e
ey \

Vmﬂ

N
N National
College
Ireland

Configuration Manual

MSc Research Project
Data Analytics (MSCDA-B)

Himanshu Gupta
Student ID: x18203302

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Igbal

National College of Ireland National

Project Submission Sheet College of
School of Computing Ireland
Student Name: Himanshu Gupta
Student ID: x18203302
Programme: Data Analytics (MSCDA-B)
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Muhammad Igbal
Submission Due Date: 28/09/2020
Project Title: Configuration Manual
Word Count: 1294
Page Count: 14

| hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission,to | g
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Himanshu Gupta
x18203302

28th September 2020

1 Introduction

This manual presents the system configuration required to run the submitted project. It
contains all the packages, libraries, and programming codes written and used during the
project implementation of : ”Trash Image Classification System using Machine Learning
and Deep Learning Algorithms”.

2 System Configurations

2.1 Hardware

Following Hardware configuration used:
RAM:8GB System type: Macintosh 64 bit Processor: Dual-Core Intel Core i5
CPU:1.8GHz Storage:1 TB HDD GPU::Intel HD Graphics 6000 1536 MB.

2.2 Software

e PyCharm: It is an IDE that is majorly used to run the python code. Two ver-
sions are there one is professional and one is community version. For this project
Community edition has been downloaded from this website'.

e Google Colaboratory: Also known as Colab, this is an online cloud service
that provides an environment to run your Jupyter notebooks freely. All the basic
packages for machine learning problems are already installed in the environment
like TensorFlow, Keras, pandas, and user needs to import these packages according
to their usage. However, to run a specific version of software the version should be
mentioned in the notebook before calling their functions. Three modes are provided
to run the notebook which are None, GPU, and TPU. GPU setting was used to
execute the notebooks. Authenticated google drive access is necessary to access
Colab. Sometimes GPU is available for limited usage per day and in that case,
None can be selected in the settings as shown in Figure 1.

Thttps://www.jetbrains.com/pycharm/

http://www.jetbrains.com/pycharm/

Runtime Tools Help Saving.
Run all H/Cul+Fo
Run before H/Cul+Fa !
u befere Notebook settings
Run the focused cell 3E/Cri+Enter
Run selection ¥/ Clrie Shift+Enter

Run after M /CI+F10

Interrupt execution M /CurieM
Restart runtime /CrrieM
Restart and run all { L L8am more
Factory reset runtime
D Omit code cell output when saving this notebook
Change runtime type .
Manage sessions
View runtime logs CANCEL

Figure 1: Settings: Google Colaboratary

3 Project Development

The main steps in this research development are data pre-processing(data downloading,
data analyses, new data structure creation, removing unwanted columns), conversion
from image to NumPy arrays, creating dummy variables, data split, data array reshaping
for each model, data normalization in several stages. Several codes have been written
for successfully performing and evaluating all the experiments such: creating a baseline
Sequential Keras, ResNet-50, VGG-19 neural network, adding several layers with different
weights and defining training parameters, selecting hyper-parameters for the XGBoost
model. Writing codes for running all the models at different k-folds for cross-validation,
changing sample size and many epochs, creating classification matrix, training testing
accuracy, and plotting evaluation graphs.

3.1 Data Gathering

The TACO (Trash Annotation in Context) dataset used in this study is not available
directly. This involves two below steps:

1) Go to the Taco site ° and click on the Download button. Download ’annota-
tions.json’ from * which contains information like URL path of images hosted on Flickr
server, filenames, categories, bounding boxes, images width, and height, etc. Store this
annotation file in the local drive directory.

2) Download python file download.py’ from the same site * and open this file in
PyCharm IDE give the directory path of ’annotation file’ downloaded above as shown in
Figure 1. This download script downloaded all 1500 images in 10 sub folders batches in
the mentioned path of the local drive.

3. To access data in Google Colab all the data needs to upload on google drive from
local drive in a folder ’data’ (folder name could be any).

4. Both ’annotations.json’ and ’download.py’ files were attached in the project arti-
facts after giving the proper credits and references to the original authors of data.

