~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Tejas Sanjay Shinde
Student ID: 18180159

School of Computing
National College of Ireland

Supervisor: ~ Mr. Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Tejas Sanjay Shinde
Student ID: 18180159
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Mr. Hicham Rifai
Submission Due Date: 28/09/2020
Project Title: Configuration Manual
Word Count: 1382
Page Count: [16]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Tejas Sanjay Shinde
18180159

1 Introduction

The presented configuration manual depicts the specifications of the utilized hardware
and software along with the detailed implementation followed in the presented study
titled “Parking availability prediction in the Seattle city using spatio-temporal
features”

2 System Configuration

2.1 Hardware Configuration

In the presented study OpenStack cloud instance (NAME : NCI_0159) provided by the
National College of Ireland is used as Infrastructure as a Service(IaaS). The configuration
of the machine created on OpenStack is given in the Figure [l The instance is secured
using SSH-key.

Hardware Configuration

Instance Ubuntu-Bionic 18.04.3
RAM 16 GB
Virtual CPU's 8
Hard Disk Storage 160 GB
Availability Zone nova

Figure 1: Hardware

2.2 Software Configuration

All the softwares used for this study along with their versions are presented below:

Software Configuration

Sublime 3.1.1
Apache Spark 3.0.0
Python 3.7.6
Scala 2.12.10
Anaconda 4.8.2
Java 1.8.0 265

Figure 2: Software

Sublime Text Editor:
Sublime is used as a tool to write the Scala code which makes it easy to code.

Apache Spark and Scala:

Apache Sparlf]is a framework that provides an environment which assists in the distrib-
uted processing of the big data. Apache provides support via different API’s out of which
Scala is used in this study. Due to its parallel processing it is used for the complex pre-
procesing involved in the computation of the distances from the nearest public transport
stations and financial centre of the city, which is explained in the Section [3.1.2]

Anaconda and Jupyter Notebook:

Jupyter Notebook development environment for Python provided by the Anaconda distri-
bution?]is used in this study. All the python related processing and model implementation
code is run in this software.

Python Libraries:

Pythonfis used for the processing and machine learning involved in the parking availabil-
ity prediction. It provides support for several libraries which are utilized in the presented
study. The version and description of those libraries is presented in the Figure [3}

Package Version Package Version
pandas 1.0.1 plotly 4.8.2

matplotlib| 3.1.3 |scikit-learn| 0.22.1
numpy 1.18.1 xgboost 1.1.1
scipy 1.4.1 eli5 0.30.1

Figure 3: Hardware

Java:
Java is installed as it is a pre-requisite for the above mentioned packages

3 Project Development

3.1 Data Preparation

Majority of the codes executed in the data preparation are executed using Python. How-
ever, the initial computation of the nearest transport stations in this study is carried out
using Scala, which is explained in the Section

3.1.1 Loading the parking data

At first, the parking data in the Seattle city in acquire via an AP from July 2019 to Dec
2020 in four different files for 100 parking segments because of the API restrictions. This
is done using Python’s JSON library and the data is then stored into pandas dataframe.
All of these dataframes are combined into a single file and stored in a CSV format as
“CombinedParking.csv” in the “bigdataparking” folder shown in the Figure [

'https://spark.apache.org/downloads.html

Zhttps://www.anaconda.com/products/individual

3https://www.python.org/downloads/

4https://data.seattle.gov/Transportation/2019-Paid-Parking-0Occupancy-Year-to-date-/
gktt-2bsy

https://spark.apache.org/downloads.html
https://www.anaconda.com/products/individual
https://www.python.org/downloads/
https://data.seattle.gov/Transportation/2019-Paid-Parking-Occupancy-Year-to-date-/qktt-2bsy
https://data.seattle.gov/Transportation/2019-Paid-Parking-Occupancy-Year-to-date-/qktt-2bsy

