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Abstract 

The implementation of Reinforcement learning algorithms has made a huge impact 

on various problems where no existing methodologies has succeeded in control task and 

make decision. In this paper we are implementing a hybrid algorithm to virtual self-

driving car through collating the Actor-Critic and Proximal Policy Optimization (PPO) 

methods to introduce a continuous control tasks for locomotion of cars. Successful 

locomotion of a self-driving car can be achieved through angular movements of the 

steering by understanding the changes in environment where the actions like to take 

turns smoothly or throttle maps to continuous action space. The policy which maps input 

received from the sensors which causes change of action in cars is upgraded to achieve 

rewards. Due to these upgraded techniques the general policy-based methods have been 

improvised by the Actor-Critic method. The primary purpose of the research is to study 

the performance of the modified policy optimization techniques which enhances the 

interaction of the agent with the environment resulting in improved rewards in 

comparison with other policy-based methods. The testbeds used for the implementation 

of the modified algorithm are Cartpole and MountainCarContinuous. The modified 

actor-critic algorithm has yielded consistent policy update reducing the risk of learning a 

sudden irreversible bad policy. 

Keywords: Reinforcement learning, Machine learning, Policy Gradient, Actor-Critic, 

PPO. 

 
 

1 Introduction 

The advancement in Deep Learning through extensive research work in Convolution Neural 

Networks (CNN) it is an easy task to detect or recognize the objects of the surroundings. 

However, the major challenge lies in learning the driving policy to imitate a human driver in 

steering, accelerating, applying brakes, taking turns, overtaking and many more sensing the 

objects in the environment. 

In restraint task the reinforcement learning(Mnih et al., 2015) approach has proved 

success for several instances because of its proficiency in plaining the action in an 

environment. The action space for an agent in Reinforcement Learning is dissected into 

discrete and continuous. The discrete action space is a distinct finite set of actions. On the 

contrary, a real-valued vector represents the continuous action space. Application of discrete 

action space in Reinforcement Learning is constrained to simple video games(Mnih et al., 

2013) or board games. Most of the control task problem results in outputs lying in the real-

valued line of the continuous action space. It is a simplified task to map input to the 
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corresponding output space of continuous action. However, continuous control task demands 

for sophisticated treatment because of the infinite numbers of actions in the continuous range. 

 

Figure 1: Reinforcement Learning cycle. 

In Reinforcement Learning, specific terminologies require attention to understand the 

problem: 

State and Observation – A depiction of the agent or environment is termed as the state. An 

observation is the resultant of the interaction between the state and agent. 

Action space – The environment that showcases the observation through the synergy between 

the state and the agent is termed as action space.  Action spaces can either be continuous with 

real dimensional or discrete with bounded vector spaces. 

Policy – The behavioral aspect that drives the mapping of action to the state is policy. A 

policy can be either deterministic or stochastic in nature. 

Trajectory – It is the correlation between state and action. 

Reward and Return – Th evaluation given to an agent post execution of an action in each 

state is the reward. Over a path the agent majorly focuses in maximizing the reward. 

Value function – The function takes the current state-action pair as the input values resulting 

in total expected reward. 

The paper introduces a hybrid approach of Actor-Critic and Proximal Policy gradient 

to optimize the rate of policy update in Reinforcement Learning Cycle. In the Actor-Critic 

policy gradient algorithm the critic selects the appropriate action or state value function and 

thereby assist the actor to perform the policy update. The Proximal Policy Optimization 

algorithm adopts its policy of action in accordance with the stochastic policy by considering 
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sampling actions and thus decides on the optimum policy to ensure the highest expected 

return. 

The method is implemented on the control space of OpenAI Gym1 like the Cartpole and 

MountainCarContinuous as the algorithms based on policy gradient have been tested to 

perform well in continuous action space. The implementation have resulted in consistent 

policy update to obtain a high reward compromising on the learning rate. 

1.1 Motivation 

The primary purpose of a self-driving car is to reach a destination without any mishap 

through learning the environment with the assistance of automated sensors without the human 

interference. Efforts have been made by the researchers to build a self-driving car. Successful 

contribution has been made only in regard to discrete action space. However, for real-world 

implementation it is important to train the car effectively and efficiently in continuous action 

space for successful driving process including taking turns, avoid obstructions, accelerate and 

decelerate when required. The need for this has motivated the research work to modify the 

existing algorithm which has improved learning performance in the continuous action space. 

1.2 Research Objective 

“Can a hybrid of actor critic and proximal policy gradient be used to reduce the rate of 

policy update in Reinforcement Learning cycles to optimize the consecutive policy update 

with reduced variance between the two policies in a continuous control environment?” 

 

• To modify the actor-critic algorithm for consistent policy update to prevent the 

agent from learning sudden bad policy posing a threat to recover from the state. 

• To assess the efficiency of the algorithm in continuous action space. 

 

2 Related Work 

 

Figure 2:  Reinforcement Learning algorithm classification. 

