Configuration Manual
Sumeet Kumar

X18188231

1. Introduction

The configuration manual contains all the pertinent information related to the software and
hardware used in the research project. Also, it specifies the important libraries that are used
and the data description is given in section 3. Moreover, it elucidates several steps that needs
to be taken to reproduce the work in any machine satisfying the requirements which is
covered in the following sections

1 Environment Specification

The MSc. Research project runs on a system which has certain specifications for both
software and hardware that are described in the following subsections.

1.1 Hardware Specifications

This project is implemented on the hardware with the following configurations:

Hardware Configuration
System
Operation System Windows 10 (64-bit Operating System)
RAM 8 GB
Hard Disk 1 TB, 256 SSD
Graphic Card 2 GB Nvidia
Table 1
Windows edition
Windows 10 Home Single Language -- .
© 2019 Microsoft Corporation. All rights reserved. .. Wl n d OWS 1 O
System
Manufacturer: HP
Madel: HP Pavilion Laptop 15-cs2xxx
Processor: Intel(R) Core(TM) i3-8265U CPU @ 1.60GHz 1.80 GHz
Installed memory (RAM): 8.00 GB (7.89 GB usable)
System type: 64-bit Operating System, x64-based processor

Pen and Touch: Mo Pen or Touch Input is available for this Display

Figure 1
1.2 Software Specification

In this project, plethora of software are used which are represented in Table 2.

| Software | Configuration

Operating System Windows 10 (64-bit Operating System)
IDE Google Colab
Scripting Language & Version Python, Python 1.7

Table 2

1.3 Integrated Development Environment

Google Colab

Google Colab is a cloud based Collaboratory that is created in order to help disseminate machine
learning education and research. This is like a Jupiter notebook environment that doesn’t need any
set up and would run entirely on the cloud.

It helps to combine both executable code and rich text in one document. One can put images,
HTML, LaTeX and much more to it. Figure 1 illustrates how a google colab looks after login in.

Steps to reach the Figure 1:

1- Login in Google.

2- Open Google colab and login in it using the email address.

3- Once you are on inside the Google Colab, you’ll have option to load any code you have from
GitHub, Google Drive or just upload. You can upload any data file you want to use for the
learning method and built model. Once the data is mounted on drive one can use it by copying
its path whenever needed.

Figure 2

2 Libraries

After one has started the notebook installation of vital libraries is done. Important libraries
required to execute any project are installed. And if some libraries which are not there then one
can use pip install (Library name).

Sklearn.ensemble Sklearn.neighbors
sklearn.model selection | Tensorflow.keras.models
skimage Skimage.io
tensorflow opencv
Numpy Pandas
Sklearn,preprocessing Sklearn
Tensorflow.keras.layers Sklearn.metrics
Matplotlib Matplotlib.pyplot
sklearn.pipeline sklearn.model selection
sklearn.preprocessing keras.wrappers.scikit learn
StandardScaler KFold
keras.models keras.layers
Table 3
3 Dataset

There are two different Data sets which have been taken for the research. The dataset are taken
from Kaggle which is opensource.

3.1 European Soccer Data set.

Dataset

European Soccer Database
25k+ matches, players & teams attributes for European Professional Football

Figure 3

The European Soccer Dataset contains seven different files, these files are Country, League,
Match, Player, Player Attributes, Team, Team Attributes. A data contains a total of 222,796
rows and 299 rows. Every File has a set of variables which are going to be used in the
research. Also, more variables were calculated.

3.2 Complete Player Dataset

Dataset

FIFA 20 complete player dataset
18k+ players, 100+ attributes extracted from the latest edition of FIFA

Figure 4

The FIFA 20 complete player dataset contains all players around the world in different
leagues. We have taken players who were part of FIFA for the year 2015-2016. All skills and
attributes of players are available and are used in the research.

