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Big Data-driven Performance Improvement of Traffic
Flow Prediction and Speed Limit Classification using
Deep Learning

Sankara Subramanian Venkatraman
x18179541

Abstract

Traffic flow and vehicle speed limit are the common problems faced in day-to-
day life by every country. Improving the performance of traffic flow and speed limit
benefits the road users and transportation authorities. In urban traffic network, it
is challenging to predict the traffic parameters (flow, speed and occupancy) due to
their complex nature. Additionally, various non-traffic parameters such as weather,
light and road surface conditions influence traffic parameters. Several studies in
the past have taken these parameters with lesser or aggregated data. This research
considers the non-traffic parameters and traffic big data of the United Kingdom
between the years 2010 and 2018. The significance of using non-traffic paramet-
ers along with traffic parameters during peak and non-peak hours is analysed. In
the first part of this research, the traffic flow is predicted using different Long
Short-Term Memory (LSTM) models, and the second part involves the classific-
ation of speed limit using Convolutional Neural Network (CNN) model. Finally,
the models are validated using evaluation metrics of training and testing accur-
acy, RMSE (Root Mean Squared Error) value and confusion matrix. Traffic flow
prediction and speed limit classification with non-traffic parameters perform bet-
ter than traffic-only parameters with increased accuracy (1%) and lowered RMSE
value (30% (traffic flow) and 33% (speed limit)).

1 Introduction

Studies on traffic flow and speed prediction are essential for the Intelligent Transport-
ation System (ITS). With the increasing number of vehicles and population, it became
troublesome for all the countries to manage the traffic and expand their cities. The
modern traffic monitoring system uses sensors, inductive loops and video surveillance to
collect traffic parameters (flow, speed and occupancy) of the vehicles. The data generated
by this system are huge, non-linear and has Spatio-temporal features. Hence to lead a
quality life, the research on traffic flow is important, and it supports government bodies
to regulate transportation services.

1.1 Background and Importance

Most of the studies in the past have utilized small datasets or aggregated data (5, 10 and
15 minutes) interval to predict short-term traffic flow. A very few researches have focused



on predicting traffic flow with massive data but without considering non-traffic paramet-
ers. Research on traffic flow prediction has considered non-linear factors of breakdown
and recovery of vehicles |Arif et al. (2018)), temporal factors of rainfall |Jia et al.| (2017)
and weather [Essien et al.| (2019). This research bridges the gap by considering various
non-traffic temporal parameters of weather, light and road surface conditions along with
huge traffic dataset containing spatial characteristics.

The challenging objective of this research is to predict the traffic flow that has
stochastic, non-linear and irregular nature. In most of the deep learning analysis, models
directly choose the features from the data. But the seasonality, trends and patterns in
the time-series data remain uncovered. So, to overcome this, the irregular and non-linear
data are transformed into linear and stationary data using feature extraction. The fea-
ture extraction is carried out using various Exploratory Data Analysis (EDA) such as
normality check, kurtosis, skewness and seasonality of the data. Dickey-Fuller test is
conducted to check the stationary of the data using a hypothesis test. To process the
huge volume and variety of data generated by ITS, Apache Spark is utilized. With the
help of big data analytics and deep learning, the analysis can be performed with high
processing speed and less computation time.

1.2 Research Question

Can non-traffic temporal parameters of weather, light and road surface conditions have
a significant impact on traffic parameters (flow, speed) using deep learning models? Will
they affect the traffic flow and speed limit during the peak and non-peak hours?

The objective of this research is to identify whether the non-traffic parameters helps
in improving the performance of traffic low prediction and speed classification. The
insights from the research will benefit the United Kingdom transportation department.
Since the research has 2 objectives, it is carried into 4 experiments. The first one is the
prediction of traffic flow (regression), without (Experiment-1) and with (Experiment-2)
non-traffic parameters. The second is to classify the speed limit (classification), without
(Experiment-3) and with (Experiment-4) non-traffic parameters. Finally, the effect of
non-traffic parameters on peak and non-peak hours is answered using statistical methods.

1.3 Research Objectives

The objectives are defined in Table [I| to achieve the above research question.

1.4 Limitation, Assumption and Structure of the Report

This research predicts traffic flow and classifies speed limit for weekdays only. Also,
the spatial correlation of the adjacent roads was not considered in this analysis. In the
classification of the speed limit, the data is not divided into a multi-class category due
to class imbalance.

It is assumed that weather, light and road surface conditions remain the same within
the local authority. Also, the morning peak hours is assumed from (7 to 10), evening
peak hours from (16 to 18) and non-peak hours from (11 to 15).

The rest of the research is organized as follows. Section [2] critical analyze related
works of parametric, non-parametric models and big data analytics in ITS. In Section [3]
the methodology of the research project is explained in detail, the design specification of
the research is demonstrated in Section [d In Section [5] implementation of the models



are illustrated, evaluation and discussions in Section [6] and finally concluded in Section

[

Table 1: Research Objectives

Objectives Description Evaluation Metrics

. Data preparation of traffic low and
Objective 1 road safety dataset. )

Objective 2 Data cleaning and transformation i

using Apache SparkSQL.
Normality — if (p < 0.05)

then reject the Null
hypothesis and data is not

Feature extraction and data stationary normal.
Objective 3 | test using normality, skewness, kurtosis Kurtosis (-10 to +10)
and ADF tests. Skewness (-3 to +3)

ADF - if (p < 0.05) then
reject the Null hypothesis and
data is stationary.

LSTM - Train, Test accuracy
and RMSE
CNN - Train, Test accuracy
and Confusion Matrix

Implementation of deep learning models
Objective 4 1) LSTM (traffic flow prediction)
2) CNN (speed limit classification)

Visualize the graphs using
Objective 5 matplotlib, seaborn and scikit-plot -
Python libraries.

