
Configuration Manual

MSc Research Project

Data Analytics

Tejas Sanjay Shinde
Student ID: 18180159

School of Computing

National College of Ireland

Supervisor: Mr. Hicham Rifai

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Tejas Sanjay Shinde

Student ID: 18180159

Programme: Data Analytics

Year: 2020

Module: MSc Research Project

Supervisor: Mr. Hicham Rifai

Submission Due Date: 28/09/2020

Project Title: Configuration Manual

Word Count: 1382

Page Count: 16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Tejas Sanjay Shinde
18180159

1 Introduction

The presented configuration manual depicts the specifications of the utilized hardware
and software along with the detailed implementation followed in the presented study
titled “Parking availability prediction in the Seattle city using spatio-temporal
features”

2 System Configuration

2.1 Hardware Configuration

In the presented study OpenStack cloud instance (NAME : NCI 0159) provided by the
National College of Ireland is used as Infrastructure as a Service(IaaS). The configuration
of the machine created on OpenStack is given in the Figure 1. The instance is secured
using SSH-key.

Figure 1: Hardware

2.2 Software Configuration

All the softwares used for this study along with their versions are presented below:

Figure 2: Software

1



Sublime Text Editor:
Sublime is used as a tool to write the Scala code which makes it easy to code.

Apache Spark and Scala:
Apache Spark1 is a framework that provides an environment which assists in the distrib-
uted processing of the big data. Apache provides support via different API’s out of which
Scala is used in this study. Due to its parallel processing it is used for the complex pre-
procesing involved in the computation of the distances from the nearest public transport
stations and financial centre of the city, which is explained in the Section 3.1.2.

Anaconda and Jupyter Notebook:
Jupyter Notebook development environment for Python provided by the Anaconda distri-
bution2 is used in this study. All the python related processing and model implementation
code is run in this software.

Python Libraries:
Python3 is used for the processing and machine learning involved in the parking availabil-
ity prediction. It provides support for several libraries which are utilized in the presented
study. The version and description of those libraries is presented in the Figure 3:

Figure 3: Hardware

Java:
Java is installed as it is a pre-requisite for the above mentioned packages

3 Project Development

3.1 Data Preparation

Majority of the codes executed in the data preparation are executed using Python. How-
ever, the initial computation of the nearest transport stations in this study is carried out
using Scala, which is explained in the Section 3.1.2

3.1.1 Loading the parking data

At first, the parking data in the Seattle city in acquire via an API4 from July 2019 to Dec
2020 in four different files for 100 parking segments because of the API restrictions. This
is done using Python’s JSON library and the data is then stored into pandas dataframe.
All of these dataframes are combined into a single file and stored in a CSV format as
“CombinedParking.csv” in the “bigdataparking” folder shown in the Figure 4.

1https://spark.apache.org/downloads.html
2https://www.anaconda.com/products/individual
3https://www.python.org/downloads/
4https://data.seattle.gov/Transportation/2019-Paid-Parking-Occupancy-Year-to-date-/

qktt-2bsy

2

https://spark.apache.org/downloads.html
https://www.anaconda.com/products/individual
https://www.python.org/downloads/
https://data.seattle.gov/Transportation/2019-Paid-Parking-Occupancy-Year-to-date-/qktt-2bsy
https://data.seattle.gov/Transportation/2019-Paid-Parking-Occupancy-Year-to-date-/qktt-2bsy


Figure 4: Seattle Parking Data

3.1.2 Initial processing and Computation of distance from the nearby public
transport station and city financial centre

The “CombinedParking.csv” file from Section 3.1.1 is then loaded into a Scala code as
shown in Figure 5. From this the hour, min, latitude, longitude of the parking segment is
extracted and stored in new columns as shown in figure below. After this the longitude
and latitude columns are converted in float and a new dataframe is created which shows
the coordinates and id of each parking segment. This new dataframe is then used to
calculate the distances as shown in Figures the 7 and 8

Figure 5: Cleaning the Seattle Parking Data

The stops, trips, routes and stop items textual files obtained from the King county
repository5 are loaded into Scala as shown in Figure 6. All of these files are combined
using unique stop, trip and route identifiers. This gives the important columns such as
the “stop id”, coordinates and their respective “route id”. This helps us to identify the
public transport station and its mode of transport such as Bus, Rail or Ferry.

5https://kingcounty.gov/depts/transportation/metro/travel-options/bus/app-center/

developer-resources.aspx

3

https://kingcounty.gov/depts/transportation/metro/travel-options/bus/app-center/developer-resources.aspx
https://kingcounty.gov/depts/transportation/metro/travel-options/bus/app-center/developer-resources.aspx


Figure 6: Bus, Rail, and Ferry Coordinates

The code shown in Figure 7 then combines the datasets containing parking coordinates
5 and transport station coordinates 6, which are used to identify the distance between each
parking segment and transport station such as Rail, Bus, and Ferry. Post this the closest
distance from rail, bus and ferry station is identified using min function in SQL select
statement as shown below. Similarly, the distance from the airport and financial centre
are calculated as shown in Figure 8. The coordinates of the airport and financial centre
are available on google maps. Post this all of these dataframes are combined. For both
these operations Haversine’s formula (Winarno et al.; 2017) is used as shown in the figure
below. Due to the huge size of the data only the 49 parking locations within 1 km from
the city center are selected. This results in 43,63,631 rows. The final dataframe is then
stored in “bigdataparking/FinalData”. Initially a long name was assigned automatically
by Scala command which was then renamed to“ProcessedParkingData.csv” for ease of
use. Note that all of these scala commands are executed into the spark-shell.