The reinforcement learning algorithms can be explicitly classified into Model-based and 

Model-free algorithm(Com, n.d.; Nagabandi et al., 2018) depending on the knowledge of the 

 
 
1 https://gym.openai.com/envs/#classic_control 

https://gym.openai.com/envs/#classic_control
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agent on the architecture of the environment. The algorithm referring to the agent’s learning 

of optimal actions implicitly by following an activity pattern through selection of action from 

the set and experiencing subsequent state and the corresponding reward is termed as Model 

Based algorithm. The model can potentially forecast the consequence of an action facilitating 

in learning the optimal policies through interaction with the environment. On the contrary, in 

Model Free algorithm the agents hold a chance to master the environment through experience 

and the estimation of the optimal policy can be performed with no dependence on the 

estimation of the dynamics of the environment. 

The model-based algorithm can effectively use fewer samples to learn the dynamics of the 

environment preventing overfit through conventional implementation of the Bayesian 

models.  

The reduced complexity in practical application and the adaptability in modification of 

the Model-free algorithm outperforms the Model-based algorithm. Some of the widely used 

model free algorithms are discussed below.  

2.1 Q-Learning 

Q-learning can be explained as off-policy algorithm of reinforcement learning as the Q-

function(Kappen, 2011) seeks to learn the policy from the action disjoint from the current 

policy with the purpose to maximize the total expected reward. The function inherits the 

properties of Bellman Equation. The algorithm proposed by Watkins is commonly used to 

explain the Markov Decision Process optimally. However, the algorithm overstates the 

action-value leading to deficient performance in stochastic Markov Decision Processes. 

2.1.1 Deep Q-learning 

 Deep Q-Learning(Hester et al., 2018; Lillicrap et al., 2016; Mnih et al., 2013) aims at 

collating the Q-learning algorithm with deep neural network to approximate the Q-values for 

a state-action set. The algorithm has distinguished contribution in playing Atari games, policy 

search for robot engine control, strategic policies coupled with searching resulted in defeat of 

domain expert in Go game. The effectiveness of the algorithm lies in exploitation of 

scalability and deep learning efficiency (Ansehel et al., 2017). Algorithm for real world 

problems like self-driving cars, call centers, recommendation system etc is constrained as 

large number of iterations are required to learn the best policy. 

2.1.2 Double Q-Learning 

In order to prevent the estimation of same weights in target Q-value and expected Q-

value leading to selection of overestimated action value, in Double Q-learning(Van Hasselt et 

al., 2016) bi-valued functions are learned resulting in two sets of weights w and w’. To train 

the network randomly experiences are assigned to refurbish either of the two value-functions. 

For every update, one set of the hyperparameter regulate the policy and the complementary 

set determines the value for the greedy policy. In (Van Hasselt, 2010) proved that Double Q-

learning achieves improved policies. 
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2.1.3 Prioritized Experience Replay in Deep Q-Learning 

In reinforcement learning the agents performs additive update of the parameters of the 

policy and value function while accounting for a series of experience. The algorithm 

renounces the data post every update resulting in two concerns a) the independently and 

identically distributed assumptions of algorithms based on stochastic gradient are disregarded 

due to high correlated updates, b) rampant forgetting of  some rare learned experience leads 

to loss of potential information. Prioritized Experience(Schaul et al., 2016) Replay algorithm 

address this issue. The replay buffer reserves in tuples facilitates in disruption of the 

correlation through combining the recent and prior experiences as mentioned in (Horgan et 

al., 2018). The number of experiences is reduced by the experience replay compromising on 

computation and memory. 

2.1.4 The Dueling Network Architecture 

Reinforcement learning algorithms use classic neural networks mostly. The model-free 

reinforcement learning algorithms in the duelling network architectur(Hester et al., 2018; 

Wang et al., 2016) is proposed for modernization. The architecture explicitly de-couples the 

predicted Q-value estimator in state values and the results in two distinct estimates through 

fully connected two streams working as single Q-neural networks with shared convolutional 

feature learning component. So additional monitoring is not required. The state value 

function is updated with every action resulting in improved state-value estimation. 

Instinctively the network is probable to learn to prioritize the state value without knowing its 

impact. The architecture can be used to replace the unit-stream networks in popular 

algorithms like Deep Q-networks. Researches have evaluated duelling architecture 

implementation using Atari 2600. 

2.2 Policy Gradient 

The objective of the Policy gradient algorithm(Sehnke et al., 2008; Silver et al., 2014) 

is to formulate the probability distributions of the state dependent actions using neural 

network. Interaction of the agent with the environment decides best parameters. Policy 

gradient through iterative process gives best rewards. Algorithm divides into Deterministic 

and Stochastic Policy. The deterministic policy(Barth-Maron et al., 2018; Silver et al., 2014) 

utilizes a value-function to map the action with the corresponding state for a deterministic 

environment whereas a probabilistic state dependent action is generated by the stochastic 

policy for a partially perceptible environment. The major downside of the algorithm lies in 

high variance in estimation of policy gradient resulting in reduced convergence rate. 

Parameter-based exploration is one of the novel methods to reduce the gradient variance. 