2 Related Work

One of the most common problems addressed in the I'TS is prediction of traffic parameters
(flow and speed) of a road based on the peak or non-peak hours. Traffic flow can be
predicted for short-term, medium-term and long-term. Due to the stochastic nature of
traffic, it is challenging to predict the flow accurately. In this research, raw traffic counts
of major and minor roads and road safety accidents data of the UK government are used.
Non-parametric approaches are used to predict short-term traffic volume and classify
speed limit. Generally, traffic volume and speed limit have been predicted and compared
using strategies like parametric and non-parametric approaches. Simultaneously, ITS
generates a huge volume of data and it difficult to obtain insights with local machine
configuration. So, Big data analytics is leveraged with deep learning to overcome this
issue. Sections and summarises the usage of parametric and non-parametric
models in the application of ITS. In section [2.3 Big data analytics in ITS is discussed.

2.1 Parametric Models

Widely used parametric models are ARMA, ARIMA |Alghamdi et al.| (2019)), ARIMA-
SVM |Chi and Shi| (2019)), SARIMA |Luo et al. (2018) and partial least squares Gu
and Zhou| (2019). The most common assumption of time-series models are data is sta-
tionary and auto-correlation does not change to time. The stationary of the data is



tested using Augmented Dickey-Fuller (ADF) and KPSS tests. Parametric models use
Auto-Regressive (AR), Integrated (I) and Moving Average (MA) parameters to obtain
stationary traffic low time-series data. Short-term traffic prediction have found hybrid
models produces better accuracy than ARIMA and RBF-ANN models individually |Li
et al|(2017). Traffic flow prediction based on improved SARIMA and GA has prediction
accuracy same as ANN Luo et al| (2018). In urban arterial roads, Artificial Neural
Network (ANN) outperforms traditional ML models like KNN, SVM and SVR in the
prediction of traffic flow Bartlett et al. (2019). The disadvantages of parametric ap-
proaches are shallow architecture and low accuracy due to spatial-temporal, non-linear,
dynamic and chaotic characteristics of traffic flow. So, non-parametric or deep learning
is preferred over parametric models in this research.

2.2 Non-Parametric Models

The main advantage of using neural network models are generalization, ability to handle
non-linear and multi-variate data. Also, it has the advantage of continuous training
using Back Propagation (BP) algorithm. Researchers have used various deep learning
techniques like Deep Belief Network (DBN) for traffic flow prediction with multi-task
learning Huang et al.| (2014) and traffic speed prediction \Jia et al.|(2016). Lv, Duan,
Kang, Li and Wang (2015) have used Stacked Auto Encoders (SAE) for traffic flow
prediction |Lv et al.| (2015). The 5 different types of LSTM models widely used in the
research are Vanilla-LSTM, Stacked-LSTM, Bidirectional-LSTM, CNN-LSTM and Conv-
LSTM.

Liu, Zheng, Feng and Chen (2017) have used Conv-LSTM for short-term traffic pre-
diction [Liu et al. (2017). For urban traffic passenger prediction, Zhene et al. (2018)
have used CNN-LSTM |Zhene et al. (2018)). Wang and Thulasiraman (2019) have used
Vanilla-LSTM for forecasting traffic flow in clusters Wang and Thulasiraman (2019)).
Urban traffic speed prediction using deep learning by Essien, Petrounias and Sampio
(2019) have used Bi-directional LSTM [Essien et al. (2019). For the prediction of short-
term traffic congestion, CNN has been used |Chen et al. (2018)). Some researchers have
considered traffic flow with the effect of non-traffic factors such as weather, rainfall, tem-
perature, accidents, peak and non-peak hours for predicting the traffic flow. Urban traffic
passenger flow prediction by |Zhene et al. (2018) has considered holiday and workday
factors. Similarly, Zheng et al. (2019) have predicted traffic flow considering parameters
of weather, weekday, weekend and holiday |[Zheng et al. (2019). Forecasting of traffic flow
on urban area by Wang and Thulasiraman (2019) have considered peak and non-peak
hours. The complexity of Spatio-temporal and periodicity characteristics in traffic data
is handled by insensitive to time gap and cell state (short-term and long-term memory)
nature of LSTM.

Traffic speed prediction with rainfall-integrated proved LSTM has better prediction
accuracy than DBN considering additional parameter of rainfall |Jia et al.| (2017). Liu
et al. (2017) concluded short-term memory characteristics of LSTM made it suitable
for processing time-series data. Also, LSTM has a disadvantage of considering only
temporal factors it is better to use CNN-LSTM or Bi-directional LSTM for extracting
Spatio-temporal features. Essien et al. (2019) have predicted data fusion of traffic with
rainfall and weather parameter provide better accuracy in urban traffic than traffic-only
speed prediction. Urban traffic speed prediction using the CNN model is effective for
recognizing Spatio-temporal patterns, non-linear and non-periodic characteristics. It has



observed that CNN models produce improvement in accuracy up to 23.8% compared to
other models |Ren and Yang (2018). So, LSTM and CNN models are widely preferred
over other deep neural network models for time-series prediction.

Input, output and hidden are 3 layers of LSTM model. Based on the number of
hidden layers and input sequence, the type of the LSTM model varies. High level of
information is extracted by LSTM model for time-series data. The 3 types of prediction
designs are One-to-One, Many-to-One and Many-to-Many predictions Wang and Thu-
lasiraman| (2019). In this research, the prediction model of Many-to-Many is adapted
for predicting the traffic flow and speed limit classification of different roads. The traffic
flow of Road (R;) predicted at time n, time-series traffic flow data fed to the model from
(t=1,2,3,...,n—1). In Conv-LSTM, the input time-series vector fed to LSTM model
as Cy = (C1,Cy,Cs,...Cy_1) after convolutional and pooling process [Liu et al. (2017).
Similarly, Essien et al. (2019) have considered the input sequence of traffic time-series as
Ty =x1+To+2x3+... + 2,1 and output sequence of y; = y1 +yo +ys+... +y;_1, where
t represents the prediction time [Essien et al.| (2019). The input can be represented as a
time-series matrix (X) to predict the output matrix-vector (Y) to preserve the Spatial-
temporal characteristics of traffic speed. The input matrix X and output matrix-vector
Y of traffic speed (S) at different roads Ren and Yang (2018) can be represented as

Ss(t—1) S3(t—2) S3(t—3) Ss3(t—n) Ss(t)

2.3 Big data analytics in ITS

Parallel and distributed computation of data can be achieved by big data analytics.
Apache Hadoop with Apache Spark is the most commonly used framework to store and
process (Extract, Transform and Loading) the massive amount of data generated in ITS
Zhu et al| (2019)). According to |Guerreiro et al| (2016]), Apache Spark and SparkSQL
are the widely used tools for ETL in big data processing I'TS. Apache Spark is efficient
and faster compared to other traditional algorithms like Hadoop MapReduce. Also, it
processes data in-memory |Garate-Escamilla et al.| (2019) and optimizes computational
time. Apache Spark can be used for both batch and streaming pipeline in multiple-
cluster environments to implement Machine Learning models |Leite et al.| (2018)). The
huge volume of data generated from various sensors on different roads is widely processed
using Apache Spark.