Figure 7: Distance from Nearest Bus, Rail, and Ferry Stations

4



Figure 8: Distance from city centre and airport

3.1.3 Loading weather data

The weather data is extracted via an API provdied by NOAA6. A loop is executed
to automatically fetch the daily weather from July 2019 to Dec 2019 using JSON and
combine them into a single dataframe as show in Figure 9. The weather dataframe is
then stored into a CSV file as “weather.csv” in the same “bigdataparking” folder where
the processed parking data is stored.

Figure 9: Weather Data

6https://www.ncdc.noaa.gov/cdo-web/webservices/v2

5

https://www.ncdc.noaa.gov/cdo-web/webservices/v2


3.1.4 Identifying the missing values

Here, the processed parking data file named “ProcessedParkingData.csv” form the “big-
dataparking” folder is loaded and missing values are identified using the code specified
in the Figure 10. However, only the holidays and Sundays are found to be missing. Also,
the “weather.csv” file is loaded from the “bigdataparking” folder and the missing values
are identified as depicted in the code in the Figure 11. Three missing values can observed
which are imputed with the help of interpolate function.

Figure 10: Missing value in Processed Parking data

Figure 11: Missing value in Weather

3.2 Features Engineering

Below are some of the feature engineering steps performed in the project

3.2.1 Computation of distance from city centre and the closest public trans-
port station

This is computed beforehand using Scala as explained in the Section 3.1.2

6



3.2.2 Computation of Day of the Week and Availability

The Day of the week is obtained from the feature called as Date, whereas the proportional
availability is computed as shown in the Figure 12

Figure 12: Feature Engineering

3.3 Transformation

The processed parking data obtained in the above step is then filtered in 15 min inter-
val. Then it is grouped together as shown below based on the factors such as parking,
day of the week, hour and minute. The “sideofstreet” column which was missed by the
grouping is then added to the dataframe with the help of merging. The “parkinglimit”
variable categories are renamed to hourly limits and the unnecessary variables are droped
as shown in Figure 13.

Figure 13: Data Grouping and Transformation

Post this the outliers are filtered from the dataset as shown in Figure 14 below using
Z score.

7



Figure 14: Outlier Detection

Final dataset consists of 12209 rows and features explained in the Figure 15

Figure 15: Final Dataset

3.4 One-Hot Encoding

The Categorical features involved in the processed parking dataset are converted into
dummy features as presented in the Figure 16

Figure 16: One-Hot Encoding

3.5 Splitting Data into Train and Test

The independent and dependent variables in the above processed and transformed data
are separated into X and Y as presented in the Figure 16. Post this they are divided into
Train data of size 75% and Test data of the size 25%.

8



Figure 17: Train and Test Split

3.6 Normalization of the Data

All the features in the combine dataset are in different ranges. Therefore, all of those are
transformed in a single range of 0 and 1 using the normalize library as depicted in the
Figure 18. The MinMaxScaler7 is used for the same. The same is implemented on both
test and train splits. In addition to, this the target column is transformed into a scale of
0 to 1 as described in the Figure 18

Figure 18: Normalization

7https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html

9

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


4 Model Application

The processed data from the Section 3.6 is then used for the prediction of availability.
Sections below show the models used for the same. The predictability of the models is
optimized using GridSearchCV8.

4.1 Random Forest(RF)

Here, the RandomForestRegressor9 library is utilized. The Figure 19 shows the RF
application with the base settings.

Figure 19: RF Base Configuration

8https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html?highlight=gridsearch#sklearn.model_selection.GridSearchCV
9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

10

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearch##sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearch##sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html


The Figure 20 shows the RF application with the optimal settings.

Figure 20: Optimized RF

The Figure 21 shows the Feature importance of the best RF.

Figure 21: RF Feature Importance

11



4.2 XGBoost

Here, The XGBoost10 library is utilized. The Figure 22 the XGBoost application with
the base settings.

Figure 22: XGBoost Base Configuration

10https://xgboost.readthedocs.io/en/latest/parameter.html

12

https://xgboost.readthedocs.io/en/latest/parameter.html


The Figure 23 the XGBoost application with the optimal settings.

Figure 23: Optimized XGBoost

The Figure 24 shows the feature importance of best XGBoost

Figure 24: XGBoost Feature Importance

13



4.3 Back Propagation Neural Network(BPNN)

Here, The MLPRegressor11 library is utilized which provides a Back Propagation Neural
Network . The Figure below 25 the BPNN application with the base settings.

Figure 25: BPNN Base Configuration

11https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.

MLPRegressor.html

14

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html


The Figure 26 the BPNN application with the optimal settings.

Figure 26: Optimized BPNN

15



The Figure 27 shows the feature importance of best BPNN

Figure 27: BPNN Feature Importance

References

Winarno, E., Hadikurniawati, W. and Rosso, R. N. (2017). Location based service for
presence system using haversine method, pp. 1–4.

16


	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Project Development
	Data Preparation
	Loading the parking data
	Initial processing and Computation of distance from the nearby public transport station and city financial centre
	Loading weather data
	Identifying the missing values

	Features Engineering
	Computation of distance from city centre and the closest public transport station
	Computation of Day of the Week and Availability

	Transformation
	One-Hot Encoding
	Splitting Data into Train and Test
	Normalization of the Data

	Model Application
	Random Forest(RF)
	XGBoost
	Back Propagation Neural Network(BPNN)