Parameter-based exploration aims at generating low variance gradient and initiate 

stochasticity. The algorithm showed significant improved results over the others the real-

world applications. 

2.2.1 Actor Critic 

The critic only and actor only method is improvised through the actor critic method 

by uniting the two. The substantial variance is removed by including critic factor(Grondman 

et al., 2012). The main purpose is to update the value function by analyzing optimum policy 
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fooled by estimating it and update policy parameter through value function. Off policy 

variant modified by on policy and learning process is limited thus providing an opportunity to 

learn other policies (Degris et al., 2012).This paper is using off policy and it has actor and 

critic as the two learning agents. Approximation and updating of policy parameters are done 

by actor and uses function value for updating the policy.  The critic has requirement of four 

parameters: λ and three step parameters where the actor has the requirement of αu. (Mnih et 

al., 2016; Xiao et al., 2019)has proved that has standard and minimized errors. Asynchronous 

Advantage Actor Critic(A3C) and Advantage actor critic (A2C) could be applied on actor 

critic agent. 

Advantage actor critic concentrate on synchronized updating of global network and 

asynchronous advantage actor critic concentrated on parallel training. In parallel training 

learning process is done all together in AC3 and it helps in exploring many parts of 

environment. In timeframe, training of various threads leads to updated parameters 

correlation. Parallel training helps in minimization of training time as it has a linear relation 

with parallel thread. The methodology can be applied with policy based, discrete and 

continuous and value based has be proved successfully. Implementation of asynchronous in 

Atari domain resulted in faster training. A2C has been used to resolve inconsistency in A3C 

and due to synchronous method A2C results in accelerated convergence and cohesive in 

training. 

The drawback of Deep Q-learning is overestimating the standard policies and normal value 

which gets from error function approximation task. To resolve the overestimation (Fujimoto 

et al., 2018)has proposed an algorithm which gain minimum value among set of critics. To 

introduce update on lagged policy overestimation of target and bias is build and this result in 

minimized errors and better performance. The discrete action in actor critic is observed due to 

overestimation as the updating of policy is performed by using a gradient descent. 

The algorithm in actor critic has failed in many instances even though the method was 

successful in many dimensions. Due to divergence of model without any target networks the 

results have shown huge variance in expected value and results in bad policy. The critic and 

actor’s transaction results in learning process failure. So, the policy network must be updated 

at decreased frequency than value-based network for reducing the error previous to policy 

updates till it is decreased to maximum. 

2.2.2 Continuous Control with Deep Reinforcement Learning 

Deep Q-network successfully address problems having inputs with high-dimension 

space that maps to low-dimension discrete action space. Discretizing the continuous action 

space to implement the algorithm is opposed with curse of dimensionality making it difficult 

to train the network(Chou et al., 2017). The Model-free actor-critic off-policy algorithm has 

proven success in learning policies belonging to the continuous high-dimension action space 

implementing deep function estimators.  The asynchronous advantage actor-critic (A3C) 

permits for non-synchronously training and updating the network policies with multiple 

parallel CPU cores. The Gaussian Policy used in continuous stochastic task control problems 

induce inescapable estimation error because of boundary of the action space resulting in slow 

training process. But there are limitations exists for this known as beta policy. The 
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advantages of Beta policy are that it does not induce any bias and have high converging 

speed. It is compatible with algorithms like TRPO and actor- critic, respectively. 

2.2.3 Deterministic Policy Gradient Algorithms 

Deterministic Policy Gradient(Silver et al., 2014) is explained as off-policy actor-

critic methodology which is an improved replacement of stochastic policy. The major 

advantage of the functional form is its powerful potential of estimation. This algorithm is 

ideal to enhance the continuous control task is that the actor network update is dependent on 

the learning process of critic. The functional mode is the predicted gradient of the action 

value function. Without integrating the actor space, the actor update can be improved through 

enhanced learning procedure of critic. The deterministic policy (µθ: S → A) and the variance 

σ can be varied to get the parametric stochastic policy (πµθ,σ). The stochastic policy can be 

compared with the deterministic policy when σ = 0, whereas when σ is limiting to 0 the 

stochastic policy gradient gets transformed to a deterministic gradient. The rampant change 

of policy gradient around the mean challenges the estimation of the stochastic policy 

gradient. In this regard the distributional adaptation of the critic update is proved to obtain a 

stable critic learning procedure as the randomness due to inherited factors can be modelled in 

continuous environment. The Distributional Deep Deterministic policy gradient algorithm 

(Barth-Maron et al., 2018) collated with prioritized experience replay and N-step returns 

results in improved performance when implemented on difficult obstacle-oriented locomotion 

tasks. 

2.2.4 Proximal Policy Optimisation Algorithms 

Proximal Policy Optimisation algorithm(Schulman et al., 2017) overrides the TRPO with 

respect to simplicity in implementation. Additionally, the practicality in application is 

enhanced due to the capped ratio between the old and current policy distribution constraining 

the distance between the old and current parameters θnew and θold respectively. The 

algorithm maintains two neural networks for the prior policy and the current policy 

respectively. The prior policy is used for sampling purpose. On the other hand, the current 

policy is subjected to precision. The method monitors for the difference between the two 

consecutive policies through the capped estimated advantage function. Additionally, the 

advantage function can be optimised through derivation of first order. Experiments have 

illustrated that PPO have outperformed several novel algorithms when applied on Atari 

games and simulated mobile robots. 