5. Created two folders in main directory path with names as shown in figure 3

http://tacodataset.org/
Shttps://github.com/pedropro/TACO/blob/master/data/annotations.json
“https://github.com/pedropro/TACO/blob/master/download.py

http://tacodataset.org/

parser = argparse.Argument? r(description="")
parser.add_argument ('--dataset_path', required=False, default= './data/annotations.json', help='Path to annotations')
args = parser.parse_args()

dataset_dir = os.path.dirname(args.dataset_path)

Figure 2: Annotation file path

+ [saved_model
» [l modelaug

» [modelB

2 trainDataTACO

Figure 3: folder structure

3.2 Data Preparation

Data was prepared for baseline model and then data augmentation has been done to
generate more data. Python script for data preparation shown in Figure 4. Bounding
boxes were fetched from the initial data frame and the padding of *20° has adjusted to
find the minimum and maximum value of the x-axis and y-axis. A null check has been
run on the data and then converted the data frame into CSV format and saved in the
drive directory path in Figure 5.

path = "/content/drive/My Drive/"
anns_file path = "/content/drive/My Drive/annotations.json’

Read Annotations
with open(anns_file path , 'r') as f£:
dataset = json.loads(f.read())

categories = dataset| 'categories')
anns = dataset|['annotations’]

imgs = dataset['images']

nr_cats = len(categories)
nr_annotations = len(anns)
nr_images = len(imgs)

Create Category Dataframe and Select five new Category(ouput classes)' for category Dataframe
cat_df = pd.DataFrame(categories)

keyVallList = ['Cigarette', 'Clear plastic bottle', 'Drink can', 'Plastic straw','Plastic £ilm']
category df = pd.DataFrame([d for d in categories if d[‘name'] in keyValList])

Create Annotation Dataframe
ann_df = pd.DataFrame(anns)

Create Images Dataframe
image_df = pd.DataFrame(imgs)

Dropping unncessary columns

category df = category df.drop(['supercategory'], axis = 1)

image df = image_df.drop(['license’,'flickr_url', 'coco_url', 'date captured',’'flickr 640 url'], axis=1)
ann_df = ann df.drop(['id'], axis=1)

=

merged_img_ann df = pd.merge(left=image df, right=ann df, left on='id', right on='image id')
final merged df pd.merge(left=merged img_ann_df, right=category df, left on='category id', right on='id')
final merged df final merged df.drop(['id x','id y','category id','image id', 'width', 'height’'], axis =1)

final merged df final merged df.rename(columns={"file name": “"filename", "name": “"category"})
final merged df.head()

Figure 4: First Part of the script which create data frame with selective five categories
and remove duplicate values from the data

In the continuation of above script, after creating the initial data frame augmented data
generated through the script.
= A free open source Python image library *PIL’ has been imported.

= Image cropping, Rotation, Gaussian blur ,horizontal flip functions applied to get
these four types of images.

= Images belongs to ’Drink Can’ and ’Plastic Straw’ were very lessor as compare to
other categories and therefore another set of vertical flipped images generated for
these two categories.

= Bounding boxes columns dropped from the dataset.

The code snippet is shown in Figure 7. Generated data further divided into train and
test dataset using scikit-learn which is a machine learning open-source library.

New Dataframe with selective columns For cropping the images
df = final merged df[['filename', 'bbox',‘category']]

df = df.drop_duplicates('filename’, keep='last')

storing bounding box values as seperate columns

df =

pd.concat([df , df['bbox’'].apply(pd.Series)], axis = 1)

df.columns = ['filename’, 'bbox', ‘category’, ‘x min','y min','x max’, 'y max'] # x max : width and y max : height
df = df.drop(['bbox',], axis=1)

Calculate maximum x and maximum y points
df['x max'] = df['x max']+df['x min']
df{'y max'] = df['y max']+df['y min']
Convert float columns to integer
for col in df.columns[2:]:
df[col] = df[col].astype(int)

#Add padding to the bounding boxes
padding = 20

df('x min'] = df['x min'] - padding
df['y min'] = df['y_min'] - padding
df['x max'] = df['x _max'] + padding
df['y max'] = df['y max'] + padding

df.head()
filename category x_min y_min x_max y_max
0 batch_1/000010.jpg Clear plastic bottle 612 967 1152 1381
3 batch_1/000001.jpg Clear plastic bottie 806 724 1310 969
4 batch_1/000005.jpg Clear plastic bottie 804 537 933 813
5 batch_1/000048.jpg Clear plastic bottie 559 501 921 1462
9 batch_1/000000.jpg Clear plastic bottie 690 1205 883 1443

df.isnull().values.any()

