"'—-
\ National

Configuration Manual

Research Project
MSc in Data Analytics

Nandhavarman Jeevarathinam
Student ID: x18186459

School of Computing
National College of Ireland

Supervisor: Dr. Paul Stynes

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nandhavarman Jeevarathinam
Student ID: x18186459
Programme: MSc in Data Analytics
Year: 2020
Module: Research Project
Supervisor: Dr. Paul Stynes
Submission Due Date: 30/09/2020
Project Title: Configuration Manual
Word Count: 899
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Nandhavarman Jeevarathinam
x18186459

1 Introduction

This document will discuss the hardware, software requirement and system configuration
needed for to carry out this research project. Below are the steps that need to be followed
to create the deep learning model developed in this research project.

2 System Configuration

2.1 Hardware

Processor: Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz
GPU: NVIDIA GeForce GTX 1050Ti (4GB)

RAM: 8GB

Storage: 1'TB HDD

Operating system: Windows 10, 64-bit.

2.2 Software

Python using Spyder IDE: Data cleaning, data pre-processing, analysis and visualization.
Microsoft Excel: Used for saving of data.

System
Manufacturer: Acer
Model: Nitro AN515-52
Processor: Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz 2.30 GHz
Installed memory (RAM): 8.00 GB (7.85 GB usable)
System type: 64-bit Operating System, x64-based processor

Pen and Touch: No Pen or Touch Input is available for this Display

Figure 1: System configuration

3 Implementation

This research project is implemented using the below steps as mentioned in the flow
chart. The whole research can be divided into two main parts.

e Data pre-processing.

e (lassification task.

Data Pre-processing Classification Model

MAST Portal

Recurrence
images

FITS file link(txt)
ImageDataGenerglor
Converted to Resizing
excel for better images and
processing assigning
l classes
Automation VGG16
o access convolutional
all the FITS layers
data
Recurrence plot Artificial
using time neural
series data from network for
FITS classification

Recurrence Evaluation
images matrics
stored in

local

Figure 2: Implementation workflow

4 Data Pre-processing

4.1 Mikulski Archive for Space Telescope (M AST) Portal

ArchiveStaws Kepler Data Search & Retrieval g ohemprons

Standard Form Fite Upiond Form
eeen Resel (Glor Fomn
Resolver Radius (arcmin)
[Resowe v|
Right Ascension Declination [Equinox
2000 <]
Kepler ID Investigation ID 2Mass ID
KEP Mag Target Type Release Date
— G Long Gadence. @ Shor Gadence | —
Teft Log & Quarter

Condition Flag

Exoplanet Host Star]

feld1 Field feld? Fisld

epter D gl [KepiriD 5]
felas Fisld felas Fisid

epter 1D 1 [KeptriD o

Figure 3: Mast portal

Using the MAST portal, the data is chosen using different search parameters provided
by the portal. The links to the light curves are downloaded as a text file to the local
machine.

4.2 FITS link file

The link file downloaded from the MAST portal has all the URLs to download the light
curves. These links will be accessed using astropy.io package in python to extract the
time series data.

Links |
https://archive.stsci.
P i tsci.
https://archive.stsci
https://archive.stsci
jve.stsci

10-2012277125453 _lic.fits
01433410-2013011073258_lic.fits
2353-2009166043257 _lic.fits
2353-2009259160929_llc.fits
2353- _llc.fits
2353-201 31_llc.fits
2353-2010174085026_lic.fits
2353-2010265121752_lic.fits
Ir001572353-2010355172524_lic.fits
15/001 2353-2011073133259_lic.fits

Figure 4: FITS link file

001

001

001

001
15/00157
15/001
115/001

p
https://archive.stsci.

tsci.

https://archive.stsci.
tsci

$3388383 %<
T EEE S E G R G ®
£55858588¢

https://archive.stsci.

4.3 Accessing FITS data

th fits.open(fits f] hdulist:
k2_bjds = hdulist[1].data['TI .byte wbyteorder()
sap_flu; hdulist[1].data[4ap() . newbyteorder()

pdcsap_- hdulist[1]. C byteswap() .newbyteonder()
data = {'Ti k2 bjds, 'flux':

struct_data = pd.DataFrame(data)

struct_data = struct_data.dropna()

Figure 5: Code for accessing time series data
The FITS link file is loaded into the Python IDE using pandas package. Then as-
tropy.io package is used to access each and every link as in research work [1]. Only "TIME’|

'SAP FLUX’ and 'PDCSAP FLUX’ data is extracted from the FITS data. Then they
are stored in a dataframe for plotting the time series.

4.4 Plotting time series for experiment 1

TRAPPIST1 Ught Curve - Campaign 12 TRAPPIST1 LightCurve - Campaign 12

=

(a) Positive case (b) Negative case

Figure 6: Light curves

Using the "TIME’ and 'PDCSAP FLUX’ data of each and every light curve, the time
series graph are plotted and saved into the local machine. For experiment 1, these time
series images are given as input to the VGG16 convolutional network.