#loading minute Level data of 160 road segments from July 2619 to Dec 2619

url_Jul = "https://data.seattle.gov/resource/gktt-2bsy.json?$limit=28500@00&$where=(date_extract_m(occupancydatetime)=7)\
%28AND%28 (sourceelenentkey<10008) "

url_Aug = "https://data.seattle.gov/resource/gktt-2bsy. json?$1imit=28500000&$uhere=(date_extract_m(occupancydatetime)=8)\
%2BAND%20 (sourceelementkey<1060@) "

url_Sept = "https://data.seattle.gov/resource/qktt-2bsy.json?$1imit=28500000&where=(date_extract_m(occupancydatetime)=0)\
%2BAND%20 (sourceelementkey<1000@) "

url_Oct = "https://data.seattle.gov/resource/qktt-2bsy. json?§limit=28500@00&Suhere=(date_extract_m(occupancydatetime)=1@)\
%2BAND%20 (sourceelementkey<10000) "

url_Nov - “https://data.seattle.gov/resource/qktt-2bsy. json2$limit-28560000&suhere-(date_extract_m(occupancydatetime)=11)\
%2BAND%20 (sourceelementkey<10000) "

url_Dec - “https://data.seattle.gov/resource/gktt-2bsy. json2$limit-28500000&$uhere-(date_extract_m(occupancydatetime)-12)\
%20AND%20 (sourceelementkey<1000@) "

#Loading minute Level data of 166 road segments from July 2018 to Dec 2619 with Json
response_Jul = urllib.request.urlopen(url_Jul)

response_Aug = urllib.request.urlopen(url Aug)

response_Sept = urllib.request.urlopen(url Sept)

response_Oct = urllib.request.urlopen(url Oct)

response Nov = urllib.request.urlopen(url Nov)

response Dec = urllib.request.urlopen(url Dec)

Reading from Json

data_Jul - json.loads(response_Jul.read())
data_Aug = json.loads(response_Aug.read())
data_Sept = json.loads(response_Sept.read())
data_0ct = json.loads(response_Oct.read())
data_Nov = json.loads(response_Nov.read())
data_Dec = json.loads(response_Dec.read())

Converting into Dataframes
Aug - pd.DataFrame(data_Aug)
Sept - pd.DataFrame(data_sept)
oct - pd.DataFrame(data_Oct)
Nov - pd.DataFrame(data_Nov)
Dec - pd.DataFrame(data_Dec)

#Combining all the dataframes

combined = pd.concat([Aug, Sept], ignore index=True)

combined = pd.concat([combined, Oct], ignore index=True)

combined = pd.concat([combined, Nov], ignore index=True)

combined - pd.concat([combined, Dec], ignore index-True)
combined.to_csv("/home/ubuntu/bigdataparking/Combinedparking. csv”)

Figure 4: Seattle Parking Data

3.1.2 Initial processing and Computation of distance from the nearby public
transport station and city financial centre

The “CombinedParking.csv” file from Section is then loaded into a Scala code as
shown in Figure[s| From this the hour, min, latitude, longitude of the parking segment is
extracted and stored in new columns as shown in figure below. After this the longitude
and latitude columns are converted in float and a new dataframe is created which shows
the coordinates and id of each parking segment. This new dataframe is then used to
calculate the distances as shown in Figures the [7] and

load("/home/ubuntu/bigdataparking/CombinedParking. csv™)

t", "sourceelementkey”, "parkingtimelimitcategory”, "parkingspacecount”, “location™)

.withColumn("p_lat”,col("p_lat").cast("float"))

ch parking segment

Figure 5: Cleaning the Seattle Parking Data

The stops, trips, routes and stop_items textual files obtained from the King county
repositoryEl are loaded into Scala as shown in Figure @ All of these files are combined
using unique stop, trip and route identifiers. This gives the important columns such as
the “stop_id”, coordinates and their respective “route_id”. This helps us to identify the
public transport station and its mode of transport such as Bus, Rail or Ferry.

Shttps://kingcounty.gov/depts/transportation/metro/travel-options/bus/app-center/
developer—-resources.aspx

https://kingcounty.gov/depts/transportation/metro/travel-options/bus/app-center/developer-resources.aspx
https://kingcounty.gov/depts/transportation/metro/travel-options/bus/app-center/developer-resources.aspx

h specify the public transport stations in the Seattle
(" /home/ubuntu/stops.txt")
S "}.load("/home/ubuntu/stop_times.txt")
"). ("/home/ubuntu/trips.txt")
"}.load("/home/ubuntu/routes. txt™)

s longitude and Latitude
","stop_lon™)

hese tables to he st
top_times, Seq("stop
i i id

/7 C

g VI 7
transd = trans4.withColumn("stop_lat", col("stop_lat").cast("float")).withCelumn("stop_lon", col("stop_lon"}.cast("float"))