In this research, short-term traffic flow is predicted using LSTM model and speed
classification using the CNN model on various roads is discussed. Data preparation,
cleaning and transformation are handled using Apache SparkSQL. The input spatial
and temporal characteristics of traffic flow are fed into the LSTM model as a matrix
to predict the output matrix-vector. Similarly, the same technique is followed by traffic
speed classification using the CNN model. A novel technique of considering morning
peak, evening peak and non-peak hours of all the roads in weekdays is studied in the
research. Additionally, non-traffic parameters of weather, light and road conditions are
integrated to study the influence of these factors.



3 Methodology

The raw traffic count of major and minor roads and road safety data are sourced from the
UK government website. Traffic flow, speed and weather conditions data from various
sensors on different roads are massive. It should be collected and processed accurately to
enhance the I'TS system. Finally, appropriate models are applied to obtain insights from
the data. A novel methodology of Knowledge Unveiling in Big Data (KUBD) |Lounes
et al.| (2018)) is incorporated into this research to implement the above steps. KUBD is a
combination of Knowledge Discovery in Databases (KDD) and Big data analytics. The
below section explains modified KUBD for the application of I'TS, traffic flow prediction
and speed classification.

3.1 Traffic Flow Prediction and Speed Classification Methodo-
logy

am — & — H

Data Cleaning Data
using SparkSQL

Understanding
requirements
from Traffic Data

Transformation
using SparkSQL

N

—

Prediction and

= N

Feature

Evaluation Classification Extraction using
Methods using LSTM and Statistical
CNN Models Methods

Figure 1: Traffic Flow Prediction Methodology

KUBD process has 6 important phases or stages in the proposed methodology and
explained in Figure Flexibility is the advantage of this methodology, as it can be
modified according to the requirements. The modified KUBD starts with the first stage
of understanding the requirements of data, storage types and appropriate models required
for traffic flow prediction and speed classification. During the second stage of the process,
data stored on the cloud is cleaned to remove noisy data, missing values, renaming column
names according to standards and dropping unnecessary columns. After the cleaning
phase, the data is transformed according to the requirements in the third stage. For
example, the categorical string values are replaced with numerical values, joining of two
tables and filtering records based on conditions are carried in this stage. After the data
transformation, the data is stored in the PostgreSQL database for further analysis. Unlike
regression or classification problems, features cannot be extracted based on the correlation
analysis. In the fourth stage, a set of statistical analyses are carried out to check the



stationary, normality and seasonality in the time-series data, and the relevant features
are extracted from the analysis. In the fifth stage, the multivariate time-series models
of LSTM and CNN are applied to the dataset. Finally, appropriate metrics are used to
evaluate model performance.

The upcoming sections explain the process of traffic data understanding, data pre-
paration, cleaning, transformation and feature extraction in detail.

3.2 Traffic Data Understanding

In the previous studies on traffic flow and speed prediction in the United Kingdom, tem-
poral factors of (rainfall and temperature) weather conditions and accidents with spatial
characteristics of road type, direction and link length have considered. In this research,
the traffic prediction generalization ability and the performance of traffic prediction are
improved for the UK, considering the temporal factors of weather, light and road sur-
face conditions. Also, it helps to regulate public transportation on weekdays during the
morning peak, evening peak and non-peak hours.

3.3 Data Acquisition

Datasets for the analysis are ethically sourced from the websites [[F] The files are down-
loaded in Comma Separated Values (CSV) format from the UK government website. The
open data are available for research scholars and students for conducting experiments and
contribute to the improvements. The raw traffic count of major and minor roads in the
United Kingdom have data of 3.91 million from 2000. As tabulated in Table 2] data from
the year 2010 to 2018 which has 1.61 million records are considered. The road safety
dataset contains weather, light and road surface conditions have data of 1.26 million
records from the year 2010 to 2018.

Table 2: Dataset Description

Dataset Record Count | Features
Raw Traffic Count 16,16,712 35
Road Safety Dataset 12,65,735 32

3.4 Data Preparation, Cleaning and Transformation

The crucial stage of the research is data pre-processing and cleaning, where missing and
null value records are dropped. Merging of two datasets, transformation and storing
data in a database are carried in data transformation. The feature engineering process
is carried out using various statistical analysis in feature extraction. In experiment 1,
only traffic flow data is utilized, and in experiments 2, 3 and 4 both traffic flow and road
safety data are utilized.

3.4.1 Data Cleaning and Transformation for Experiment 1

Since the research is about traffic flow prediction on a major and minor road, geograph-
ical attributes cannot be null. After dropping null value records and filtering weekday

1https://data.gov.uk/dataset/208c097b—353f—4e2d—8b7a—1a7118467acc/gb—rcad—traffic—counts

2
https://data.gov.uk/dataset/cb7ae6£0-4be6-4935-9277-47e5ce24allf /road-safety-data


https://data.gov.uk/dataset/208c0e7b-353f-4e2d-8b7a-1a7118467acc/gb-road-traffic-counts
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data

records, the traffic dataset is reduced to 9,99,720. Data transformation is processed us-
ing SparkSQL by invoking SparkSession. Initially, the data is read from Google Cloud
Storage (GCS) directly using SparkSession and stored as temporary tables. According
to business logic, a new column “month” is created from count_date column and traffic
volume of different vehicles are aggregated grouped on spatial parameters of travel direc-
tion, road type, road category, latitude, longitude, region, link length and local authority
id. In the next step, categorical string variables of the month, road type, road category,
travel direction are transformed to numerical values. Hour column is clustered into morn-
ing peak hours (7 to 10), evening peak hours (16 to 18) and non-peak hours (11 to 15)
to a new column “peak non_peak_hour”. Finally, the cleaned transformed data is loaded
into a PostgreSQL table in Google Cloud Platform (GCP) which has 12 columns and
2,45,730 records.