Implementing two estimators in Prioritized experience replay the mentioned challenges 

are traded off by Double Q-learning. Parametric stochastic policy (Chou et al., 

2017)algorithm can also perform unbiased estimation of total expected reward. However, the 

limitation due to high variance remains undressed because of the immediate actions of the 

current action. Novel actor-critic algorithm addresses the problem of high variance between 

the consecutive policies through injecting a bias which might hinder the convergence in case 

of large sample. PPO algorithm performs the policy update through introduction of a capped 

ratio between the old and current policies. Several research works have illustrated significant 

contribution of actor-critic and PPO when implemented on Atari games. 
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3 Research Methodology 

Reinforcement learning algorithm aims at learning an environment through the agent’s 

interaction. The agent is trained to learn the maximised rewarding policy (Henderson et al., 

2017) from the consequences of the past actions explained as exploitation and through 

exploring new possibilities. Through assignment of the numerical reward to the agent it 

learns to select the actions that results in maximized expected reward. The reinforcement 

algorithm is based on the Temporal Difference methodology(Degris et al., 2012) where 

successive states are considered followed by resulting rewards. 

sn, rn+1, sn+1, ……., rN, sN        (1)                                                   

The expected total reward for the agent’s attainment of a state say sn can be mathematically 

expressed as,  

                      (2) 
Where  is explained as Discount Factor. The numeric value of the reward is directly 

proportionate to the importance of the action taken. Additionally, the algorithm assumes that 

the state value  can be equated to the expected total return. 

Mathematically, 

sn = s)                                             (3) 
Where the π is the action policy. The parametric policy function (parameter ϴ) formulates the 

probability distribution of action conditioned on the state which can be explicitly written as, 

                                                            (4) 
The implemented modified algorithm is based on the Policy Optimisation 

methodology. The Q-learning algorithm is juxtaposed with the Policy optimisation algorithm 

which aims at directly optimising the policy overcoming the convergence and stability issue 

of the former algorithm(Sehnke et al., 2008). The relative instability of Q-learning algorithm 

is because of collated impact of bootstrapping and approximation function.  

The policy gradient algorithm utilizes the gradient ascent termed as Policy Score 

Function (Schulman et al., 2017) to obtain the maximised parameter value ϴ resulting in 

optimum policy. The Policy score function is equivalent to the expected return for the 

particular policy. Mathematically the score function can be defined as, 

                                                         (5) 
 

Steps to obtain the optimum policy:  

1. Formulating the Policy score function. 

2. Maximisation of the parameter ϴ through gradient ascent resulting in improved 

sample of good actions.  

 

Based on the research aim and the environment for implementation the ideal policy 

optimisation methodology is selected amongst the three novel optimisation technique. Here, a 

detailed discussion of the methodology involving average state value and average reward 

value at each time stamp will be explained as continuous environment  is selected for the 

implementation of the research work. 

Average State-Value 

The Policy Score function is expressed in terms of the weighted state value. Each state values 

are weighted by the probabilistic recurrence of the respective state.  
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                        (6) 

Here,  explains the stationary distribution of the state following the Markov Chain for 

the policy . After a time point the state gets stabilized hence the term stationary 

distribution. Mathematical expression,  

                                                                          (7) 

 represents the occurrence frequency of respective states and  is the cumulative 

frequency of all the explored states.  

Average Reward 

The policy score function is defined in terms of average reward at each time stamp aiming to 

obtain the maximum expected reward. 

      
                                                           (8) 

Here,  is the probability distribution of the action taken where  is the 

conditional probability of the action ‘a’ given a state ‘s’ and  is the resulting reward for the 

action taken.  

The Policy score function is formulated to assess the value of the policy followed by 

maximisation of the policy parameter ϴ to acquire the optimum policy. The gradient ascent is 

employed on the policy score function for computing the policy gradient ascent to update the 

parameter. For the computational purpose the score function is equated to the cumulative 

expected return for the given policy.  

                                                            (9) 

 
However, the averaging methodology is posed with several short comings. There is a 

combined effect of change in action and the resulting reward and the following state on the 

variation of the parameter ϴ. In this course the parameter change impacts the distribution of 

the action and the resulting state. The challenge prevails in the approximation of the policy 

gradient with respect to the parameter when the distribution of the state impacted by the 

parameter change. On the contrary computation of the effect on the selection of action is 

comparatively easy.  The Policy gradient theorem successfully addresses the limitation as the 

differentiation of the score function is independent of state distribution. The gradient ascent 

can be mathematically expressed as follows: 

      
                                                             (10) 

The above-mentioned gradient is challenged by probability distributional outcome of the 

stochastic policy to perform differential calculus. Further modification is performed on the 

gradient through logarithm transformation to simplify the mathematical computation.  The 

transformed expression is given below:  

                                    (11) 
Since, in the research work continuous environment is considered where methods involving 

average value can perform efficiently the policy gradient is expressed in terms of the 

expectation. 