Figure 6: Bus, Rail, and Ferry Coordinates

The code shown in Figure[7]then combines the datasets containing parking coordinates
and transport station coordinates[6], which are used to identify the distance between each
parking segment and transport station such as Rail, Bus, and Ferry. Post this the closest
distance from rail, bus and ferry station is identified using min function in SQL select
statement as shown below. Similarly, the distance from the airport and financial centre
are calculated as shown in Figure |8l The coordinates of the airport and financial centre
are available on google maps. Post this all of these dataframes are combined. For both
these operations Haversine’s formula (Winarno et al.; 2017) is used as shown in the figure
below. Due to the huge size of the data only the 49 parking locations within 1 km from
the city center are selected. This results in 43,63,631 rows. The final dataframe is then
stored in “bigdataparking/FinalData”. Initially a long name was assigned automatically
by Scala command which was then renamed to“ProcessedParkingData.csv” for ease of
use. Note that all of these scala commands are executed into the spark-shell.

thColumn("distance”
for each s

AS MinB FROM table) M nce = MinB"

enamed("distance”, “NearByFerry") //final table show

grt($"a"), sgre(-5"a" + 1)) *
vs the closest ferry station

2 = 6371)

var ¢ ELECT source
le) M

= mentkey,distance FROM (SELECT *, MIN(distance) OVER (PARTITION BY sourceelementkey)
AS MinB FROM tabl

Vs
RE distance = MinB"

1 - spark.sql(q)
dist_route3final.withColumRenamed("distance", "NearByBus")//final table showing distance from the nearest bus station

ea
ithColumn

y -
.withColumn("distance”

"), sqre(- 2 371
table for each segme s the closest
dist_route®)
var q - "SELECT sourceelementkey,distance FROM (SELECT *, MIN(distance) OVER (PARTITION BY sourceelementkey)
AS MinB FROM table) M WHERE distance = MinB"
var

ithColumnRenamed("distance”, “NearByRail")//final table showing distance from the nearest rail station

t L the public transpert stations
var d di
dist_route = dist_route.joi

Figure 7: Distance from Nearest Bus, Rail, and Ferry Stations

// Calculating distance from city centre(Downtown Seattle)
// City coordinates

df4 = df4.withColumn(
df4 = df4.withColum
dfa

("float™))
* cos(radians(i
_lon" - $"p_lon™) /
ourceelementkey™, "Dist ") // combining with the above dataset
1(dfdcity,Seq("sourceelementkey™), “left")// parking rail , bus, ferry, and city

+ 1)) * 2 * 6371)

dfdcity df4city.sele
dist_route = dist_route.jo

// Distance from the international airport
// Coordinates

df4 = df4.withColumn(
df4 1
dfa =

.cast("float")).withColumn("air_lon", col("air_lon").cast("float"))
($"air_lat" - $"p_lat") / 2), 2) +

hColumn("DistAir", a 2(sqrt($"a"), sqrt(-%

"sourceelementke
dist_route = dist_route.join(df4air,Seq(

// Combing all the datasets using sourceelementkey
(di te,Seq("sourceelementkey
DistFinCentre™) < 1).

» "left™)
false) // selecting only parking locations within 1 km

// Storing the combined final data file on the system in CSV format
,"true”).save("/home/ubuntu/bigdataparking/FinalData™)

Figure 8: Distance from city centre and airport

3.1.3 Loading weather data

The weather data is extracted via an API provdied by NOAAH A loop is executed
to automatically fetch the daily weather from July 2019 to Dec 2019 using JSON and
combine them into a single dataframe as show in Figure [0 The weather dataframe is
then stored into a CSV file as “weather.csv” in the same “bigdataparking” folder where
the processed parking data is stored.

#The access token you got from NOAA
Token - *gaGCFEBrHyeiSHXFTQriQUFkDLMRZypd’

#Loop to exctract data from July 2619 to Dec 2019
for month in ['87°,°@8",°@9", 187, 11, 12"]:
print(‘Working on month ‘+ month)
if month in(['e7','e8","18","12"]):
#If odd months
r = requests.get(https://www.ncdc.noaa.gov/cdo-web/api/v2/dataldatasetid=GHCNDE\
1imit-1008&stationid=GHOND: USWBE6242348startdate=2019- "
+months " -61&enddate=2819-"+month+' 31", headers={"token":Token})
else:
#If even months
r = requests.get(https://www.ncdc.noaa.gov/cdo-web/api/v2/dataldatasetid=GHCNDEY
[Limit-1800&stationid-GHCND: USKBe@242348startdate-2019-
+months " -61&enddate=2819-"+month+' 38", headers={"token":Token})

d = json.loads(r.text)