3.4.2 Data Cleaning and Transformation for Experiment 2

Data transformation, aggregation and clustering peak and non-peak hours are repeated
for experiment 2, traffic flow prediction with weather, light and road surface conditions.
As the temporal characteristics remain the same within the locality, the road safety data
containing features of weather, light and road conditions are joined with traffic flow data.
It is joined on the conditions of date, hour and local authority. The temporal features
are categorical values, and the file available in the road safety manual is shown in Table
. While joining two tables, data missing or out of range values (-1) are filtered from
the analysis, only valid conditions from 1 to 9 are considered. The transformed data is
loaded into a PostgreSQL table which has 15 columns and 1,53,858 records.

Table 3: Non-traffic temporal features

Code Light condition Weather Condition | Road Surface Condition
1 Daylight Fine no high winds Dry
2 - Raining no high winds Wet or damp
3 - Snowing no high winds Snow
4 Darkness - lights lit Fine + high winds Frost or ice
) Darkness - lights unlit Raining + high winds Flood over 3cm. deep
6 Darkness - no lighting Snowing + high winds Oil or diesel
7 Darkness - lighting unknown Fog or mist Mud
8 - Other -
9 - Unknown -
-1 Data missing Data missing Data missing

3.4.3 Data Cleaning and Transformation for Experiment 3

Like experiment 1 data transformation, aggregation and clustering peak and non-peak
hours are repeated for experiment 3, traffic speed limit classification without non-traffic
parameters. Traffic safety dataset containing speed limit data is joined with traffic flow
data on the conditions of date, hour and local authority id. Finally, data is stored into
PostgreSQL which has 1,79,366 records and 12 columns.



3.4.4 Data Cleaning and Transformation for Experiment 4

The data cleaning and transformation process of traffic speed limit classification with non-
traffic temporal characteristics of weather, light and road conditions are like experiment
2. Also, records are filtered with a speed limit of less than 0. The output data containing
1,94,881 records and 15 columns are stored in the PostgreSQL table.

3.5 Feature Extraction

After data stored into PostgreSQL, features required to perform data mining is engineered
based on a statistical analysis of normality test, skewness, kurtosis, traffic flow trends over
the years, traffic patterns on the morning, evening and non-peak hours and Augmented
Dickey-Fuller (ADF) test.

3.5.1 Statistical Analysis for Experiment 1

Data is read from PostgreSQL through sqlalchemy create engine and stored in pandas
dataframe. The null (Hy) and alternate hypothesis (H;) for normality is defined based on
alpha value = 0.05. The normality test is conducted using stats module from Scipy. The
null hypothesis is p-value > 0.05 (alpha value), then data looks like gaussian or normally
distributed (fail to reject Hg). If p-value < 0.05, then data does not look gaussian (reject
Hy). The obtained p-value from traffic flow dataset is 0.000, so (reject Hy) and data is
not normally distributed. Skewness and kurtosis define the shape of the distribution.
kurtosis of 5.91 and skewness of 2.19 defines the data is skewed on the positive side of
the distribution.

Box plot of Yearly traffic volume

uuuuu

ooooo

(a) Traffic Volume Distribu- (b) Peak Vs Non-peak hours (c) Data Stationary Test us-
tion 2010-2018 in Traffic Flow ing ADF

Figure 2: Statistical analysis Experiment 1

Traffic volume over the years from 2011 to 2018 almost remains the same except for
2010 shown in Figure[2a] Seasonality of the traffic flow over the years have also determined
and found an interesting pattern of the year 2012 and 2013 have similar seasonality. The
main objective of this research is to determine the traffic flow during morning, evening
and non-peak hours.

As shown in Figure , traffic volume in a non-peak hour (green) tops followed by
morning peak hours (blue) and finally evening peak hours (orange). To check the sta-
tionary of the data, Dickey-Fuller test is conducted. The null hypothesis (Hy) p>0.05,
then the data is non-stationary and has a time dependent component else alternate hy-
pothesis (H;) data is stationary. In this case, p-value = 0.000 < 0.05 (Figure [2d), so
null hypothesis is rejected. Hence the data is stationary. Finally, the temporal factor of
traffic volume feature is pivoted based on the “year” column to pass the data into the



LSTM model. The actual data of 9,99,720 with 12 columns are transformed into 2,45,730
records and 13 columns.

3.5.2 Statistical Analysis for Experiment 2

In addition to traffic volume, non-traffic temporal parameters of weather, light and road
conditions are considered for experiment 2. Like experiment 1 normality, skewness and
kurtosis tests were conducted. The normality test null hypothesis (Hp) is rejected as
p-value=0.000, so the data is not normal. Initially, the skewness and kurtosis value of
4.92 and 39.4 were obtained. The high value of kurtosis indicates the data has outliers.

Box plot of Yearly traffic volume
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Figure 3: Statistical analysis Experiment 2

So, after removing the outliers, skewness and kurtosis value of 2.0 and 4.7 were ob-
tained. It defines the data is skewed on the positive side of the distribution. From
Figure [3a], traffic volume over the years from 2010 to 2018 almost remains the same.
Seasonality of the traffic flow over the years has determined and found that traffic flow
with weather, light and road conditions have no similar seasonality pattern. As shown in
Figure traffic volume in evening peak hour (orange) tops followed by morning peak
hours (blue) and finally non-peak hours (green). From this, we can derive an insight that
weather, road and light conditions affect morning and evening peak hours.

To check the stationary of the data, Dickey-Fuller test is conducted. In this case,
p-value = 0.000 < 0.05 (Figure , so null hypothesis is rejected. Hence the data is sta-
tionary. Finally, the temporal factor of traffic volume, weather, light and road conditions
features are pivoted based on the “year” column to pass the data into the LSTM model.
The actual data of 1,53,858 with 15 columns are transformed into 1,16,561 records and
40 columns.