These First Dataset had files in SQL.ite format, these were transformed into CSV with the
help of DB browser, DB browser is a free software which can be downloaded from google.
After installing it, one can view the files which are present in SQ format. For our research
these files were downloaded in csv format. Figure illustrates the files which are present in
data and converted into csv.

I3 DB Browser for SQLite - C\Users\SUMEET\Desktop\RIC Papers\Thesis\soccer\databasesalite
Fle Edit View Tools Help
& New Database % Open Database Wirite Changes £ Revert Changes & Open Project [l Save Project e Aftach Database X Close Database

Edit Database C
Database Structure Browse Data Edit Pragmas Execute SQL

[Create Table s Create Index |} Modify Table | Delete Table (2 Print Mode: | Text
Name Type Schema
v [Tables (8)
E Country CREATE TABLE *Country’ (id" INTEGER PRIMARY KEY AUTOINCREMENT, “name” TEXT UNIQUE)
[League CREATE TABLE "League’ ("id” INTEGER PRIMARY KEY AUTOINCREMENT, “country_id” INTEGER. “name” TEXT UNIQUE, FOREIGN KEY(country_id") REFERENCES "co
[Match CREATE TABLE "Match” (id” INTEGER PRIMARY KEY AUTOINCREMENT, “country_id” INTEGER, “league_id" INTEGER, “season " TEXT, “stage’ INTEGER, "date’ TEXT,
[Player CREATE TABLE "Player’ (“id” INTEGER PRIMARY KEY AUTOINCREMENT, ‘player_spi_id” INTEGER UNIQUE, “player_name’ TEXT, ‘player_fifa_api_id" INTEGER UNIQU
L] Player_Attributes CREATE TABLE *Player_Attributes" (id” INTEGER PRIMARY KEY AUTOINCREMENT, ‘player_ffa_api_id” INTEGER, “player_api_id” INTEGER, ‘date’ TEXT, ‘overall_ratin
£ Team CREATE TABLE “Team’ (id INTEGER PRIMARY KEY AUTOINCREMENT, "team_api_id" INTEGER UNIQUE, “team_fifa_api_id" INTEGER, “team_long_name’ TEXT, ‘tea
] Team_Attributes CREATE TABLE Team_Attributes™ ('id” INTEGER PRIMARY KEY AUTOINCREMENT, "team _fifa_api_id" INTEGER. “team_api_id” INTEGER. “date” TEXT, buildUpPlaySpe|
[sqlite_sequenca CREATE TABLE sqjite_sequence(name seq)
Indices (0)
] Views (0)
LJ Triggers (0)
Type of data cur
5 char(s)

Figure 5
The second dataset contains player dataset from last 10 years, for this research we have
simply downloaded the players who were playing FIFA in 2015.

4 Data Pre-processing
The two files downloaded contained 238,254 rows and 333 columns which in total is
14,441,635 integer value data. This data is cleaned with the help of Ms Excel and
mounted to Google Colab for building model.

4.1 Data Scaling

Data scaling is performed for scaling the values.

test_data. head()

Home Team Average Away Team Average Home Team Overall Playing Average Away Team Overall Playing dverage Home Team Potential Average Away Team Potential Average home_team_goal away_team_goal B36SH B365A

0 a7
1 418
1 ar
3 41
4 44

Home Team Average

0 0497925
1 0257261
2 0414933
3 0473029
4 0483477

523556 67.668667
419000 71333333
43.4000 T4TITTT8
438000 T4g1IN
44,5000 75000000

Figure 6 Before Scaling

73666667
71333333
0944444
70.555556
68277178

75.000000
T3EHN
77666667
76.055556
79.055556

76.555536
736N
8372mn
73666667
70.555556

2

1
0

lway Team Average Home Team Overall Playing Average Away Team Overall Playing Average Home Team Potential Average Away Team Potential Average home_team_goal away_team_goal

0.440094 0.518507
0.161380 0.622020
0253264 0.719260
0.263708 0.71435%
0.237598 0.725533