#Creating List
avg_temps_max - [item for item in d[results’'] if item[datatype’]
avg_temps_min = [item for item in d['results'] if item['datatype']
avg_temps_awnd = [item for item in d['results'] if item['datatype’
avg_temps_prcp - [item for item in d['results'] if item['datatype’
avg_temps_pgtm - [item for item in d['results'] if item['datatype’']--

date, tmax, tmin, tawnd, tprep, tpgtn = []

date 4= [item['date’] for item in avg_temps_max]
tmax += [item['value'] for item in avg_temps_max]
tmin += [item["value'] for item in avg_temps_min]
taund += [item['value'] for item in avg_temps_awnd]
tprep +- [item['value'] for item in avg_temps_prcp]
tpgtm 4= [item['value'] for item in avg_temps_pgtm]

#Creating dataframe from List
weather_new = pd.DataFrame(list(zip(date,tmax,tmin, taund,tprcp)), columns =['Date’, 'THAX', 'TMIN', 'AWND', 'PRCP'])

#combining all the dataframes
if month == "@7':
weather - weather_new
else:
weather = pd.concat([weather, weather_new], ignore_index=True)

#Saving to CSV to storage
weather. to_csv("/home/ubuntu/bigdataparking/ueather. csv™)

Figure 9: Weather Data

Shttps://www.ncdc.noaa.gov/cdo-web/webservices/v2

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

3.1.4 Identifying the missing values

Here, the processed parking data file named “ProcessedParkingData.csv” form the “big-
dataparking” folder is loaded and missing values are identified using the code specified
in the Figure However, only the holidays and Sundays are found to be missing. Also,
the “weather.csv” file is loaded from the “bigdataparking” folder and the missing values
are identified as depicted in the code in the Figure[II] Three missing values can observed
which are imputed with the help of interpolate function.

parking = pd.read_csv('/home/ubuntu/bigdataparking/FinalData/ProcessedParkingData.csv’)

#Generating a validation dataframe with all days between 1st July 2819 and 31st Dec 2019, which will be
dates = pd.DataFrame(pd.date_range(start='2019-07-01", end='2019-12-31",freq="1D"),columns = ['Date’])

#Converting date into string
dates['Date’] = dates['Date’].astype('str")

#Merging Seatte parking dataframe with the validation dataframe to identify the missing dates
missingdates = pd.merge(dates,parking, on="Date", how="left")

#Checking missing dates
missingdates = missingdates[missingdates['paidoccupancy’].isna()]

#Exctracting only missing dates
missingdates = missingdates[['Date’]]

#Presenting the missing days
len(missingdates)

31

Figure 10: Missing value in Processed Parking data

#Merging dates dataset created above with weather to identify missing days
weather = pd.merge(dates,weather, on="Date”, how="left")

#ileather data is missing for three days
weather[weather['TMAX'].isna()]

Date TMAX TMIN AWND PRCP

91 2019-09-30 NaN NaN NaN NaN
127 2019-11-05 NaN NaN NaN NaN
140 2019-11-18 NaN NaN NaN NaN

Imputing Weather Data

weather2 = weather.set_index('Date”)

#Imputing the missing weather data with interpolate

weather = weather.assign(TMAX=weather.TMAX.interpolate(method="1inear")
weather = weather.assign(TMIN=weather.TMIN.interpolate(method="1linear"')
weather = weather.assign(AWND=weather.AWND.interpolate(method="1inear'))
weather = weather.assign(PRCP=weather.PRCP.1interpolate(method="1linear")

Figure 11: Missing value in Weather

3.2 Features Engineering

Below are some of the feature engineering steps performed in the project

3.2.1 Computation of distance from city centre and the closest public trans-
port station

This is computed beforehand using Scala as explained in the Section [3.1.2

3.2.2 Computation of Day of the Week and Availability

The Day of the week is obtained from the feature called as Date, whereas the proportional
availability is computed as shown in the Figure

Exctration of the Day of the week

#calculating days

merged.loc[:, 'Date’]= pd.to_datetime(merged['Date’])
#merged2.assign(Day = List(merged2['Date’].dt.day_name()))
merged.loc[:, ‘DoW’]= merged[‘Date’].dt.day_name()

Computation of parking availability

merged.loc[:, 'avail’] = merged[‘parkingspacecount’] - merged['paidoccupancy’]
#Where it is double parking the availability is kept as @
merged.loc[merged["avail’] < @, ‘avail'] = @

merged[‘avail%’] = merged[‘avail’]*1@@/merged[' parkingspacecount"]