                                             (12) 

The rate of parameter ϴ update is expressed below: 

                                           (13) 

Consolidation of Q-learning and policy optimization resulted in the novel Actor-critic 

algorithm to achieve improved policy estimation. In actor-critic algorithm simultaneously 

two parallel networks for Actor and Critic respectively are updated at every point. The update 
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at every step facilitates in approximating the maximized expected reward for an action and 

the resulting state.  

The actor can be explained as the policy structure as it is used to choose the actions of the 

agent dictating its behavior. 

                                                                          (14) 

The critic is the estimated value function used to evaluate the actions taken by the agent. 

                                                                          (15) 

The training of two independent networks demands for optimization of two parameters  and 

 for policy and value update respectively. 

                                           (16) 

Here  is the learning rate of policy update and the action value is . 

                  (17) 

The time difference error is: . 

The action value gradient is:  with  as the learning rate.  

The Trust Region Policy optimization (TRPO) assists in consistent policy change at each step 

implementing KL divergence constraint on parameter update in consecutive steps. In off-

policy algorithm there stands a chance where policy π and the action-value learning rate β to 

optimize and obtain the courses of agent are distinctive. Importance sampling optimizer 

addresses the predominant gap in the policy score function between the distribution of the 

training data and the current policy state. The modified policy score function is formulated 

below. 
                                  

                              (18) 

 

Here,  is the known parameter preceding the policy update. Estimated advantage function 

substitutes for the true value of the reward as the actual reward is unknown.   

Proximal Policy Optimization (PPO) is an improvement over TRPO with respect to the 

complexity in implementation however confining to the alike implementation procedure. 

PPO substitutes the current policy with ratio of the current is to old policy in TRPO. The ratio 

is defined as: 

                                                           (19)                               

Additionally, the process bounds the ratio within a small closed interval  imposing 

a limit on the divergence on the two consecutive policies. The algorithm defines the score 

function as follows: 

]            (20) 

 

4 Design Specification 

Actor-critic algorithm involves two parallel neural networks that addresses successfully the 

high variance involved in the gradient approximation compromising on the inherited bias. 

PPO at core a policy gradient algorithm is an improvement over the TRPO with respect to 

minimised implementation complexity. The methodology proposes closed boundary ratio 

between the consecutive old and current policy distribution aiming to reduce the between 

variance. The paper has combined the above-mentioned algorithms to implement on the 

experiment involving continuous action space.  

The policy update as expressed in equation (16) in actor-critic algorithm uses the logarithmic 

transformation of the current policy. The implemented algorithm substitutes the current 
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policy in the logarithmic function of the actor-critic with the clipped policy ratio expressed by 

PPO in the equation (19) in the logarithm function. The modified policy update function 

facilitates in consistent policy update with minimised variance between the consecutive 

policies. This results in significant small and optimised gradient ascent at each iteration. 

Mathematically the modified policy gradient can be expressed as: 
 

                                 (21) 

 

4.1 Algorithm 

 

 

5 Implementation 

The formulated hybrid algorithm of actor-critic and PPO is aimed to implement on the virtual 

self-driving car. Here, the challenge lies in gauging the performance of the formulated 

algorithm as the self-driving car is an independent environment. To assess the credibility of 

the algorithm it is implemented on Gym environments like Cartpole, MountainCar and 

MountainCarContinuous. Policy gradient algorithms have proven to be successful for 

instances where the state belongs to only real-valued continuous space and the action space 

can be discrete or continuous. Thus, to full proof the efficiency of the algorithm the 

environment selected as the testbed belongs to discrete (Cartpole and MountainCar) and 

continuous (MountainCarContinuous) action space, respectively. 

5.1 Environment: Open AI Gym 

A research company with no profit and is focused on developing AI that would benefir 

everyone is OpenAI. The founders of OpenAI(Brockman et al., 2016) are Sam Altman and 

Elon Mask. According to their website the mission of the OpenAI is to bulild sage AGI and 

assure the benefits are available for everyone. 

A toolkit for comparing and building reinforcement algorithms are known as OpenAI 

Gym. It guides through everything including from walking to play different games to 

teaching agents. For learning reinforcement tasks gym performs as an open source interface. 

The developer can decide on any reinforcement algorithms in the environment which Gym 

provides. Using numerical computation library which exits like Theano or Tensorflow 
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developers can write agent. It provides around 700 opensource environment while writing. 

An environment is known as the universe of agent where state of agent changes with different 

actions performed. A system which distinguish environment through sensors and complete 

actions with actuators are called Agents. 

5.1.1 Cartpole 

 

Figure 3: Balancing the pole on the cart. 

 
 

In gym, cartpole is one of the famous games available. In this game, a cart which is 

associated with a pole must be in balanced state, so that this will not fall. If the pole bend 

more than 15 degrees or it moves more than 2.4 units apart from the centre the game will end. 

