===y

\‘
National
College o

[reland

An Implementation of Deep Learning Techniques to Detect Tomato
Leaf Diseases — Configuration Manual

MSc Research Project

MSc in Data Analytics

Manikanta Dinesh Gudivada

Student ID: x18191851

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland
MSc Project Submission Sheet
School of Computing

"ﬁ
\ National
Collegeof

[reland

Student Name: Gudivada Manikanta Dinesh

Student ID: x18191851

Programme: MSc Data Analytics

Year: 2019 - 2020

Module: Research Project

Supervisor: Vladimir Milosavljevic

Submission Due Date: 17" August 2020

Project Title: An Implementation of Deep Learning Techniques to Detect Tomato
Leaf Diseases — Configuration Manual

Word Count: 3265

Page Count: 25

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

| agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

G.M. DINESH

Date: 17" August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). Q
Attach a Moodle submission receipt of the online project submission, to Q
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for Q
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1. Introduction

What exactly this report is for and why it is required? This is the first thing | want to explain this is
the overall setup report where all of my coding stuff, configurations of the systems, code
implementation using different languages were explained in detail and as well whole libraries and
major code part is explained to understand how exactly | approached my problem.

This document gives an overall picture of the codes how | have implemented the models. The
major information relates to the graphs and outputs and how | have predicted the diseases. The
main important this is that no information which is presented here is not explained in report work.
In simple words, any individual who does not have an idea of this research domain will get full
clarity of what | have implemented in my thesis by looking into this manual report.

In brief, my project is all about farming where many farmers were committing suicides because of
huge loss in their crops due to plant diseases. So, | have considered detecting the Tomato Plant
Diseases. So, | have considered 17000 images with 9 diseased leaf classes and 1 healthy class. |
have detected images using Deep Learning and Transfer Learning methods which are very much
useful in predicting image data. | have used 4 different models (Dense Net, Le Net, Mobile Net and
CNN).

2. Implemented specifications in experimenting the Predictions and
Results

2.1. Hardware requirements

In this section | have given the details of what hardware configurations is required in implementing the
code.

= Laptop Model: HP Performs very good for executing the code with its memory storage.

= QOperating System used: Windows 10 Operating System is Convenient with 64 bites.

= Internal Processor: INTEL Core i5 processor helped me in running the code very fast with 8™
Generation.

= Memory requirement: Minimum 8 GB ram is compulsory, and | have used 8 GB.

2.2. Software requirements

This section projects the software requirements which to be installed in implementing the written code.
| have used python language to implement all the codes using multiple predefined libraries. To run the
python code, | have used Anaconda Navigator’s Jupyter Notebook and to be faster and more accurate |
have used Google Collab where the GPU is very fast all the codes run in the online cloud.

= Python: Version 3.7.3 is the latest version used for this project with all inbuilt libraries.
= Jupyter Notebook: 6.1.2 — This is where we run the code by creating multiple notebooks.

= Anaconda Navigator: 1.9.7 — This is a python platform where we have to open Python.

isort
itsdangerous

py37_0©
py37_©
Py_©
py37_0©
py37_©
py37_©
he774522_© conda-forge
Py_o©
py37_©
py37_7
Py_©
py37_©
Py_©
py37hfe3ae98_©
Py_o©
<] anaconda
py_© anaconda
py37_© anaconda
py_1 anaconda
py37_©
py37ha925a31_@©
hcedaftaa_7
py37he774522_©
hee43e63_5
14 mkl conda-forge
14 mkl conda-forge
default_hft44288c_8© conda-forge
h2a8f88b_©
hidf5818 7
14 mkl conda-forge
14 mkl conda-forge
ha925a31_2
=] anaconda
py37_1 conda-forge

.
P

.

P

.
8

jupyter_client
jupyter_console
jupyter_core
jupyterlab
jupyterlab_server
keras
keras-applications
keras-base
keras-preprocessing
keyring

kiwisolver

krbs
lazy-object-proxy
libarchive

.
8

. . . .
8 8 [8

8

.

PWdwoouowoe om
ORPROXFRFONOOROR A

00+

® -
® -

®

8

L R T
L +) T
R ® O WwWRE:
'_\

P

L)
uu e
N

.

.

® - .
WR UV, ODO® WO WHRER:

a4
1
1
(=]
2
e
=)
e
3
1
5
6
a4
1
1
2
1.
2
1
1
1
1
1
3
3
3
9
7
1
3
3
=
2
4

.

Figure 1

py37_@©

py37_2

py_©

pypi_©

py37hfate2cd_©

scikit-image py37ha925a31_@

scikit-learn py37h6288b17_@

i py37h29+f71c_©

py37_©

py37_©

py37_©

simplegeneric py37_2
simplejson py37he774522 © anaconda

Figure 2: The above figures 1 & 2 are the list of the libraries used in python.