Figure 12: Feature Engineering

3.3 Transformation

The processed parking data obtained in the above step is then filtered in 15 min inter-
val. Then it is grouped together as shown below based on the factors such as parking,
day of the week, hour and minute. The “sideofstreet” column which was missed by the
grouping is then added to the dataframe with the help of merging. The “parkinglimit”
variable categories are renamed to hourly limits and the unnecessary variables are droped
as shown in Figure [13]

Post this the outliers are filtered from the dataset as shown in Figure [14] below

7, score.

merged2 = merged([merged[“Min'].isin([@,15,30,451)].copy()

#Grouping data by each parking Lot, day of week, hour and
nerged3 - merged2. groupby ([’ sourceelenentkey” , "Dk’ ,"Hour”,

n"1).agg({" paidoccupancy’ : ['median’
‘parkingtimelimitcategory
parkingspacecount ' : "median",
*NearByBus' : "mean’,
NearByRail':'mean’,

“avail’s': ‘mean’}).reset_index()

#bata to store only parking se pec features
park - merged[["sourceelementkey”,p_lon’, 'p_lat’,’sideofstreet’,’parkingtinelimitcategory”]].drop_duplicates()

#Adding the side of street
merged3 - pd.nmerge(merged3,park[[' sourceelementkey’, ‘sideofstreet']], on = sourceelementkey’, how = ‘left’)

#Converting parking Limit category as

g str
merged3[‘parkingtimelimit'] - merged3[parkingtimelimit’].astype(str)

onverting Min into a categorical varigble
merged3[‘Min'] = merged3['Min’].astype(str)

#As per the descri m the data scource 1. s 2

merged3[‘parkingtimelimit'] - merged3[parkingtimelimit'].replace(['120°], 2 H
merged3[‘parkingtimelimit'] = merged3[parkingtimelimit'].replace(['240'], "4
merged3[‘parkingtimelimit'] = merged3[parkingtimelimit'].replace([*30], ‘16 Hour

hours, 240 means 4 hours and 30 means 10 hours

x

)
9
)

#Dropping sourceelemenkey and paidoccupacy as wont be used anymore
merged3 = merged3.drop(columns = [‘sourceelementkey’,"paidoccupancy’])

Figure 13: Data Grouping and Transformation

using

#Identifying the outliers using zscore based on the numeric columns
from scipy import stats

out = merged3.drop(columns = ['Dol’, parkingtimelimit’, Min’,"sideofstreet’
There are 325 outliers

out[(np.abs(stats.

D

iers
core(out)) > 3)].drop_duplicates()

Hour parkingspacecount NearByBus NearByRail NearByFerry DistCity DistAir TMAX TMIN AWND PRCP avail%

139 15 4 0104476 0236214 0358709 0.418267 8.662166 219.000000 143200000 19.600000 0.0 70.000000
354 15 7 0052970 0272338 0389457 0.361852 8.757577 207.000000 124250000 21750000 0.0 82.142857
547 15 5 0134310 0256748 0455177 0365917 8.933273 215833333 126833333 27.333333 0.0 76.666667
682 15 5 0134310 0256748 0455177 0.365917 8.933273 134750000 77.500000 20.250000 0.0 80.000000
1221 15 1 0123166 0.172370 0594974 0427573 9117515 150428571 73214286 22071429 0.0 82.323232
7042 16 10 0.097552 0505618 1051080 0348352 8956050 142000000 75000000 21000000 290 95000000
7043 16 10 0.097552 0505618 1.051080 0.348352 2.056050 142.000000 75.000000 21.000000 29.0 100.000000
7046 17 10 0.097552 0505618 1.051080 0.348352 2.956050 142.000000 75.000000 21.000000 29.0 100.000000
7050 18 10 0.097552 0505618 1.051080 0.348352 2.056050 142.000000 75.000000 21.000000 29.0 100.000000
7054 19 10 0.097552 0505612 1.051080 0.348352 8.056050 142.000000 75.000000 21.000000 29.0 100.000000

321 rows x 12 columns

#Getting indexes of outliers

index_list —out[(np.abs(stats.zscore(out)) > 3)].drop_duplicates().index.values. tolist()

#Removing the outliers

merged3 - merged3[~merged3.index.isin(index_list)]

