""‘-
\ National

Collegeof
[reland

Configuration Manual

Identifying At-Risk Students in Virtual Learning
Environment using Clustering Techniques

MSc Research Project
MSc in Data Analytics

Kamalesh Palani
Student ID: x18180311

School of Computing
National College of Ireland

Supervisor:
Dr. Paul Stynes
Dr. Pramod Pathak

‘-—
National College of Ireland \ National

MSc Project Submission Sheet Collegeof
c Project Submission Shee
Ireland
School of Computing
Student Name: Kamalesh Palani
Student ID: x18180311
Programme: MSc in Data Analytics Year: 2019-2020
Module: MSc in Research Project
Lecturer: Dr. Paul Stynes, Dr. Pramod Pathak
Submission Due
Date: 17% August 2020
Project Title: Identifying At-risk Students in Virtual Learning Environment using

Clustering Techniques

Word Count: 930 Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Kamalesh Palani
Date: 17% August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Kamalesh Palani
Student ID: x18180311

1 Introduction

This manual contains the step wise information of the research conducted in identifying the at-
risk students using clustering technique. By following the steps and procedures in this
document the research project can be completely reproduced. This report also contains
information of environmental step-up and system requirements of the conducted research.

2 System Specification

2.1 Hardware Configuration

Windows edition

Windows 10 Home Single Language -- -

© 2019 Microsoft Corporation. All rights reserved. .. WI n d OWS 1 O
System

Manufacturer: HP

Maodel: HP Pavilion Laptop 15-cs2woc

Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz

Installed memory (RAM): 8.00 GB (7.89 GB usable)

System type: 64-bit Operating System, x64-based processor

Pen and Touch: Mo Pen ar Touch Input is available for this Display

Figure 1. Hardware specification

Figure 1 shows the hardware specification used in this research work for the project
implementation.

2.2 Software Configuration

In this research implementation part is conducted using python programming language of
version 3.7.4. To use this programming language Anaconda for windows version has to be
installed® . 64-bit graphical installer for windows version is used in this research work which
is shown in figure 2.

! https://www.anaconda.com/

https://www.anaconda.com/

Anaconda Installers

Windows 58 MacOS & Linux O

64-Bit Graphical Installer (466 MB) 64-Bit Graphical Installer (462 MB) 64-Bit (x86) Installer (550 MB)

32-Bit Graphical Installer (397 MB) 64-Bit Command Line Installer (454 MB) 64-Bit (Power8 and Powerg) Installer (290
MB)

Figure 2. Anaconda Installer

After installation of the anaconda software anaconda navigator will display different Integrated
Development Environment (IDE) in which Jupyter notebook of version 6.0.1 is used in this
research which is shown in figure 3.

O Anaconda Navigator - o X
_) ANACONDA NAVIGATOR

ft Applications on | base (rosts o] crannats

Figure 3. Anaconda Navigator

After downloading the anaconda, python libraries related to the projects has to be imported. To
import the libraries into the Jupyter notebook IDE. Anaconda Powershell Prompt is opened by
searching it in windows search bar. And pip install command and the name of the below
mentioned libraries is used to import the python libraries package to the IDE.

e Matplotlib-version 3.1.1
e Seaborn-version 0.9.0

e Scikit-learn- version 0.21.3
e Pandas -version 0.23.4

e Numpy-version 1.16.5

e Plotly-version 4.2.1

e Scipy-version 1.4.1

3 Implementation of the Models

After the installation of the software to implement the project below steps can be performed to
reproduce the clustering models and replicate the project result used in this research.

3.1 Data Source

For this research dataset is downloaded from the Open University 2.Which is a publicly
available dataset and it is downloaded as a zip file. After unzipping the folder 7 different files
related to student’s interaction with virtual learning environment, student’s academic
performance and student information are present in the files.

3.2 Import of Libraries

After downloading the dataset in the local machine jupyter notebook is launched from the
anaconda navigator prompt. And, New drag down button is clicked then python 3 is chosen to
open a new notebook to implement the project which is shown is figure 4.