Palse

Save Initial data before augmentation to CSV file
df.to_csv(path +'InitialbData.csv',6index=False)

Figure 5: Initial data frame saved into CSV file which used by various base model

Creste empty lists
new filename = []
new_category = []
Saved cropped images in a new directory

for ind in df.index:
bbox = (df('x min’)[ind],df['y min'|(ind],df[x max']|(ind),df('y max'](ind])
imagePath = os.path.join(inPath+'/'+df(['filename’|[ind])
img = Image.open(imagePath)
img = img.crop(bbox)
imgl = img.rotate(B8) # Rotated images at 88 degree
img2 = img.filter(ImageFilter.GaussianBlur(radius = 2)) # Generate Blurred image
img3 = img.transpose(Image.FLIP LEFT RIGHT) #Flipping horizentally
Rename fileimages
imageName = df(‘filename'|[ind][:-4]
Cropped Image

PP - +' /' 4 + ped’+'.jpg’
new_filename. +'cropped'+'.jpg’)
new_ Y. d(df(’ gory')(ind))
Rotated Image
X - o' /'% & ' ted ' +'.jpg’
new_£ilename.append(imageName +'rotated's'.jpg')
new_ gory.app dg(’ gory’][(ind])

Blurred Image
blurlmagePath = outPath +'/'+ imageName +'blur'+’.jpg’
new_£filename.append(imageName ¢'blur'+'.jpg’)

new_ '8 df[* y'1lind))

Gray Scale Image

hflip. h = /4 4 4+ 'hElip‘4'.9pg’
new_filename.append(imageName +'hflip'+'.jpg’')

new v. dsg(* gory’)(ind])

¢ Saving files

img.save(croppedimagePath)

imgl.save(rotatedImagePath)

img2.save(blurImagePath)

img3.save(hflipImagePath)

if ((df['category’)[(ind] == 'Drink can') or (df('category’][ind] == 'Plastic straw')): # Por handling imabalanced class
imgd = img.transpose(Image.FLIP TOP_BOTTOM)
Vertically Flip

vElip. - LA +'vElip“+”.jpg’
new_filename.append(imageName +'vElip'+'.jpg')
new, Y. d{df[" gory'][ind])

imgd.save(vflipImagePath)

print("Images created successfully®)

Figure 6: Code for generating Augmented data

Final data has saved into csv file format in the main directory folder and data has
been fetched from there while implementing the model.

Save to CSV file
final df.to_csv(path +'FinalData.csv',6index=False)

axdf = pd.DataFrame(columns=['Classes’', 'Count’])
axdf['Count'] = list(final df[’'category'].value counts())
axdf['Classes'] = final df['category'].value_counts().index.values
axdf

Classes Count
Plastic film 1004

Cigarette 788

Drink can 560

Plastic straw 550

BOWw M = o

Clear plastic bottle 540

Figure 7: Final data

4 Codes for machine and deep learning models

The codes for neural network models involve importing Keras sequential model layers
and model initialization. Neural network models can not read images directly so need to
convert it into NumPy array and reshaping according to the model input dimensions.

4.1 Experiments with Sequential Keras Baseline Model

Two baseline models were developed for initial data and second for the augmented data.
The input array needs to created before splitting into training and testing data. The
early parameters setting keeps the same for both the model. After model evaluation, the
cross-validation k-fold method implemented with 10 splits as shown in figure 13. But first
needs to import all the required libraries like in below figure 9. Pillow is the main image
processing library used to augment image data and have functions like rotate, crop etc.
After that all keras layers and models along with early stopping package which is used
for model optimization as shown in Figure 8

#For Keras model

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten, Activation, BatchNormalization
from keras.layers import Conv2D, MaxPooling2D

from keras.utils import to_categorical

from keras.regqgularizers import 11

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import train_test_split, KFold, cross_val_score