Figure 14: Outlier Detection

Final dataset consists of 12209 rows and features explained in the Figure

Hour Hour of the day AWND Average Wind Speed
Min 0, 15, 30, and 45 minutes PRCP Precipitation
Distance from fer
Day of The Week Monday to Saturday NearByFerry) v
station
. . . . Distance from rail
Parkingspacecount| Capacity of the parking NearByRail .
station
. Time limit of parking 2, 4, Distance from bus
parkinglimit NearByBus .
and 10 hour station
i Side of the street such as . Distance form city
sideofstreet DistCity
SE, SW,W,NW NE, and E centre
L . Distance from
TMIN Minimum Temperature DistAir .
airport
. ; Percentage
TMAX Maxium Temperature Avail% .
availability

Figure 15: Final Dataset

3.4 One-Hot Encoding
The Categorical features involved in the processed parking dataset are converted into
dummy features as presented in the Figure

ica

#Creating dummy for categor data

mergedd =pd.get_dummies(merged3)

Figure 16: One-Hot Encoding

3.5 Splitting Data into Train and Test

The independent and dependent variables in the above processed and transformed data
are separated into X and Y as presented in the Figure [I6, Post this they are divided into
Train data of size 75% and Test data of the size 25%.

#Separating Independent and Dependent features
X = merged4.drop(columns = "avail%’)
Y = merged4[avail%’]

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=8.25, random_state=42)

Figure 17: Train and Test Split

3.6 Normalization of the Data

All the features in the combine dataset are in different ranges. Therefore, all of those are
transformed in a single range of 0 and 1 using the normalize library as depicted in the
Figure [18 The MinMaxScaler'| is used for the same. The same is implemented on both
test and train splits. In addition to, this the target column is transformed into a scale of
0 to 1 as described in the Figure

"avail%" dependent variable is normalized in a scale of 0 to 1. i.e 85.25% will become 0.8525

. | #Availability(%) Normalized in a scale of @ to 1
Y = Y/100

#Normalizing Train and Test data
from sklearn.preprocessing import MinMaxScaler

create scaler
scaler = MinMaxScaler()

fit scaler on data
scaler.fit(X_train)

apply transform

x_train_normalized = scaler.transform(X_train)
x_test_normalized = scaler.transform(X_test)

Figure 18: Normalization

"https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

4 Model Application

The processed data from the Section [3.6] is then used for the prediction of availability.

Sections below show the models used for the same. The predictability of the models is
optimized using GridSearchCVF]

4.1 Random Forest(RF)

Here, the RandomForestRegressoﬂ library is utilized. The Figure shows the RF
application with the base settings.

from sklearn.ensemble import RandomForestRegressor
rfDefault = RandomForestRegressor()
rfDefault.fit(x_train_normalized, y_train)

RandomForestRegressor(bootstrap=True, ccp_alpha=8.8, criterion="mse’,
max_depth=None, max_features='aute’, max_leaf_nodes=None,
max_samples=None, min_impurity decrease=8.8,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf-0.e,
n_estimators=162, n_jobs=None, oob_score=False,
random_state=hone, verbose=8, warm_start=False)

« R square on the Test dataset

y_pred_test_rf = rfDefault.predict(x_test_normalized)
from sklearn.metrics import r2_score
r2_score(y_test, y_pred_test_rf)

0.9728217686357882

« RMSE on the Test dataset
from sklearn.metrics import mean_squared_error
from math import sgrt

rmse = sqrt(mean_squared_error(y_test, y pred test_rf))
print(rmse)

B8.841577446196834586

+ MAE on the Test dataset

from sklearn.metrics import mean_absolute error
mean_absolute_error(y_test, y pred test_rf)

9.828842845929421664

Figure 19: RF Base Configuration

Shttps://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html7highlight=gridsearch#sklearn.model_selection.GridSearchCV

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

10

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearch##sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearch##sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

The Figure

shows the RF application with the optimal settings.

from sklearn.model_selection import GridSearchcv

param_list 7| {'max_features' : ['auto’], 'n_estimators': [5@@,1@ee], 'min_samples_leaf' : np.arange(1,6,2),
"min_samples_split': np.arange(2,10,2)}
rflefold - GridSearchCv(estimator-RandomForestRegressor(), param_grid-param_list,n_jobs = -1,cv = 1@)

rfilefold. fit(x_train_normalized, y_train)
» R Square on the Test dataset

y_pred_test_rflefold = rfiefold.predict(x_test normalized)
from sklearn.metrics import r2_score
r2_score(y_test, y pred_test_rflefold)

0.9738544545756287

= RMSE on the Test dataset

rmse = sqrt(mean_squared_error(y_test, y_pred_test_rfi@éfold))
print(rmse)