“ Jupyter Qut | | Logout

Files Running Clusters

Select items to perform actions on them Upload || New - | &

Motebook:

0o~ Name & e
Python 3

[0 [3D Objects

O [Anaconda3 Text File

0 [Contacts Folder

~ Terminal

Figure 4. Homepage

Figure 5 shows the libraries that is used in this research project.

2 https://analyse.kmi.open.ac.uk/

https://analyse.kmi.open.ac.uk/

#importing Libraries

import numpy as np

import pandas as pd

import time

import matplotlib.pyplot as plt
import seaborn as sns

kmatplotlib inline

import missingno as msno

import sklearn.metrics as metrics
import pyclustertend

import plotly

import plotly.graph _objects as go
import scipy.cluster.hierarchy as shc
import scipy.cluster.hierarchy as shc

ML Libraries

from sklearn.metrics import accuracy_score

from sklearn.mixture import GaussianMixture

from sklearn.model selection import train_test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm.libsvm import predict proba

from sklearn.model selection import GridSearchCV
from sklearn.metrics import davies_bouldin_scare
from sklearn.metrics import roc_curve

from sklearn.cluster import KMeans

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import normalize

from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import DBSCAN

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize

from sklearn.decomposition import PCA

from sklearn.datasets import make_classification
from sklearn.cluster import AffinityPropagation
from kmodes.kmodes import KModes

from kmodes.kprototypes import KPrototypes

from fcmeans import FCM

from sklearn import datasets

from pyclustertend import hopkins

from sklearn.preprocessing import scale

from mpl_toolkits import mplot3d

from plotly.offline import plot

from sklearn.decomposition import PCA

from scipy.cluster.hierarchy import linkage,dendrogram
from sklearn.cluster import KMeans

Figure 5. libraries

3.3 Data Pre-processing

After importing the libraries and dataset in to the Jupyter book, next thing is to process the data.
In this research for processing the data three different attributes are mainly extracted from the
7 different files by merging the files using the primary key column which is students ID in all
the files. The screenshot of three attributes creation code snippet is given below.

Student Learning Behaviour Attributes

merging StudentVLE data on vle

vle details = pd.merge(student_vle, vle, how = 'left', left_on = ['code_module', 'code_presentation', 'id_site'],
right_on = ['code_module', 'code_presentation', 'id_site'])

Removing the negative date column from the VLE dataset

columns = ['date’]
filter_ = (vle_details[columns] > @).all{axis=1)
vle_filtered_data=vle_details[filter_]

Concating the studentid,course and year as primary key column

vle_filtered_data['concats'] = vle_filtered_data.id_student.astype(str).str.cat
(vle_filtered_data[['code_presentation', 'code _module']])

Removing the column week_from and week_to
vle_filtered_data.drop(vle_filtered_data.columns[[7,8]], axis=1, inplace=True)

Aggregating the column for each site and clicks

vle_agg_site data = vle_filtered data.groupby(['id_site', "activity type']).agg({'sum click': ['mean', 'sum']})
vle_agg site data.reset_index(levelz [8,1], inplace=True)
vle_agg site_data.columns = ['id_site', 'activity type', 'mean_clicks', 'sum_clicks']

Aggregating the column for each site based on student id and clicks

vle_agg data = vle_filtered data[['id_student’,'activity type','concats','sum_click']].groupby

(['concats', 'activity_ type','id_student']).agg({'sum_click': ['mean’, 'sum']})
vle_agg data = vle_agg_data.reset index()
vle_agg data.columns = ['concat','activity type', 'id_student', 'mean_clicks', 'sum_clicks']

Figure 6. Student learning behaviour attributes pre-processing part-1

Figure 6 shows the dropping of columns, aggregating of clicks for each site and for each
student.