Figure 8: Required Keras Libraries

import pandas as pd
tmatplotlib inline

import json

import numpy as np
import matplotlib.pyplot as plt

from matplotlib import pyplot

import seaborn as sns

Data Processing

import os

import os.path
import random

import PIL
import glob

from PIL import Image # to read images

def create model():
model = Sequential()

model.add(Conv2D(32, (3, 3), input_shape =

model.add(Dropout(0.5))

model.add(BatchNormalization())

model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dropout(0.5))

model.add(Dense(5, activation='softmax'))
model.compile(optimizer="adam', loss='categorical crossentropy', metrics=['accuracy'])

return model

Figure 9: Required Libraries

(128, 128, 3), activation='relu'))

model = create_model()
model.summary()

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 126, 126, 16) 448
dropout (Dropout) (None, 126, 126, 16) 0

batch _normalization (BatchNo (None, 126, 126, 16) 64
dropout_1 (Dropout) (None, 126, 126, 16) 0
flatten (Flatten) (None, 254016) 0
dropout_2 (Dropout) (None, 254016) 0

dense (Dense) (None, 5) 1270085

Total params: 1,270,597
Trainable params: 1,270,565
Non-trainable params: 32

+ Code — +

Figure 10: Keras Sequential model baseline structure from the scratch

Early Stopping Parameters
early stopper = EarlyStopping(monitor = ‘val loss', patience = 20)

Model fit

history final = new model.fit(x train, Y train, epochs=100, batch size=50, validation_split=0.20, callbacks = [early stopper])

Figure 11: Keras Early stopping package imported and use to stop the training if it is
not improving to same the computational and time cost. Also, for overfitting the model

model cv = KerasClassifier(build fn=create model, epochs=50, batch size=50, verbose=0)
kfold = KFold(n_splits=10, shuffle=True, random state=42)
resultsl = cross_val score(model cv,x_train, ¥ train,cv=kfold,verbose=10)

plt.

plt.
.plot(history.history['accuracy’'])
.plot (history.history['val_accuracy'])
plt.
.¥label('accuracy')
.xlabel('epoch')
plt.

plt
plt

plt
plt

plt.
.plot{history.histeory['loss’'])
.plot(history.history['val_loss'])

plt
plt

plt.
.ylabel('loss')
.xlabel(' epoch')

.legend(['train', ‘wvalid']})

plt
plt
plt

plt.

Figure 12: K-fold cross validation

figure(l, figsize = (15,8))

subplot(221)

title('model accuracy')

legend(["train', ‘wvalid'])

subplot(222)

title('model loss')

show()

Figure 13: Plot evaluation results

4.2 Experiments with ResNet-50 Model

The code for ResNet-50 model initialisation is shown in Figure 15. The weights for the
ResNet which trained on ’imagenet’ has downloaded in the model call. The first layer of
the model is not trainable because it has already trained on imagenet. The summary of
the model is shown in Figure 16. Import ResNet-50 model from keras application which
will load the ResNet-50 object during the initialisation call.

from keras.applications import ResNet50

Figure 14: ResNet-50 Model Import

def create model():
model = Sequential()
model.add(ResNet50(include_top = False, pooling = 'avg', weights = 'imagenet'))
Second layer added for dropout
model.add(keras.layers.Dropout(0.3))
Third layer as Dense for output 5-class classification
model.add(Dense(5, activation = 'softmax'))
No need to train first layer (ResNet) model as it is already trained
model.layers[0).trainable = False
model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
return model

Figure 15: ResNet-50 Model initial object creation.

Model: “"sequential 1"

Layer (type) Output Shape Param #
resn::;G [F;z:tiunalj T::ner 2048) o 23587712
dropout (Dropout) {Hone, 2048) a
dense 1 (Densea) {Hona, 5) 10245

Total params: 23,597,557
Trainable params: 10,245
Mon-trainable params: 23,587,712

Figure 16: Trainable and Non-trainable parameters of ResNet-50

After plotting all the evaluation plots the confusion matrix created using sklearn
metrics plot of confusion matrix. The code reference for plotting the confusion matrix is
referred from’

Shttps://analyticsindiamag.com/transfer-learning-for-multi-class-image-classification-using-deep-
convolutional-neural-network/

#Plotting the confusion matrix
confusion mtx = confusion matrix(y_true, y_pred)