0.84139987523800112

» MAE on the Test dataset

from sklearn.metrics import mean_absolute error
mean_absolute_error(y_test, y_pred_test_rfiefold)

0.828747803984561456

Figure 20: Optimized RF

The Figure [21| shows the Feature importance of the best RF.

import matplotlib.pyplot as plt
import numpy as np

Fixing random state for reproducibility
np.random. seed(19680801)

plt.rcdefaults()
fig, ax = plt.subplots()

Example data

imp = pd.DataFrame(list(zip(x_train_normalized.columns,rfl@fold.best_estimator_.feature_importances_ }),
columns = ['Feature’, 'Importance’])

imp = imp.sort_values(by=['Importance’],ascending=False)

people = imp['Featurs’]

y_pos = np.arange(len(people))

performance = imp[‘Importance’]

ax.barh(y_pos, performance, align="center')
ax.set_yticks(y_pos)
ax.set_yticklabels(people)

ax.invert_yaxis() # Llabels read top-to-bottom
ax.set_xlabel(’Performance")
ax.set_title('Feature Importance')

s

-

plt.show(}

Figure 21: RF Feature Importance

11

4.2 XGBoost

Here, The XGBoosﬂ library is utilized. The Figure [22[the XGBoost application with
the base settings.

import xgboost as xgb

xg = xgb.XGBRegressor()

xg.fit(x_train_normalized,y train)

XGBRegressor(base_score=8.5, booster="gbtree’, colsample_bylevel=1
colsample_bynode=1, colsample_bytree=1, gamma=@8, gpu_id=-1
importance_types'gain’, interaction_constraintss’
learning_rate=0.360000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints="()",
n_estimators=188, n_jobs=@, num_parallel tree=1,
objective='reg:squarederror’, random_state=8, reg_alpha=@,
reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact',
validate_parameters=1, verbosity=None)

» R Square on the Test dataset

y_pred_test_xg = xg.predict(x_test_normalized)
from sklearn.metrics import r2_score
r2_score(y_test, y pred_test_xg)

8.970425028846323

= RMSE on the Test dataset

rmse = sqrt(mean_squared_error(y_test, y_pred_test_xg))
print(rmse)

8.8433719866468381

« R Square on the Test dataset

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test, y_pred_test_xg)

8.831841751170757158

Figure 22: XGBoost Base Configuration

Ohttps://xgboost.readthedocs.io/en/latest/parameter.html

12

https://xgboost.readthedocs.io/en/latest/parameter.html

The Figure [23| the XGBoost application with the optimal settings.

from sklearn.model_selection import GridSearchCV
param_list = {'max_depth” : np.arange(2,16,2), n_estimators’: [500,1000], 'learning_rate_init' : [©.81,0.82,0.23,0.04,0.85],

‘colsample_bytree' : [8.3,8.4,8.5,8.6]}
xglefold - GridSearchCV(estimator-xgh.XGBRegressor(), param_grid-param_list,n_jobs - -1,cv = 18)

xglefold.fit(x_train_normalized, y_train)

* R Square on the Test dataset

y_pred_test_xgl@fold = xglefold.predict(x_test_normalized)
from sklearn.metrics import r2_score
r2_score(y_test, y_pred_test_xglofold)

©.9765964473297788

» RMSE on the Test dataset

rmse = sqrt(mean_squared_error(y_test, y_pred_test_xglefold))
print(rmse)

©.83858229388772691

« MAE on the Test dataset

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test, y_pred_test xgléfold)

©.027220761554566597

Figure 23: Optimized XGBoost

The Figure [24] shows the feature importance of best XGBoost

import matplotlib.pyplot as plt
import numpy as np

Fixing random state for reproducibility
np.random.seed(19630801)

plt.rcdefaults()
fig, ax = plt.subplots()

Example data

imp = pd.DataFrame(list(zip(x_train_normalized.columns,xglefold.best_estimator_.feature importances_ }),
columns = ['Feature’, 'Importance'])

imp = imp.sort_values(by=["Importance’],ascending-False}

people = imp['Feature’]

y_pos = np.arange(len(people))

performance = imp['Importance’]

ax.barh(y_pos, performance, align="center')
ax.set_yticks(y_pos)
ax.set_yticklabels({people)

ax.invert_yaxis() # labels read top-to-bottom
ax.set xlabel('Performance’)
ax.set_title('Feature Importance')

*®

plt.show()