4.5 Recurrence plot for experiment 2 and 3

The time series data which was stored dataframe is converted to recurrence plot data
using the below algorithm in figure 7. For creating a recurrence plot, sklearn and numpy
package from python are needed. Recurrence plots are created from the time series
data extracted from the FITS file. It is used in this research work as it provides better
pattern recognition for the convolutional neural network [1]. A custom function is made
for creating the recurrence plot using the time series data. The recurrence plot custom
function is added in the code artifact.

def recurrence_plot(s, eps=None, steps=N
if eps=5
steps=5

s.pairwise.pairwise_distances(s)

np.floor(d / eps)

steps] steps

Figure 7: Code for recurrence plot

The recurrence plot is then used as a input for VGG16 convolutional architecture in
experiment 2. VGG16 architecture recognises the pattern better than feeding the time
series plot as a input.

(a) Recurrence plot (b) Recurrence plot data

Figure 8: Recurrence plot

Then recurrence plot is plotted and stored to our local machine using the below code.

struct_data = struct_data.dropna()
struct_data = struct_data[0:2000]

s 2/input’+f"{link:2d}"+'.png")

Figure 9: Saving to local machine

5 Classification model for all experiments

5.1 Packages required

image import ImageDataGenerator
Sequential

Flatten, Dense, Dropout
T+ -
yStopping, ReducelROnPlateau

Figure 10: Packages required

Figure 10 shows the packages used to implement the VGG16 architecture for image
classification.

5.2 Image Augmentation

The main motive of using image augmentation is to modify the original image by res-
izing, rotating images, zooming etc to design more new images. With this concept, the
classification model will have more images or features to capture than before which will
increase the exposure to unseen data.

train_datagen = ImageDataGenerator(
rotation_range=40
width_shift_range

fill mode="nea
validation_split

)

test _datagen = ImageDataGenerator(
rescale=1/255,

)

Figure 11: Image Augmentation

Addition of image augmentation is done with TensorFlow image data generator. When
different type of augmentation are done, the original image data will be unaffected by
this functionality.

5.3 Resizing the input size

batch_size = 4

train_generator = train_da en.f from_directory(

batchfg Z
class_mod

directory(

Figure 12: Resizing and assigning classes

Using this code snippet, the test and train data are separated. While assigning the
data, the input images can be resized as well. In our methodology, the images are resized
to 512 x 512 size.

5.4 VGG16 architeture

The VGG16 architecture is a in built convolutional neural network of keras package. We
are taking the input layer as (512,512,3) as we resized the images to 512 x 512. For the
weights parameter, 'imagnet’ is chosen as it performs well with image data.

input_shape=
)
model = Sequential()

(256, activation="r
, activation:

(0.1, na
model.add(Dense(1, activation=

model. summary ()

Figure 13: VGG16 architeture

Then for the neural network, a sequential model is created from keras using three
hidden layers with 256, 128 and 64 nodes, a dropout layer and an output layer with
sigmoid activation function.

for enn_block_layer in model.layers[@].layers:
cnn_block_layer.trainable = False
model.layers[@].trainable = False

Figure 14: Weights for CNN nodes

The code snippet in figure 14 is used to freeze the VGG16 model from changing any
weights. It is used with default weights.

Figure 15: Model complier and calculating total count and class weights

Model is complied using RMSprop and 'binary crossentrophy’. Using OS package, the
image in each classes are counted which is used to calculate total count and class weights.
These parameters will be used while training the module.

history = model.fit_generator(
train_generator,
och=1len(train_generator.filenames) // batch_size,

EarlyStopping(patien estore_best_weights=True),
ReducelROnPlateau(patie|

Figure 16: Training the model

The steps per epoch and validation steps are dynamic depending upon the count of
training data used. Number of epoch is 20 where if there is no improvement for three
continuous epochs then the model stops training using callbacks functionality.

5.5 Evaluation

The model trained is evaluated using the following snippet for all three different experi-
ments.

.plot(history._history ¥]) o
Stitle('m

.ylabel(’]

.xlabel(’) os
legend(['tr

.show()

0 2 H 5 3 »
epoch

(a) Model accuracy code (b) Model accuracy plot

Figure 17: Model loss evaluation

model loss

3

xlabel("’)
.legend(["train’, 'test’], —
show() o

0 2 3 5 5)
epoch

(a) Model loss code (b) Model loss plot

Figure 18: Model loss evaluation

Using the above code from figure 17, the train and test accuracy for all the epochs
are plotted for comparison between experiments.

Using the above code snippet from figure 18, the model loss plot is plotted for every
epoch. Both train and test loss is plotted.

References

[1] Silva, Diego Alves de Souza, Vinicius Batista, Gustavo. (2013). Time Series Clas-
sification Using Compression Distance of Recurrence Plots. Proceedings - IEEE Inter-
national Conference on Data Mining, ICDM. 687-696. 10.1109/ICDM.2013.128.

	Introduction
	System Configuration
	Hardware
	Software

	Implementation
	Data Pre-processing
	Mikulski Archive for Space Telescope (MAST) Portal
	FITS link file
	Accessing FITS data
	Plotting time series for experiment 1
	Recurrence plot for experiment 2 and 3

	Classification model for all experiments
	Packages required
	Image Augmentation
	Resizing the input size
	VGG16 architeture
	Evaluation