Agrregating the column for each course and year

vle_agg course_data = vle filtered data[['concats','sum click']].groupby(['concats']).age({'sum click': ['mean’, 'sum']})
vle_agg_course_data = vle_agg_course_data.reset_index()
vle_agg course data.columns = ['concat', 'mean_clicks','sum_clicks']

Aggregating the column for each Students weekly from the VLE

Aggregating the clicks for each student for a single day

avg_clicks = vle_filtered_data.groupby(['concats', 'date’]).agg({"sum_click":"mean"}).rename
(columns={"sum click':'average clicks'}).reset_index()

avg_clicks.head(10)

changing the date type to string
weekly _clicks = avg_clicks.astype({'date':'str'})
weekly clicks.info()

Replacing the date with week

weekly clicks.replace(to_replace=["1","2","3","4", "5" "G" "7" "g" "g" "1g","11","12","13","14","15" "16","17","18","19","20"]
values [MWA","WL","W1", "WA", MW", WL, WY, W2, WY, W2, W2, 2T, W2, 2T, W3, 3T, T3, a3, W3, 3]
inplace=True)

weekly clicks = weekly clicks.groupby(['concats', 'date’]).agg({"average clicks":"mean"}).
rename(columns={"'average_clicks"':'average clicks_weekly'}).reset_index()

Melting the week columns to rows
df_unmelted = weekly clicks.pivot(index='concats', columns='date')
df_unmelted = df_unmelted['average clicks weekly'].reset_index()

df_unmelted.columns.name = Nene
df_unmelted = df_unmelted.replace(np.nan, @)

Figure 7. Student learning behaviour attributes pre-processing part-2

Figure 7 shows the week wise clickstream aggregation for each student and unmelt function
which is used to get the original data frame and pivot function is used to convert the week wise
columns to rows.

Student Performance Attributes

weight for each course is maintained same

assessments.loc[(assessments.code module=='CCC') &(assessments.assessment_typez='Exam'), 'weight'] = \
assessments.loc[(assessments.code_module=='CCC') &(assessments.assessment_type=='Exam'), 'weight']/2
assessments.loc[(assessments.code modulez='GGG') & (assessments.assessment type=z='TMA'), 'weight']=(1086/3)
assessments.groupby(['code_module','code_presentation']).agg({ 'weight': ['sum']})

Calculation of the marks by merging 2 tables to have assignment scores and weights together in one table.

Join Assessment and StudentAssessment tables
joined=pd.merge(student_assessment,assessments,on="id_assessment', how="'left")

Calculate weighted scores for all assessments of all students
joined['score*weight']={joined['score']*joined['weight'])

Sum up score*weights and divide by total weights (There are some students has total weight higher or much lower than %168)
for all students of all modules to calculate final mark.
marks=joined.groupby{['id_student','code_module','code_presentation'],as_index=False)['score*weight’, 'weight"].sum()

marks['total_mark'] = marks['score®weight']/marks[‘weight"]

marks["mark"] = marks['score*weight']/200

marks.rename(columns = {'score®*weight': 'total_weight', 'weight': 'attempted_weight'}, inplace=True)
marks = marks.round(1)

#merging the data to the student info table
joined = pd.merge(marks,student_infocopy,on=["'id_student','code_module','code_presentation'],how="left')

stduent withdrawn form the courses are marked as NAN in the mark
joined.loc[joined.final_result=='Withdrawn', 'mark']= np.nan
joined.loc[joined.final_result=="Withdrawn', 'total_mark']= np.nan
joined.head(18@)

Figure 8. Student performance attributes pre-processing

Figure 8 shows normalization of weights for all the courses and new column creation namely
total mark, mark, attempted weights for each student are created.

Student Demographic Attributes

extracting the studnet_info table and creating the unique key column using stduents ID,Module,year
student_infocopy = student_info.copy()
student_infocopy['concat'] = student_infocopy.id_student.astype(str).str.cat(student_infocopy[['code presentation',
‘code_module']])
Xfactors = student_infocopy[["gender", "region", "highest education", "imd_band", "age band",
"num_of_prev_attempts"”, "studied credits", "disability"]]
X_noncat = pd.get_dummies(Xfactors)

X_noncat.head(5)

Figure 9. Student demographic attributes pre-processing

Figure 9 show the one hot encoding is done using the dummies function and primary column
is created using the group by and cat function.