#Defining the class labels
class_names=['Clear plastic bottle', 'Drink can', 'Plastic film',6 'Cigarette', 'Plastic straw']

#Plotting normalized confusion matrix
plot_confusion matrix(y_true, y_pred, classes = class_names, normalize = True, title = 'Normalized confusion matrix')

Figure 17: Confusion Matrix Code

4.3 Experiments with VGG-19 Model

VGG-19 model first need to import from keras applicaiton along with preprocess input
which is used to convert input image data array into preprocessed train and test features
required by VGG-19 for feature extraction and model training. The code is shown below
in 2?2 . The code for VGG-19 model initialisation is shown in Figure 19. The weights
for the VGG-19 was downloaded itself with the function call. This summary of model
is shown in Figure 20. To run the cross validation input processes again according to
VGG-19 and the code shown in Figure 22 for the same.

from keras.applications import VGG19
from keras.applications.vggl® import preprocess_ input

Figure 18: VGG-19 Import

Create the base model of VGG19

vggl9 = VGGl9(weights='imagenet', include_top=False, input_shape = (128, 128, 3), classes = 5)

Figure 19: VGG-19 Function call

In Figure 21 the code for converting the input train and test array into features
according to the format required by VGG-19.

10

Model: "wggld"

Layear (type) Output Shape Param #
input_2 (Inputlayer) [(Nome, 128, 128, 3)] 0
blockl convl (ConviD) {Hone, 128, 123, 64) 1732
blockl _convl (ConvaD) {Hone, 128, 123, 64) 36328
blockl pool (MaxPooling2D) {Hone, 64, 64, 64) 0
block? convl (ConvaD) {Hone, 64, 64, 128) 73856
blocki conv2 (ConviD) {Hone, 64, 64, 12E) 147584
block? pool (MaxPoolinglD) {Hone, 32, 32, 128) a
block3 _convl (ConwviD) {Hone, 32, 32, 256) 295168
block3_convl (ConvaD) {Hone, 32, 32, 256) 590080
block3_convl (ConviD) {Hone, 32, 32, 256) 590080
block3_conv4 (ConvaD) {Hone, 32, 32, 256) 590080
block3 _pool (MaxPooling2D) {Hone, 16, 16, 256) 0
block4_convl (ConvaD) {Hone, 16, 16, 512) 1180160
blockd4_conv2 (ConviD) {Hone, 16, 16, 512) 2359808
block4_convl (ConviaD) {Hone, 16, 16, 512) 2359808
blockd4_convd (ConviD) {Hone, 16, 16, 512) 2359808
blockd4 _pool (MaxPoolinglD) {Hone, &, 8, 512) a
block5_convl (ConviD) {Hone, 8, 8, 512) 2359808
bleck5_conv? (ConviD) {Hone, &, 8, 512) 2359808
block5_convl (ConviD) {Hone, 8, 8, 512) 2359808
bleck5_convd (ConviD) {Hone, &, 8, 512) 2359808
block5_pool (MaxPooling2D) (Hone, 4, 4, 512) a

Total params: 20,024,384
Trainable params: 20,024,384
Non-trainable params: 0

Figure 20: Trainable and Non-trainable parameters of VGG-19 Model

11

Create Data

print("Generating data........ ")

(X_train, X test, y train, y test) = create_data(dfl ,initial data_path)

Check the data size whether it is as per tensorflow and VGGl9 requirement
X_train.shape, X test.shape, y train.shape, y_test.shape

Preprocessing the input
X_train = preprocess_input(X_train)
X_test = preprocess_input(X_test)

Extracting features

train_ features = vggl9.predict(np.array(X_train), batch_size=50, verbose=0)
test_features = vggl9.predict(np.array(X_ test), batch_size=50, verbose=0)

Current shape of features

print(train features.shape, “\n", test_features.shape)

input_shape = (train_features.shape([l]*train_ features.shape[2]*train features.shape([3])
Flatten extracted features

train_features = np.reshape(train_features, (train features.shape(0], input_shape))
test_features = np.reshape(test_features, (test_features.shape[0], input_shape))

Figure 21: Converting to VGG-19 input features

Cross Validation K-FOLD

[] (x_train, x test, y train, y test) = create_data(df2 ,data_path)

