C values, kernel and gamma parameters and defining and

training the model.

Step 3: Make predictions on the test split and plot the classification report

11

5.3 Implementation of CNN

 Step 1: Import all the required libraries and specify the input directory

Step 2: Specify the image dimensions, batch size, and initialize empty lists to

contain image data and class names

Step 3: Fetch images from each of the classes.

12

Step 4: Convert the image data and target column lists into numpy arrays.

Step 5: Standardizing the input data and encoding the labels using LabelEncoder

function.

Step 6: Splitting the data into train and test splits in a 90-10 train-test ratio.

Step 7: Defining the CNN model

13

Step 8: Compile the model

Step 9: Train and fit the model by assigning 20 percent of the training data to

validation split

Step 10: Once the model has been trained, make predictions on the test set

Step 11: Print the accuracy obtained on the test set

Step 12: Print the classification report.

14

5.4 Implementation of Resnet-18 Transfer Learning

Step 1: Import all required libraries

Step 2: Specify the input path, normalize the inputs with precomputed standard

deviation and mean and perform relevant data transformations and augmentations on

the train set. No data augmentation has been performed on the validation set.

15

Step 3: Use the dataset.ImageFolder functionality to create the test and validation sets

and dataloaders to yield batches of images and labels.

Step 4: Check the availability of GPU, else work with CPU.

Step 5: Download the pretrained ResNet-18 model to the device and define the last

layer classifier based on the needs of the project.

16

Step 6: Specify the loss function, optimizers, and early stop parameters.

Step 7: Define a function to train the model on the train and validation sets, that were

defined in the earlier steps.

Step 8: Train the model

17

Step 9: Save and load the model in session for prediction using the test set.

Step 10: Specify the path to the test set, create dataset and fetch images and labels in

batches

18

Step 11: Evaluate the model accuracy on the test dataset.

Step 12: Check the model performance and print the confusion matrix and

classification report.

19

5.5 Implementation of ResNet-50 Transfer Learning

Step 1: The data transformation, data creation and steps involving fetching of images

and labels remain like the ones stated in the implementation of ResNet-18 transfer

learning. Follow Step 1 to Step 4 in section 5.4 for the steps.

Step 2: Download the pretrained ResNet-50 model to the device and define the last

layer classifier based on the specific requirements of the project.

Step 3: Specify the optimizer, loss function and early stop parameters.

Step 4: The creation of the train function to train the model on the test and validation

splits remains the same as in the implementation of ResNet-18 transfer learning model

(Step 7 in section 5.4).

Step 5: Train the model by specifying the number of epochs.

20

Step 6: Save the model and then load it again to test its performance against the test

set.

Step 7: Specifying the path to the test set, creating the test dataset, and fetching

images and labels in batches remain exactly like the implementation of the ResNet-18

model (refer Step 10 in section 5.4).

Step 8: Evaluate the model accuracy on the test dataset.

21

Step 8: Calculate the accuracy and plot the confusion matrix.

Step 9: Print the classification report showing the precision, recall and F1- score.