 

Specifications 

Name: Cartpole-v02 

Category: Classic Control 

Description (Cartpole-v0): In CartPole-v0, a pole has been connected by a joint to the cart 

which is unattached, and it is moving across a frictionless track. A force of +1 or -1 on to the 

cart controls the system. When the pendulum goes vertical, so the aim is to prevent it from 

falling. Each time the ole is standing upright a reward of +1 is given. If the pole bend more 

than 15 degrees or it moves more than 2.4 units apart from the centre the game will end. 

Source: The environment compares to the cart-pole problem according to Sutton, Barto, 

Anderson. 

Observation 

Number Observation Maximum Minimum 

0 Cart Position 2.4 -2.4 

1 Cart Velocity Inf -inf 

2 Pole Angle 41.8 -41.8 

3 Pole Velocity at Tip Inf -inf 

 
 
2 https://gym.openai.com/envs/CartPole-v1/ 

https://gym.openai.com/envs/CartPole-v1/
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Actions 

If the number is 0, then push the cart to left side and if its 1 push the cart to the right side. 

Reward 

1 is the reward for every step which includes the termination step, and the threshold is 475 for v1. 

5.1.2 MontainCarContinous- v0: 

 

Figure 4: Car trying to reach the mountain top. 

 
 

MountainCarContinuous addresses the similar reinforcement learning problem as of the 

MountainCar with a more generalised and realistic real-valued continuous action space. 

 

Specifications  

Name: MountainCarContinous-v03 

Category: Classic Control. 

Description: A car which has less power must climb a hill in one-dimension to reach the top 

of the hill. In MountainCarContinous the engine force applied to the car is continuous not 

discrete. The goal is to reach the top of the mountain on the right-hand side of the car. This 

episode will be terminated if the car has reached or if it goes beyond that. There is another 

hill on the left-hand side. The car can earn potential energy and can move further towards the 

target if it climb this mountain. When the car reaches the top of the hill, the car cannot mover 

further or can move to a position which is equal to -1. Penalty will not be applied after 

reaching this position. 

Source: The continuous version of mountain car is developed by Andrew Moore during PhD. 
Observation 

Number Investigation Maximum Minimum 

0 Car Position 0.6 -1.2 

1 Car Velocity 0.07 -0.07 

Here the velocity is to aid exploration. 

 

 

 
 
3 https://gym.openai.com/envs/MountainCarContinuous-v0/ 

https://gym.openai.com/envs/MountainCarContinuous-v0/
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Actions 

The action will be continuous as the number is 0 and the car can be push towards left side or 

right side, which is a negative or positive value, respectively. 

Reward 

For reaching the target on the top of hill the reward is 100 after subtracting the squared sum 

of actions from initial point to goal. An exploration challenge is raised by the reward function 

when the target is not reached soon as it will decide to not to move further and target will not 

be able to find. 

6 Evaluation 

The reinforcement learning algorithms primary aims at enhancing the action taken by the 

agent based on the rewards obtained through interaction with the environment. The efficiency 

of an algorithm is assessed depending on the deployment of the agent through either by 

quality of the policy or the obtained reward. For a comparatively less model training time it is 

a challenge for the agent to explore all possible options to achieve the best policy. In such 

instances agent targets at maximising the reward values while in the learning phase. Thus, 

formulating the appropriate the reward function facilitates in accelerated learning rate. 

Rewards can be positive or negative encouraging to accumulate the rewards or attain the 

terminal state at an accelerated speed to eliminate addition of penalties, respectively. 

Evaluation of the proposed hybrid algorithm has been performed empirically using the 

Cartpole, MountainCar (discrete and continuous) as the benchmark environment prior to its 

implementation on the virtual self-driving car. For every environment multiple episode each 

consisting maximum of 1000 steps are execute based on the stability obtained in the achieved 

reward. However, it is expected to observe fluctuations in the reward curve as the agent 

learns the environment through the “trial an error” procedure. Thus, moving average 2 is 

performed on the total rewards of the consecutive episodes to denoise the reward curve and 

facilitate in clear understanding of the trend and expected total reward. 

6.1 Cartpol:  

The pole and the cart are attached through a moveable joint which facilitates the pole to shift 

along a friction-free track. The aim is to prevent the pendulum from falling by controlling the 

velocity.  

The agent is trained for 1000 episodes in the Cartpole environment. The graph plotted with 

the y-axis as the reward value and the x-axis as the episodes illustrates the behavior of the 

reward values. The adjacent table demonstrates the statistical computations for every 100 

episodes to support the requirement in solving the Cartpole environment in Gym. The 

environment is conditioned to be solved if the agent scores on an average equal to or over 

195 for 100 consecutive trials. 
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6.1.1 Actor-Critic 

 

episode
 total reward 

(per episode)  

 avg reward              

(last 100)

 SD              

(last 100)

0 12.0 12.0 0.0

100 38.0 17.7 9.9

200 15.0 31.9 17.1

300 47.0 46.0 21.7

400 31.0 58.8 25.7

500 57.0 59.1 20.5

600 70.0 63.0 24.1

700 42.0 64.5 24.4

800 74.0 63.3 20.6

900 44.0 57.2 21.2

58.49

25.84

52.04

0.50

Avg reward for last 100 episodes

SD

Mean

CV  

Figure 5: Actor-critic in Cartpole environment. 