3.5.3 Statistical Analysis for Experiment 3

Traffic speed classification without non-traffic parameters data is read from PostgreSQL.
The tests of normality, skewness, kurtosis, seasonality, speed limit distribution and data
stationary tests are conducted. The data is not normal as p-value=0.000 < 0.05 (reject
Hy). Skewness and kurtosis of 0.77 and -0.92 are obtained for the traffic speed limit. The
speed limit of the UK roads varies from 20 to 70 depending upon the time. Figure
represents the traffic speed limit distribution from 2010-2018.

The average speed limit has a similar pattern from 2010 to 2014. From 2015 the
seasonality of traffic speed has a varied pattern. Unlike in experiment 1 and 2, there are
no similar patterns on traffic speed limit based on the morning (blue), evening (orange)

10



Box plot of Yearly speed limit
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Figure 4: Statistical analysis Experiment 3

peak hours and non-peak (green) hours. Figure @ shows how the average speed limit
value changes over the years based on peak and non-peak hours.

Dickey-Fuller test is conducted to check the stationary of the data. In this case, p-
value = 1.279619¢2* < 0.05 (Figure , so the null hypothesis is rejected. Hence the
data is stationary. For speed limit classification, the data is classified into 2 categories
Low Speed (1) and High Speed (2). The speed limit from 0 to 20 as Low speed and 30 to
70 is classified as High Speed. Because of the data imbalance, the data is not divided into
a multi-class category. Finally, the temporal factor of the traffic speed limit feature is
pivoted based on the “year” column to pass the data into the CNN model. Data obtained
from the PostgreSQL with 1,79,366 records and 12 columns are transformed into 1,26,200
and 13 columns.

3.5.4 Statistical Analysis for Experiment 4

Traffic speed classification with non-traffic parameters data is read from PostgreSQL.
The tests of normality, skewness, kurtosis, seasonality, speed limit distribution and data
stationary tests are conducted. The data is not normal as p-value=0.000 < 0.05 (reject
Hp). Skewness and kurtosis of 0.83 and -0.83 are obtained for the traffic speed limit.
Figure [ba] represents the traffic speed limit distribution from 2010-2018.

Box plot of Yearly speed limit
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Figure 5: Statistical analysis Experiment 4
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The average speed limit has a similar pattern from 2010 to 2014. From 2015 the
seasonality of traffic speed has a varied pattern. Figure [5b|shows how the average speed
limit value changes over the years based on peak and non-peak hours.

To check the stationary of the data, Dickey-Fuller test is conducted. In this case,
p-value=2.356202¢ 1% < 0.05 (Figure [pd), so the null hypothesis is rejected. Hence the
data is stationary. Like experiment 3, the speed limit from 0 to 20 as Low speed and 30
to 70 is classified as High Speed. Finally, the temporal factor of the traffic speed limit,
weather, light and road conditions features are pivoted based on the “year” column to
pass the data into the CNN model. Data obtained from the PostgreSQL with 1,94,881
records and 15 columns are transformed into 1,25,999 and 40 columns.

4 Design Specification

As presented in Figure [6] the proposed design architecture has 3 layers of data storage
layer, big data analytics layer and data visualization layer. This architecture can be
modified at any point according to the requirements of the data. In the data storage
layer, raw input CSV files of traffic data are moved from the local system to Google Cloud
Storage (GCS) bucket. The main advantage of this process is to reduce the dependencies
of storage, memory and machine failure in the local system. The big data analytics layer
is integrated with the storage and visualization layer. This layer is provisioned on Google
Cloud Platform (GCP) and software required for the analysis are installed. The data
from GCS is cleaned and business logic are implemented using Apache SparkSQL and
stored in a relational database of PostgreSQL server in GCP. So, the final transformed
data required for performing the analysis is stored on PostgreSQL. In the analytics layer,
statistical tests of normality, skewness, kurtosis, trends, seasonality and Dickey-Fuller
(ADF) are conducted using scipy and statsmodel and sklearn. The objective of this
research is to predict traffic flow and speed limit classification in the United Kingdom.
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Figure 6: Design Specification for Traffic Flow Prediction

Using Keras and TensorFlow packages, deep learning models of LSTM and CNN
are implemented. Scikit-learn package is used for implementing the evaluation. Data
visualization layer is utilized to visualize the trends, normality and patterns of traffic
flow characteristics. Also, this gives a better understanding of the results obtained from
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the models. The design architecture is implemented end-to-end in GCP using various
services such as GCS, PostgreSQL server and AI Notebook. Both GCS and PostgreSQL
server are used for storing raw and transformed data. The AI notebook is used for ETL
process, feature extraction, model deployment, hyper-parameter tuning and evaluates the
model performance. The upcoming section explains the implementation of the models,
performance tuning and evaluation methods performed in the research.

5 Implementation of Traffic low Prediction and Speed
Classification

As discussed earlier, the implementation of this research is carried in 2 parts and 4
experiments. The first part of this research is traffic low prediction for the year 2018
based on traffic flow (volume) from the year 2010 to 2017, without non-traffic parameters
(Experiment 1) and with non-traffic parameters of weather, light and road conditions
(Experiment 2). The second part of this research is to classify the speed limit, Low
Speed (1) and High Speed (2) for the year 2018 based on speed limit from the year 2010
to 2017 without non-traffic parameters (Experiment 3) and with non-traffic parameters
(Experiment 4). Experiment 1 and Experiment 2 are carried out using various LSTM
models such as vanilla-LSTM, stacked-LSTM and Bi-directional LSTM. Experiment 3
and Experiment 4 are conducted using 1-D CNN model.

5.1 Data Preparation for the Models

Even though data are extracted and pivoted by statistical tests and pandas, a set of
the pre-processing must be carried out to data into the deep learning models. Data
preparation is common for all the experiments. The first step is to normalize the data from
the pivoted dataframe using sklearn. MinMaxScaler normalization is used for normalizing
the data. It is applicable only for Experiment-1 and Experiment-2 (Regression). The
second step is to split the data into training and test dataset to train and test the model
built. A part of testing data is used as validation during the model fit. The data is split
into 90% for training and 10% for testing using train_test_split from sklearn. The 2-D
data (samples, features) is reshaped into 3-D (sample, time steps (1), features) to feed
the time-series data into the model.