[| # Preprocessing the input
X_trainl = preprocess_input(x_train)
X_testl = preprocess_input(x_test)

° def create model k():
kfold model = Sequential()
kfold model.add(VGGl9(include_top = False, pooling = 'avg', weights = 'imagenet'))
Second layer added for dropout
kfold model.add(keras.layers.Dropout(0.3))
Third layer as Dense for output 5-class classification
kfold_model.add(Dense(5, activation = 'softmax'))
No need to train first layer (ResNet) model as it is already trained
kfold_model.layers([0].trainable = False
kfold model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
return kfold model

[| model k = KerasClassifier(build fn = create_model_k, epochs=50, batch_size=50, verbose=1)
kfold = KFold(n_splits=5, shuffle=True, random state=13)
results = cross_val_score(model k, X_train, y_train, cv = kfold, verbose=10, n_jobs = -1)

[» [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 tasks elapsed: 3.8min

[Parallel(n_jobs=-1)]: Done 3 out of 5 | elapsed: 7.4min remaining: 4.9min
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 9.4min remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 9.4min finished

Figure 22: Cross Validation parameters of VGG-19 Model

4.4 Experiments with XGBoost Model

Apart from the neural network, the XGBoost classifier has also implemented in which
data has first converted into the array and then saved as numeric input in the CSV
file. The number of columns converted according to the input array shape (128*128*3)
and converted into that much of columns (49152). Log loss has been calculating while
applying cross-validation of xgboost as shown in Figure 26. The code for xgboost cross
validation methods has been referenced from official python API°.

®https://xgboost.readthedocs.io/en/latest/python/pythonapi.html

12

° # Data split Randomly
x_train, x_test, y_train, y test = train_test_split(X, ¥, random state=1337, test_size=0.2)
x_train = x_train.reshape(-1, 128#128%3) / 255. # normalize data
x_test = x_test.reshape(-1, 128%128+%3) / 255. # normalize data

print("Train data shape")
print(x_train.shape)
print(y_train.shape)
print("Test data shape”)
print(x_test.shape)
print(y_test.shape)

+ Code — + Text

Reshaped the input shape as (128* 128 *3) equal to 49152 then Convert Images array values into numeric values

[] if len(os.listdir(save_csv_path)) == 0: # Create csv only if the list is empty
#Saved Train Data into CSV
z = np.concatenate([np.array(x_train).reshape(2753,49152),np.array(y_train).reshape(2753,1)],axis=1)
z = pd.DataFrame(z)
z.to_csv(save_csv_path +'train xg only.csv',index=False)
#Saved Test Data into CSV
z = np.concatenate([np.array(x_test).reshape(689,49152),np.array(y_test).reshape(689,1)],axis=1)
z = pd.DataFrame(z)
z.to_csv(save_csv_path +'test xg_only.csv',6index=False)
print("CSV Files Saved")
else:
print("Directory is not empty")

[] #Read data from the CSV file
train = pd.read_csv(save _csv_path +'train xg only.csv')

[]| # Create Target variables
train_y = train['49152').astype('int')
train_x = train.drop(['49152'),axis=1)

Generate optimized data structure for XGBoost
dataset = xgb.DMatrix(train_x, label=train_ y)

Figure 23: Data conversion to csv before fetching for the model training. DMatrix
optimization method applied on input dataset

watchlist = [(dataset, 'train')])
Augmented data Model Training
model xg = xgb.train(xgb_params, dataset, num boost_round=100, evals=watchlist, maximize=True)

Figure 24: XGBoost Model training function call

13

Evaluate Results

test = pd.read_csv(save_csv_path + test_xg only.csv)
test_y = test['49152'].astypa('int’)

test x test.drop(["49152"] ,axis=1)

test x = xgb.DMatrix(test_ x|
result

model xg.predict(test x)

#

print(metrics.classification report(test_y, result))
print(metrics.confusion matrix(test_y, result)])

Figure 25: XGBoost Model Evaluation on unseen data for obtaining the classification
report

cv_results2 = xgb.cv(dtrain=dataset,
params=xgb_ params,
nfold=2,
num_boost round=50,
early stopping_ rounds=5,
metrics='mlogloss’', as_pandas=True, seed=1337)

Figure 26: Log loss function calculation using xgboost cross validation method

14