 
 

The initial episodes resulted in low reward values. Training the agent for number of episodes 

resulted in significant high reward in the later phase. The presence of fluctuations in the 

absolute reward values hinder the understanding of the trend and expected cumulative 

reward. The moving average curve illustrates the reward value trend. The gradual increasing 

trend in the slope of the reward curve between 200-400 episodes followed by the sudden 

flattening of the curve until 900th episode reflect the accelerated learning rate of the agent. 

This is to note that the agent fails to satisfy the predefined threshold average reward values 

for consecutive 100 episodes. The agent was able to achieve approximately only 60 as 

average reward value even in the state of stability failing to solve the cartpole environment in 

Gym. Additionally, the total variance of the reward is in line with the variance of the 400th 

and most of the later episode where the curve attains its stability hinting at stabilization of the 

exploration rate. The early stabilization of the exploration implies that further training of the 

agent will not result in improved reward values.  

6.1.2 Modified Actor-Critic 

 

episode
 total reward 

(per episode)

 avg reward             

(last 100)

SD             

(last 100)

0 17.0 17.0 0.0

100 69.0 34.9 28.8

200 99.0 74.3 31.1

300 113.0 94.4 34.1

400 149.0 112.7 37.4

500 147.0 118.9 42.7

600 81.0 126.3 38.0

700 179.0 130.3 41.5

800 64.0 138.9 41.9

900 169.0 144.7 42.0

146.68

50.73

112.10

0.45

Avg reward for last 100 episodes

SD 

Mean 

CV  

Figure 6: Modified Actor-critic in Cartpole environment. 

 

In the early training phase starting with low reward values few spikes in reward values 

(approx. 200) are noticed with significant fluctuations. However, for the implemented 

modified actor-critic algorithm the agent achieved a total reward value of approximately 200 
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in most of the episodes staring from 400th episode with reduced fluctuations. Thus, it is 

probable to have an average reward value in the proximity of 195 for consecutive 100 

episodes satisfying the requirement to solve the environment. A gradual increasing trend is 

observed in the moving average curve reflecting a comparatively lowered learning rate of the 

agent. The difference in total variance of the rewards and the variance of each episode 

explains that there is a room for the agent to still maximize the reward to attain the optimum 

policy. 

6.2 MountainCarContinuous 

Here, the agent is a low-powered car which is aimed at climbing a one-dimensional 

mountain to attain the target. The actions taken into account are mapped to real-valued 

continuous space unlike MountainCar-v0.  

The agent is trained for 200 episodes in the MountainCarContinuous environment. To 

visually evaluate the behaviour of the rewards, gain over the episodes graph is plotted with y-

axis representing the reward against the episode as x-axis. The adjacent table of statistical 

computations over the rewards values for every 20 episode provides a checkpoint to ensure if 

the algorithms satisfy the requirements for the MountainCarContinuous environment in Gym. 

A benchmark reward value of 90 is assigned to solve the environment. 

6.2.1 Actor-Critic 

 

episode
 total reward 

(per episode)  

 avg reward                     

(last 100)

 SD              

(last 100)

0 -76.0 0.0 0.0

20 75.4 30.2 65.9

40 85.0 55.8 53.4

60 93.9 64.7 45.4

80 82.6 68.6 40.1

100 88.6 71.5 36.4

120 73.4 81.5 7.0

140 85.6 81.8 6.6

160 68.3 81.7 7.3

180 51.3 74.8 32.7

199 17.5 39.8 22.6

61.0

55.6

1.1

SD

Mean

CV 
 

Figure 7: Actor-critic in MountainCar environment. 

 

The reward attains a remarkable high positive value and stabilizes at a very initial training 

phase (around the 5th episode). Moreover, it is important to notice that the fluctuations in the 

flattened region of the reward values are not diversified that is a high reward value is 

maintained until a significant number of episodes (around 175th episode). However, in the 

later phase a noticeable dip observed accompanied by significant fluctuations between 

positive and negative rewards. in the values. This is to mention that after the steep fall in the 

curve it fails to attain stability till the training phase terminates. To understand the trend in 

the reward values moving average is plotted. The graph illustrates a stationary curve with a 

steep increase in the initial episodes. The steep increase in the curve signifies very high 

learning rate. The negative shift in the curve post the 175th episodes falls in line with the total 

reward values of the respective phase. The reward values lying in the close proximity of the 

threshold value of 90 to solve the environment. This apparently shows that the environment is 

solved by the agent otherwise challenged by the steep fall which fails to recover. In addition 

to this, the significant flattened curve between 105-175 episode approximately supported by 
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dramatic low and stable standard deviation values in the respective episodes validates stable 

exploration rate is probable to restrain the agent in recovering from a bad policy. 