5.2 Long-Short Term Memory (LSTM) for Traffic Flow Predic-
tion (Experiment 1 and 2)
Deep Learning models are inspired from working of neurons in a brain. The architecture

of Neural Network has 3 layers namely, input, hidden and output layer. The various
LSTM Sequential models are implemented using Keras package in Python 3.

5.2.1 Experiment 1 and 2

3-D data (training data, 1, 13) is passed as input for experiment 1. The 13 features include
spatial characteristics of travel direction, road category, road type, peak-non-peak hours,
month and traffic volume time-series data from the year 2010 to 2017. The output of the
model is to predict the traffic volume for the year 2018. The vanilla-LSTM model has 1
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hidden layer with 100 neurons, and bidirectional and stacked LSTM models have 2 hidden
layers. The first layer has 100 neurons while second layer has 50 neurons. The dropout
layer, dense layer, activation layer, optimizer and loss function hyper-parameters are
tuned for iterative testing. The objective is to achieve accurate predictions with minimal
error. Figure shows that the stacked-LSTM model has 75,581 trainable parameters
with 100 and 50 neurons in the 1% and 2"? layers.

The optimizer used is Adam, the activation function is Rectified Linear Unit (ReLu)
and the loss function is Mean Absolute Error (MAE). Finally, the model is fit for 50
training epochs with a batch size of 50. EarlyStopping function of the Tensorflow package
is used to avoid overfitting of the training dataset. It stops the training epochs if there
is no improvement in the loss of the validation dataset Pif

Model: "sequential"
Model: "sequential 1"

Layer (type) Output Shape Param #

Layer (type) Output Shape Paran #

1stm (LSTM) (None, 1, 188) 56400
lstm 2 (LSTM) (None, 1, 100) 45600

lstm_1 (LSTM) (None, 50) 30200

1stm_3 (LSTM) (None, 50) 30200

dropout (Dropout) (None, 50) [:]

dropout_1 (Dropout) (None, 50) ]

dense (Dense) (None, 1) 51

dense_1 (Dense) (None, 1) 51

Total params: 86,651

Total params: 75,851 Trainable params: 86,651
Trainable params: 75,851 Non-trainable params: @
Non-trainable params: @

(a) Experiment-1 Model Summary (b) Experiment-2 Model Summary

Figure 7: LSTM Model Summary Experiment 1 and 2

3-D data (training data, 1, 40) is passed as input for experiment 2. The 40 features
include spatial characteristics of travel direction, road category, road type, peak non-peak
hours and month. The rest of the columns include temporal features of weather, light
and road surface condition data (2010 to 2018) and 8 years of traffic volume data from
the year 2010 to 2017. The output of the model is to predict the traffic volume for the
year 2018 on various roads. The stacked-LSTM model summary is shown in Figure [7h]
It has 86,651 trainable parameters with 100 and 50 neurons in the hidden layer. Like
experiment 1, 3 different LSTM models are applied to the traffic volume prediction with
non-traffic parameters. The main goal of the 1" and 2" experiments is to check if the
non-traffic temporal features have a significant effect on traffic flow prediction.

5.3 Convolutional Neural Network (CNN) for Traffic Speed
Limit Classification (Experiment 3 and 4)

The second part of the research work is to classify the speed limit of the various road
in the UK. As suggested by previous research works, CNN model is best suitable for
classification problems. Before the CNN model is applied to the dataset, the speed limit
column is classified into Low Speed (1) and High Speed (2) based on the median speed
limit. Then the process of train-test split and reshape is carried to feed the time-series
data into 1-D CNN model.

3https ://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/

4
https://towardsdatascience.com/time-series-analysis-visualization-forecasting-with-1lstm-77a905180eba
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5.3.1 Experiment 3 and 4

Using Keras.utils package, the speed limit classification column is converted into a cat-
egorical variable, which is like one-hot encoding. The input data is passed into the CNN
model in the shape of (training data, 13, 1). Batch size of 50 and training epochs 50
are assigned in advance before feeding the data into the model. Figure |a] represents the
CNN model summary for experiment 3. The 1-D CNN for speed limit classification has
1 convolution layer, 1 pooling layer and 3 hidden layers with (64, 32, 16 neurons) in the
15¢, 27 and 3"¢ layers respectively. To batch the data to the pooling layer, BatchNormal-
ization — a deep learning technique is used to reduce the training epochs is added E| The
loss function used is categorical _crossentropy and the optimizer used is Adam.

Model: "sequential 8"

Layer (type) Output Shape Param # Model: "sequential"

convld_8 (ConviD) (None, 12, 128) 512 Layer (type) Output Shape Param #
batch_normalization_8 (Batch (None, 12, 128) 512 convild (ConviD) (Nene, 46, 128) 512
max_poolingld 8 (MaxPoolingl (None, 6, 128) 2 batch_normalization (BatchNo (None, 46, 128) 512
T o — ;

Fatien s (Flotiem) T 5 max_poolingld (MaxPoolinglD) (None, 20, 128) 3

flatten (Flatt None, 2560 [
dense_32 (Dense) (None, 64) 49216 atten (Flatten) (None )

dense (Dense) (None, 64) 163964
dropout_24 (Dropout) (None, 64) [

dropout (Dropout) (None, 64) o
dense_33 (Dense) (None, 32) 2080

dense_1 (Dense) (None, 32) 2080
dropout_25 (Dropout) (lNone, 32) 3

dropout_1 (Dropout) (None, 32) o
dense_34 (Dense) (None, 16) 528

dense_2 (Dense) (None, 16) 528
dropout_26 (Dropout) (None, 16) 2]

dropout_2 (Dropout) (None, 16) o
d 35 (D None, 3 51
ense 35 (Dense) (None, 3) dense 3 (Dense) (None, 3) B
Total Ei”mg: 52,899 Total params: 167,587
Trainable params: 52,643 Trainable params: 167,331
Non-trainable params: 256 Non-trainable params: 256
(a) Experiment-3 Model Summary (b) Experiment-4 Model Summary

Figure 8: CNN Model Summary Experiment 3 and 4

Like experiment 3, the data is passed into the model in the shape of (training data,
40, 1). Non-traffic temporal parameters of weather, light and road conditions along with
speed limit are passed into the 1-D CNN model. Figure shows the model summary
for experiment 4. It has 1 convolutional layer, 1 pooling layer and 3 hidden layers with
64, 32 and 16 neurons in the 1%, 2"¢ and 3"¢ layers respectively. The loss function used
is categorical_crossentropy and the optimizer used is Adam.