Merging the student course information clicks and scores to single table

maintable = pd.merge(aggragated_score,vle_agg course_data,onz['concat'], how="left")
maintable_copy = maintable.copy()
maintable_copy.head(10)

Figure 10. Merging of columns

In the above block three different attributes are merged using left out join function in pandas
data frame and single aggregated dataset has been used to build the clustering model.

3.4 Data Modelling

In this section steps taken to implement the multiple clustering models and methods used to
find the number of clusters in this research is discussed below. Implementation screenshot of
the process followed is given below.

Gap Statistics

Normalizing the data
scaler = MinMaxScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(model)}, columnszmodel.columns)

df_scaled_Hierarchical = df_scaled.copy()
df_scaled_gaussian = df_scaled.copy()

df_scaled_k_prototype = df_scaled.copy()
df_scaled_fuzzyc_means = df_scaled.copy()

Gap Statistics method to determine the optimal clusters

Error =[]

for i in range(1, 11):
kmeans = KMeans(n_clusters = i).fit(df_scaled)
kmeans . fit(df_scaled)
Error.append(kmeans.inertia_)

import matplotlib.pyplot as plt

plt.figure(figsize=(5, 5))

plt.plot(range(1, 11), Error)

plt.title('Gap Statistics')

plt.xlabel('Number of Clusters')

plt.ylabel('Error')

plt.show()

Figure 11. Gap Statistics

Figure 11 shows the minmax function which is used to normalize the data before giving as an
input to the gap statistics method. And to determine the number of clusters for the data gap
statistics approach is used.

Gaussian mixture clustering model

def doGMM(X, nclust=3):
model = GaussianMixture(n_componentsznclust,init_paramsz'kmeans')
model. fit(X)
clust_labels3 = model.predict(X)
return (clust_labels3)

clust_labels3 = doGMM(df_scaled_gaussian,3)

gaus_cluster = pd.DataFrame(clust_labels3)
df_scaled_gaussian.insert((df_scaled_gaussian.shape[1]), 'gaus _cluster' gaus_cluster)

#plot data with seaborn
facet = sns.lmplot(data=df_scaled gaussian, x='mark', y='sum_clicks', hue=z'gaus_cluster’,
fit_reg=False, legendzTrue, legend out=True)

Figure 12. Gaussian Mixture model

Figure 12 shows the implementation of the gaussian model and the parameters used to run the
model. Also, after running the model the dispersion of the data points formed as clusters is
visualized using seaborn libraries in python.

k-prototype Clustering algorithm

define the model
model_array = df_scaled.values
kproto = KPrototypes(n_clusters= 3 , verbose =2,max_iter=5)
fit the model
clusterszkproto.fit_predict(model_array,categorical=[4])
cluster_dict=[]
for c in clusters:

cluster_dict.append{c)
df_scaled k_prototype['clusters']=cluster_dict
visualization of data points
fig = plt.figure(figsize=(5, 4))
ax = fig.add_subplot(111)
scatter Kprototypezax.scatter(df scaled.iloc[:,3],df scaled.iloc[:,5],c=clust,cmap='rainbow',s=58)
ax.set_title('k-prototype Clustering')
ax.set_xlabel('Marks")
ax.set_ylabel('Clicks")
plt.colorbar(scatter_Kprototype)

Figure 13.K-Prototpye model

Figure 13 shows the code snippet of k-prototype model and the parameters used to improve
the accuracy of the model.

Hierarchical Clustering
dendogram
plt.figure(figsize=(18, 7))

plt.title("Dendrograms")
dend = shc.dendrogram(shc.linkage(df_scaled Hierarchical, method='ward'))

def doAgglomerative(X, nclust=3):
model = AgglomerativeClustering(n_clusters=nclust, affinity = 'euclidean', linkage = 'ward')
clust_labelsl = model.fit_predict(X)
return (clust_labelsl)

clust_labelsl = doAgglomerative(df_scaled_Hierarchical, 3)

agglomerative = pd.DataFrame(clust_labelsl)

df_scaled_Hierarchical.insert((df_scaled_Hierarchical.shape[1]), 'agglomerative',agglomerative)

#plot data with seaborn

facet = sns.lmplot(data=df_scaled_Hierarchical, x='mark', y='sum_clicks', hue='agglomerative',
fit_reg=False, legend=True, legend_out=True)

Figure 14. Hierarchical Clustering model

Figure 14 shows the code snippet of hierarchical clustering and visualization used in the
implementation of the models.