Figure 24: XGBoost Feature Importance

13

4.3 Back Propagation Neural Network(BPNN)

Here, The MLPRegressorB library is utilized which provides a Back Propagation Neural
Network . The Figure below [25| the BPNN application with the base settings.

m = MLPRegressor()
m.fit(x_train_normalized, y_train)

MLPRegressor(activation="relu’, alpha=8.0801, batch_size="auto’, beta_1=6.9,
beta 2=8.992, early stopping=Fzlse, epsilon=1e-88,
hidden_layer sizes=(18@,), learning_rate='constant’,
learning_rate_init=@,801, max_fun=1500@, max_iter=20@,
momentum=2.2, n_iter_no_change=1@, nesterovs_momentum=True,
power_t=0.5, random_state=None, shuffle=True, solver='adam',
tol=0.0001, validation_fraction=@.1, verbose=False,
warm_start=False)

= R Square on the test dataset

y_pred_test_bpnn = m.predict(x_test_normalized)
from sklearn.metrics import r2_score
r2_score(y_test, y pred test bpnn)

B.8648668634378425

« RMSE on the test dataset
from sklearn.metrics import mean_squared_error
from math import sqrt

rmse = sqrt(mean_squared_error(y_test, y_pred_test_bpnn))
print(rmse)

9.9929843619687437

« MAE on the test dataset

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test, y_pred_test_bpnn)

9.8707848205518675

Figure 25: BPNN Base Configuration

Uhttps://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPRegressor.html

14

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

The Figure [26| the BPNN application with the optimal settings.

from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import TimeSeriesSplit
from sklearn.medel_selection import GridSearchCv
from matplotlib import pyplot

from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_srror
import pandas as pd

#mlpr = MLPRegressor()
param_list = {’random_state' : [e,1,2,3,4,5,6,7,8,9,18], "activation’ : [“relu”], 'solver’ :[’adam'],
‘max_iter’': [1860], 'hidden_layer_sizes':[(100,98),(160,106),(160,118),(160,120)],

*learning_rate”:["adaptive'], 'learning_rate_init" : [@.81,0.82,0.03,0.04,08.05]}
mlefold = GridSearchCv(estimator=MLPRegressor(), param_grid=param_list,n_jobs=-1, cv = 18)

mlgfold. fiv(x_train_normalized, y_train)

« R Sgaure on the Test dataset

y_pred_test_bpnnléfold - ml@fold.predict(x_test_normalized)
from sklearn.metrics import r2_score
r2_score(y_test, y_pred test_bpnnléfold)

0.9458081583948783

= RMSE on the Test dataset

from sklearn.metrics import mean_squared_error
from math import sqrt

rmse = sqrt(mean_squared_error(y_test, y_pred_test_bpnnl@fold))
print{rmse)

B8.85914283752338328

+ MAE on the Tes! dataset

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test, y_pred_test_bpnniefold)

©.943353234814817315

Figure 26: Optimized BPNN

15

The Figure [27] shows the feature importance of best BPNN

import elis

from eliS.sklearn import PermutationImportance

from IPython.display import display

perm = PermutationImportance(miéfold).fit(x_test_normalized, y_pred_test_bpnniéfold)

importance = eliS.formatters.as_dataframe.explain_weights_df(perm,feature_names = x_test_normalized.columns.tolist())

import matplotlib.pyplot as plt
import numpy as np

Fixing random state for reproducibility
np.random.seed(19680801)

plt.rcdefaults()

fig, ax = plt.subplots()

Example data

people = importance['feature’]

y_pos = np.arange(len(people))

performance = importance['weight']
ax.barh(y_pos, performance, align="center')
ax.set_yticks(y_pos)
ax.set_yticklabels(people)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel('Weights')
ax.set_title('Feature Importance')

plt.show()

Figure 27: BPNN Feature Importance

References

Winarno, E., Hadikurniawati, W. and Rosso, R. N. (2017). Location based service for
presence system using haversine method, pp. 1-4.

16

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Project Development
	Data Preparation
	Loading the parking data
	Initial processing and Computation of distance from the nearby public transport station and city financial centre
	Loading weather data
	Identifying the missing values

	Features Engineering
	Computation of distance from city centre and the closest public transport station
	Computation of Day of the Week and Availability

	Transformation
	One-Hot Encoding
	Splitting Data into Train and Test
	Normalization of the Data

	Model Application
	Random Forest(RF)
	XGBoost
	Back Propagation Neural Network(BPNN)