6 Evaluation

Experiment 1 and Experiment 2 uses various LSTM are evaluated based on training
and testing accuracy, and Root Mean Square Error (RMSE) value. Experiment 3 and
Experiment 4 uses CNN model are evaluated using training and testing accuracy and
confusion matrix. Also, training and validation loss against epochs are discussed.

6.1 Evaluation for Traffic Flow Prediction without Non-Traffic
Parameters (Experiment-1)

Experiment 1 is conducted using vanilla-LSTM, stacked-LSTM and bi-directional LSTM
models. In this experiment, the morning peak hour, evening peak hour, non-peak hours

5
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
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and combined hours testing and training accuracy and RMSE values are tabulated in
Table [4, It is found that the training and testing accuracy value remains unchanged for
all types of LSTM models. In general, RMSE is the standard deviation of the residuals,
it tells how well the predicted value is close to the actual value. An interesting pattern is
found in RMSE, the value of vanilla-LSTM and Stacked-LSTM values are same for the
morning, evening and non-peak hours. The Bi-directional LSTM has lesser RMSE values
than the other 2 models. In the combined experiment, RMSE value, training and testing
accuracy of all the models remain the same. EarlyStopping function used in the model
fit has stopped the model from overfitting with right hyper-parameters at 19** epoch for
bi-directional LSTM, 12! epoch for stacked-LSTM and 26" epoch for Vanilla-LSTM.

Table 4: Experiment-1 LSTM Model Evaluation

Morning Peak
Models/Metrics | Train Accuracy | Test Accuracy Test RMSE
Vanilla-LSTM 0.9246 0.9241 0.193
Bidirectional 0.9246 0.9241 0.126
Stacked-LSTM 0.9246 0.9241 0.193
Evening Peak
Models/Metrics | Train Accuracy | Test Accuracy Test RMSE
Vanilla-LSTM 0.9247 0.9241 0.191
Bidirectional 0.9247 0.9241 0.136
Stacked-LSTM 0.9247 0.9241 0.191
Non-Peak
Models/Metrics | Train Accuracy | Test Accuracy Test RMSE
Vanilla-LSTM 0.9246 0.9241 0.194
Bidirectional 0.9246 0.9241 0.126
Stacked-LSTM 0.9246 0.9241 0.194
Combined
Models/Metrics | Train Accuracy Test Accuracy Test RMSE
Vanilla-LSTM 0.9249 0.9236 0.166
Bidirectional 0.9249 0.9236 0.166
Stacked-LSTM 0.9249 0.9236 0.166

The evaluation of training and validation loss against the number of epochs of different

models for combined hours is shown in Figure [
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Figure 9: Loss Vs Epochs in Experiment-1
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6.2 Evaluation for Traffic Flow Prediction with Non-Traffic Para-
meters (Experiment-2)

Experiment 2 is also the prediction of traffic flow with non-traffic parameters of road, light

and road surface temporal factors. Table|5|shows the experimental results of the morning,

evening, non-peak and combined hours. RMSE value of Bi-directional LSTM is less than
other models for the morning, evening, non-peak and combined hour experiments.

Table 5: Experiment-2 LSTM Model Evaluation

Morning Peak
Models/Metrics | Train Accuracy | Test Accuracy Test RMSE
Vanilla-LSTM 0.9367 0.9266 0.126
Bidirectional 0.9367 0.9266 0.125
Stacked-LSTM 0.9367 0.9266 0.193
Evening Peak
Models/Metrics | Train Accuracy | Test Accuracy Test RMSE
Vanilla-LSTM 0.9331 0.9285 0.131
Bidirectional 0.9331 0.9285 0.127
Stacked-LSTM 0.9331 0.9285 0.185
Non-Peak
Models/Metrics | Train Accuracy | Test Accuracy Test RMSE
Vanilla-LSTM 0.9314 0.9312 0.103
Bidirectional 0.9314 0.9312 0.104
Stacked-LSTM 0.9314 0.9312 0.146
Combined
Models/Metrics | Train Accuracy | Test Accuracy Test RMSE
Vanilla-LSTM 0.9329 0.9329 0.083
Bidirectional 0.9329 0.9329 0.082
Stacked-LSTM 0.9329 0.9329 0.121

EarlyStopping function used in the model fit has stopped the model from overfit-
ting with right hyper-parameters at 22" epoch for bi-directional LSTM, 14" epoch for
stacked-LSTM and 20" epoch for Vanilla-LSTM. Figure [10| shows the evaluation of loss
against the number of epochs for combined hours.
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(a) Vanilla-LSTM (b) Bi-directional LSTM (c) Stacked-LSTM

Figure 10: Loss Vs Epochs in Experiment-2
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6.3 Evaluation for Traffic Flow Classification without Non-Traffic
Parameters (Experiment-3)

Experiment 3 is conducted using the CNN model. The classification of Low speed (1) and
High speed (2) is the objective of the model. In this experiment, the morning peak hour,
evening peak hour, non-peak hours and combined hours of testing and training accuracy
are tabulated in Table [f] EarlyStopping function used in the model fit has stopped the
model from overfitting with right hyper-parameters at 36" epoch. Testing and training

accuracy values for the morning, evening and non-peak hours indicate the model is a
good fit.

Table 6: Experiment-3 CNN Model Evaluation

Morning Peak
Models/Metrics | Train Accuracy | Test Accuracy
CNN 0.9877 0.9880
Evening Peak
Models/Metrics | Train Accuracy | Test Accuracy
CNN 0.9876 0.9869
Non-Peak
Models/Metrics | Train Accuracy Test Accuracy
CNN 0.9877 0.9869
Combined
Models/Metrics | Train Accuracy | Test Accuracy
CNN 0.9867 0.9883

Loss value against the number of epochs is shown in Figure[ITa] The confusion matrix

is shown in Figure shows how well the model predicts the Low Speed (1) and High
Speed (2) against actual value. The model has predicted 147 records in the False Positive
quarter.
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(a) Loss Vs Epochs (b) Confusion Matrix

Figure 11: CNN Experiment-3 Evaluation
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6.4 FEvaluation for Traffic Flow Classification with Non-Traffic
Parameters (Experiment-4)

Experiment 4 is conducted using the CNN model. The classification of Low speed (1)
and High speed (2) have used non-traffic temporal features of light, weather and light
conditions to the analysis. For a batch size of 50 and 50 training epochs, training and
testing accuracy of the morning, evening, non-peak and combined hours values are tab-
ulated in Table [7} EarlyStopping function used in the model fit has stopped the model

from overfitting with right hyper-parameters at 19"* epoch based on validation loss value.
The model is a good fit.