3.5 Evaluation of Clustering Models

In this research multiple models performance is compared to find the best performing model
using clustering evaluation metric. And evaluation metric is used to find the better separation
of clusters between the data points and also to check the better-defined clusters. Shown below
are the code snippet of evaluation metric.

Gaussian mixture Metric
import sklearn.metrics as metrics

print("### Gaussian mixture Metric ###\n")

#ground truth label are not known

Gaussian_mixture_sil=metrics.silhouette_score(df_scaled, gaus_cluster[@], metric="euclidean')
print("silhouette_score: ",Gaussian_mixture_sil)

#ground truth label are not known
Gaussian_mixture_calz=metrics.calinski_harabasz_score(df_scaled,gaus_cluster[8])
print("calinski_harabasz_score: ",Gaussian_mixture_cal)

#ground truth label are not known

Gaussian_mixture_dav = davies_bouldin_score(df_scaled, gaus_cluster[8])
print("davies_bouldin_score: ",Gaussian_mixture_dav)

Figure 15. Gaussian Mixture evaluation metric

Hierarchical FEvaluation metric
print("### Hierarchical Evaluation Metric ###\n")
#ground truth Label are not known

hier_silzmetrics.silhouette_score(df_scaled, agglomerative[@], metricz'euclidean')
print("silhouette_score: “,hier_sil)

#ground truth Label are not known
hier_cal=metrics.calinski_harabasz_score(df_scaled, agglomerative[@])
print("calinski_harabasz_score: " hier_cal)

#ground truth Label are not known

hier_dav = davies_bouldin_score(df_scaled, agglomerative[@])
print("davies_bouldin_score: ",hier_dav)

Figure 16. Hierarchical evaluation metric

K-prototype Evaluation Metric

print("### K-prototype Evaluation Metric ###\n")

#ground truth Label are not known

kpro_silzmetrics.silhouette score(df_scaled k_prototype, cluster dict, metricz'euclidean')
print("silhouette_score: ", kpro_sil)

#ground truth Label are not known
kpro_cal=metrics.calinski_harabasz_score(df_scaled_k_prototype, cluster_dict)
print("calinski_harabasz_score: ", kpro_cal)

#ground truth Label are not known

kpro_dav = davies_bouldin_score(df_scaled_k_prototype, cluster dict)
print("davies_bouldin_score: ",kpro_dav)

Figure 17. K-Prototype evaluation metric

3.6 Visualization

To interpret the data points between the clusters PyLab library is used from python which bulk
imports both the Matplotlib and NumPy libraries. Multiple markers have been used for the
visualization to find the dispersion of the clusters. Figure 18 shows the code snippet of the
visualization used in this research.

Data Visualization

import pylab as pl

fig = pl.figure(figsize=(5, 4))
pl = fig.add_subplot(111)

for i in range(®, df_scaled_k_prototype.shape[0]):

if df_scaled k_prototype.clusters[i] == @:
cl = pl.scatter(df_scaled_k_prototype.iloc[i,2],df scaled_k_prototype.iloc[i,5],c="r",
marker=z"'+")

elif df_scaled k_prototype.clusters[i] == 1:
c2 = pl.scatter(df_scaled_k_prototype.iloc[i,2],df_scaled_k_prototype.iloc[i,5],c="g",
markerz'0")

elif df_scaled k_prototype.clusters[i] == 2:
c3 = pl.scatter(df_scaled_k_prototype.iloc[i,2],df scaled_k_prototype.iloc[i,5],c='b",
marker="'%")

axzpl.legend([c1, c2, c3], ['cluster @', 'cluster 1',
'cluster 2'])

pl.set_xlabel('Marks')
pl.set_ylabel('Clicks')

Figure 18. Visualization

10