6.2.2 Modified Actor-Critic 

 

episode
 total reward 

(per episode)  

moving avg 

till last 100                    

 SD              till 

last 100

0 -86.5 -86.5 0.0

20 63.3 41.0 57.4

40 81.8 51.1 49.6

60 73.1 60.3 42.9

80 81.2 65.6 38.4

100 83.4 69.0 35.1

110 82.3 74.9 25.7

120 85.8 77.8 19.3

140 84.6 82.5 5.3

160 84.2 83.9 4.6

180 80.7 84.7 4.0

199 87.2 85.4 4.2

26.3

77.2

0.34

SD

Mean

CV 
 

Figure 7: Modified Actor-critic in MountainCar environment. 

 
 

The initial phase of the training is prevalent with spikes in the reward values followed by 

gentle increase in the values till the 20th episode before it fairly stabilizes with a slight hint of 

increasing rate at the terminal episodes. The gradual increment in the slope of the curve 

signifies lower learning rate. Moreover, there is no reverse trend observed in the curve. The 

rewards values centering around 85 for significant number of episodes with a gentle 

increasing trend facilitates in inferring that the applied modified algorithm supports the agent 

in successfully solving the MountainCarContinuous environment. The imbalance in the total 

variance and the per episode variance illustrates that the agent holds exploration chance to 

maximize reward to attain improved optimum policy. 

6.3 Discussion 

6.3.1 Cartpole 

The accelerated learning rate due to implantation of conventional actor-critic 

algorithm (Thomas, 2014) triggers a dramatic policy update rate resulting in aggressive 

moves to attain high rewards quickly hindering to map the policy and parameter space. On 

the contrary, slow learning rate in the modified actor-critic algorithm restrains from 

inconsistent policy update addressing the challenge in conventional actor-critic algorithm. 

This is to mention that in conventional method of policy update there is a chance that due to 

unconstrained learning rate might result in bad policy from where it is difficult for the agent 

to recover from the resulting state which is significant from the negative shift in the moving 

average curve even after attaining stability. The modified algorithm juxtaposed with the 

actor-critic have lower policy update rate constraining the agent from taking aggressive 

moves aiming at maximization of expected reward. Here, positive rewards are obtained thus 

coefficient of variation (CV) is used to compare the conventional and modified method. The 

relative lower value CV for the modified algorithm validates that the variation in the 

consecutive policy updates is reduced.  
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6.3.2 MountainCarContinuous 

The parity between the conventional and modified actor-critic algorithms is that both are 

close to solving the environment having the reward values in a close proximity of the 

benchmark value. However, for the conventional method there is a negative shift post the 

stability phase in reward signifying the attainment of bad policy posing a challenge to reverse 

the situation. This is falls in line with the downside of the traditional policy gradient 

algorithms. In other words, the accelerated unconstrained learning rate leads to aggressive 

moves of the agent to achieve high rewards and sudden stability in the reward values at a 

very initial training phase. This stepwise update of parameters leads to inconsistent policy 

update dictating the agent to obtain a bad policy. The modified algorithm lowers the learning 

rate by imposing the constraint on the parameter update. This resulted in gradual and 

consistent policy update aiming to maximize the reward. Moreover, the actions taken by the 

agent is controlled to prevent any aggressive moves leading to irreversible bad policy update. 

However, the major downside of the modified actor-critic is the reduced learning rate 

compromises on the time taken to attain stability followed by optimum policy.   

There is a distinct trade-off between the conventional and the modified actor-critic 

algorithm. The conventional method has an accelerated learning rate which facilitates in 

achieving high reward value allowing a risk factor. On the contrary, the modified algorithm 

updates policy at a consistent and slow rate minimizing the agent’s chance of sudden learning 

of bad policy from where it is difficult to recover. However, the low learning rate 

significantly increases the training time for the agent which might be a challenge to apply in 

real-world problems. 
 

7 Conclusion and Future Work 
The conventional actor-critic algorithm updates the parameters through unconstrained 

learning rate. This results in dramatic parameter update often triggering an exploded 

inconsistent policy update to achieve the maximum reward values. Thus, the exploration 

scope for the agent is minimized dictating the agent learn an irreversible bad policy in some 

instances. This downside of the conventional algorithm is addressed by the modified actor-

critic algorithm. The algorithm bounds the learning rate to prevent rapid and inconsistent 

policy update. The consistent update refrains the agent from learning a bad policy. The 

enhanced learning policy of the agent through implementation of the modified algorithm is 

consistently proved in the Cartpole and MountainCarContinuous environment. However, the 

low learning rate increases the time taken to achieve the high reward or the optimum policy. 

This proportionally increases the training time of the model. Thus, to implement the 

algorithm on real-world problem demands for compromising on time and cost. 

A self-driving car is an enduring aim of Artificial Intelligence. This demands for 

computers to acquire human skills, understanding and experience to drive a vehicle 

autonomously without impediment and damage. The goal can be achieved through object 

detection of the environment and learning the driving policy. The desired results of the 

modified algorithm encourage to implement the algorithm on virtual self-driving car. As the 

timeframe of the project do not permits for deployment the implementation on virtual self-

driving car as the future work of the project. 
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