Figure 7 Post Scaling

1. Model --- CASE 1

a. Neural Network Model

def baseline model():
model = Sequential()

0503083
0338213
0.330201
0.363234
0.260875

0466667
0402564
0589744
0607692
0653848

0538462
0402564
0.369231
0403128
0.261538

011111
0222022
0111111
0.000000
0111

model. add(Dense(8, input_dim=8, kernel initializer="normal', activation='relu'))

model. add(Dense(1, kernel initializer="normal'))
model. compile(loss="mean_squared_error', optimizer='adam')

print{model.summary())
return model

model = baseline_model()

b. Ridge Regression

ridgeR = Ridge(alpha

1

Figure 8

)

ridgeR.fit(train_x, train_ y)

y_pred = ridgeR.predict(test x)

ridgeR.fit(train_x, train_y)

Figure 9

1
2

260 280
167 550
650 157
157 600
157 600

B36SH B3ESA

0.062500 0.052248

0.025240 0.134265

0216750 0.014885

0021234 (.149453

0021234 0.149453

c. Lasso Regression

lasso = Lasso(alpha = 1)
lasso.fit{train_x, train_y)
y _predl = lasso.predict(test x)

lasso.fit{train_x, train_y)

Figure 10

d. Random Forest

from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n estimators=20, random state=g)
regressor.fit(X train, y train)
y_pred = regressor.predict(X test)

regressor, fit(X_train, y_train)

Figure 11

e. XGBoost

model = XGBRegressor()
model.fit({X train, y _train)

y_pred xgb = model.predict(X test)

Figure 11

2. Models --- CASE 2

a. Neural Network

det baseline model C2():
model (2 = Sequential()
model C2.add(Dense(8, input dime3, kernel initializer="normal’, activation='relu'))
model C2.add(Dense(1, kernel initializer="normal'))
model C2.compile(loss="mean squared error', optimizer='adam')
print(model C2.summary())
return model C2

model (2 = baseline model C2()
Figure 12

b. Ridge Regression
ridgeR = Ridge(alpha = 1)
ridgeR.fit({train_x C2, train_y C2)
y_pred C2 = ridgeR.predict(test x C2)

ridgeR.fit({train x C2, train_y C2)
Figure 13

c. Lasso Regression

lasso = Lasso(alpha = 1)
lasso.fit({train_x C2, train_y C2)
y_predl C2 = lasso.predict(test x C2)

lasso.fit({train_x C2, train_y C2)
Figure 14

d. Random Forest

from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n estimators=28, random state=0)
regressor. fit(X_train C2, y train (2)
y_pred (2 = regressor.predict(X test (2)

regressor. fit(X_train C2, y train (2)
Figure 15

e. XGBoost

L

model = XGBRegressor()
model.fit({X train C2, y train (2)

y_pred C2 xgb = model.predict(X test C2)

Figure 16
5 6 Evaluation

For the Evaluation three Metrics have been chosen. MSE, MAE, RMSE

6

Mean squared error MSE = = Zcf
t=1
1l .
Root mean squared error RMSE = = Z e;
t=1
1 n
Me bsolute e MAE = »
ean absolute error [AE - ; €
Figure 17
References

Bhattacharyya, S., 2020. Ridge And Lasso Regression: L1 And L2 Regularization. [online]
Medium. Available at: <https://towardsdatascience.com/ridge-and-lasso-regression-a-
complete-guide-with-python-scikit-learn-e20e34bcbfOb> [Accessed 2 August 2020].

Malik, U., 2020. Random Forest Algorithm With Python And Scikit-Learn. [online] Stack
Abuse. Available at: https://stackabuse.com/random-forest-algorithm-with-python-and-scikit-
learn/ [Accessed 14 July 2020].

https://stackabuse.com/random-forest-algorithm-with-python-and-scikit-learn/
https://stackabuse.com/random-forest-algorithm-with-python-and-scikit-learn/