Table 7: Experiment-4 CNN Model Evaluation

Morning Peak
Models/Metrics| Train Accuracy | Test Accuracy
CNN 0.9855 0.9959
Evening Peak
Models/Metrics| Train Accuracy | Test Accuracy
CNN 0.9954 0.9983
Non-Peak
Models/Metrics| Train Accuracy | Test Accuracy
CNN 0.9959 0.9947
Combined
Models/Metrics| Train Accuracy | Test Accuracy
CNN 0.9956 0.9968

Figure and Figure shows the loss value against the number of training epochs
and confusion matrix of classification with non-traffic parameters. The model has pre-
dicted only 40 records in the False Positive quarter.
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Figure 12: CNN Experiment-4 Evaluation
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6.5 Discussion

Experiment 1 and Experiment 2 are analysed and compared for traffic flow prediction.
Experiment 3 and Experiment 4 are compared for traffic speed limit classification with
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and without non-traffic parameters. Table [§| compares the training and testing accuracy
and RMSE value of traffic flow prediction with and without non-traffic parameters.

Table 8: Experiment-1 and 2 LSTM Model Comparison

Models/ Met- | Non-traffic Train Accur- | Test Accuracy | Test RMSE
rics parameters acy

Vanilla- No 0.9249 0.9236 0.166

LSTM Yes 0.9329 0.9329 0.083

Bi- No 0.9249 0.9236 0.166
directional Yes 0.9329 0.9329 0.082
Stacked- No 0.9249 0.9236 0.166

LSTM Yes 0.9329 0.9329 0.121

For traffic flow prediction with spatial and temporal characteristics for different roads,
there is an increase in accuracy and decrease in RMSE value while comparing Experiment
1 and 2. It can be concluded that non-traffic parameters have a significant impact on
traffic flow prediction.

Table 9: Experiment-3 and 4 CNN Model Comparison

Models/ Met- | Non-traffic Test Ac- | TP TN | FP FN | Test

rics parameters curacy RMSE

ONN No 0.9883 11586 | 887 147 0 0.082
Yes 0.9968 11707 | 853 40 0 0.045

Also, while comparing Experiment 3 and 4, it is found that traffic speed limit clas-
sification with and without non-traffic parameters has a good fit and better accuracy.
Table [J] gives an overview of experiment 3 and 4. Also, the traffic speed limit classifica-
tion with non-traffic parameters has a significant effect with better test accuracy, more
True-Positive and less False-Positive classification.

From the results, it is observed that the non-traffic parameters have a significant im-
pact on traffic parameters (flow and speed limit). The trade-off between bias and variance
is handled effectively. As suggested in the research [Kang et al. (2018) the inclusion of
spatial-temporal characteristics improves the prediction accuracy holds for this research.
Traffic speed prediction using CNN for non-linear spatial-temporal characteristics Ren
and Yang] (2018) has obtained an RMSE value of 0.241, traffic speed prediction using Deep
Belief Network (DBN) Jia et al.| (2016) has obtained Normalized Root Mean Square Er-
ror (RMSN) of 0.07310 and improved traffic speed prediction [Essien et al.| (2019)) using
R-LSTM with rainfall and temperature parameter got an RMSE value of 0.0892, whereas
in this research an RMSE value of 0.045 is achieved.

Research on traffic flow prediction [Liu et al.| (2017) using bi-directional LSTM im-
proves the accuracy of the deep learning model is proved in this research. Short-term
traffic prediction Ma et al| (2019) has proposed that LSTM model architecture can
handle historical information for time-series compared to other models. Also, traffic flow
prediction using stacked Auto Encoder (SAE) |Lv et al. (2015) has obtained an accuracy
of 93% without non-traffic parameters but in this research accuracy of 93.29% is ob-
tained with non-traffic parameters using LSTM model. It is concluded that LSTM and
CNN models are simple and effective for time-series data due to the nature of long-time
dependencies and, handles non-linearity.
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7 Conclusion and Future Work

In this research, big data traffic flow prediction and speed classification with and without
temporal non-traffic parameters for the United Kingdom are studied. The main objective
of performance improvement in traffic flow is primarily achieved by data pre-processing,
transformation and exploratory data analysis. From the statistical data analysis, it has
observed that traffic flow of morning and evening peak hours are increased by the in-
clusion of non-traffic parameters, but, there is no change in speed limit. It helped to
visualize the patterns, trends and seasonality on the data. From the experiments 1 and
2 conducted using various LSTM models, it is observed that bi-directional LSTM has
lesser RMSE (0.082) value. Also, in terms of accuracy, traffic parameters with non-traffic
parameters perform better than without non-traffic parameters. The increase in accur-
acy of 1% indicates that the non-traffic temporal feature has a significant effect on traffic
parameters. Similarly, experiments 3 and 4 on traffic speed classification using the CNN
model displays traffic data with non-traffic parameters provides better accuracy and lesser
RMSE value.

Also, the dataset obtained from the UK government website has non-linear com-
ponents such as various counties, different road types, road categories, link length and
vehicles travelling in different directions. So, the model built on top of the non-linear data
has better generalization. But, this research is limited to traffic flow and speed predic-
tion for weekdays. Also, the spatial correlation between the neighbouring roads has not
considered. However, this research contributes to the Intelligent Transportation System
(ITS) to plan public transportation services. It helps to control the traffic parameters
(flow, speed) effectively during peak and non-peak hours.

In future work, the spatial correlation between adjacent roads can be considered along
with non-traffic parameters. Also, the traffic parameters of the individual vehicle type
can be clustered, and traffic flow and speed limit can be predicted based on vehicle type.
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