The above-mentioned figures give information about my libraries used in the program. Mainly | have
used Keras, Tensorflow, Matplotlib, Seaborn, Pandas and Numpy etc were the major libraries used for
the python. The libraries are mainly the predefined codes which are already the code is been set as an

2

inbuild in the libraries whereby importing those as packages we can directly use the features of the
libraries such as plotting graphs figures and calculations everything can be done easily.

2.3. Online Source for Data Collection

= Q_ search »')
@ Dataset
@] -
Tomato Leaf Disease
<>
@ JARVIS_705 e updated 2 months ago (Version 1)
@ Data Tasks Notebooks Discussion Activity Metadata Download (321 MB) New Notebook :
v
2 Usability 1.3 Tags No tags yet
Data Explorer
320.65 MB < Tomato Leaf Diseases (2 directories)
~ O3 Tomato Leaf Diseases
» [3 Training Set

» [validation Set
Figure 3: Kaggle Repository

The Figure 3 gives the insight of the dataset where | have collected the dataset from. In detail
about the dataset the dataset consists of 17000 Tomato Leaf Diseased Leaf images which are divided
into validation and Training sets. In each set there are 9 different diseased folders and 1 healthy leaf
folder. All the folders contains a balanced number of images with 1000 images for each folder in
training set and 700 images each in validation set. This is all about the data information I have gathered
for my research which is available in open source platform and no measures to be taken for security
purpose.

3. Implementation & Results for Deep Learning Models

3.1.Pre-Processing Steps

This section gives the detailed information of my approach in finding predictions of Tomato Leaf
Disease using python language in Google Collaboratory platform. Before performing all these models
firstly, we must import the data to the google drive using google. Once after storing all this data in the
google, we can directly view the data.

= Files

[+ |

+_ [Total

» [sample_data
[modelhs

Figure 4: Connecting to Google Drive
3

As we already stored all the data into Google Drive now, we are mounting the Google Drive to the
collab platform as we can see that the drive was connected to the platform.

= Files x + Code + Text *** Disk - # Editing ~
-
< b R
. - Connecting the Google drive with COllaboratory
©
> I drive [1] from google.colab import drive
» [sample_data drive.mount (ve')
B modelh5

~ Unzipping the files in the zip folder

[2] 'unzip /content/drive/My\ Drive/Densenet\ Data.zip

Figure 5: Extracting the files from the zip folder
Figure 5 gives an image of how I have unzipped the files from the folder and stored it in the system.

1. These are the basic two steps which are same for all the 4 models.
2. Once after mounting and unzipping the files | have loaded the data.

~ Loading the Data into System

r*Neo B0 AF
° #Storing the data directory folder path in the variable Dataset Dir
DATASET DIR='/content/Total/'

Glob will be useful for retreiving the internal paths where I have to total of 10 classes which is displayed in the output.
from glob import glob

Tomato Leaf Diseases = glob('/content/Total/*')

Tomato Leaf Diseases

> ['/content/Total/Tomato_Yellow_Leaf Curl Virus',
'/content/Total/Tomato_Late_blight',
'/content/Total/Tomato_healthy',
*/content/Total/Tomato mosaic virus’,
'/content/Total/Tomato_Target Spot',
'/content/Total/Tomato Early blight',
'/content/Total/Tomato Spider mites’,
'/content/Total/Tomato Bacterial spot',
'/content/Total /TomatoiLeafiMoldT,
'/content/Total/Tomato Septoria leaf spot']

Figure 6: Loading Data to the model.

In the above Figure 6 we can observe the data path is stored in a variable and all the folders stored in
total have been extracted as is mentioned there are total of 10 classes.

(3

~ Loading the Required Packages for the Model

import os

import cv2

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
Zmatplotlib inline

import seaborn as sns

import tensorflow as tf

import matplotlib.image as mpimg

from tgdm import tqdm
from skimage.io import imread
from sklearn.metrics import confusion matrix

from sklearn.model selection import train test_split

from keras.utils.np utils import to categorical

from keras.models import Model, Sequential, Input, load model

from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization, AveragePooling2D, GlobalAveragePooling2D
from keras.optimizers import Adam

from keras.preprocessing.image import ImageDataGenerator

from keras.callbacks import ModelCheckpoint, ReducelROnPlateau

from keras.applications import DenseNetl2l

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/ testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the |

import pandas.util.testing as tm

Figure 7: Packages imported for the model evaluation

Figure 7 provides information about the imported packages from Keras and different other libraries
used for the model.

3.2.Performance of Exploratory Data Analysis

[

1

~ Exploratory Data Analysis has been performed to understand the Data more easily

#Creating a list for all the classes in the dataset and storing it in the disease types variable

disease types = ['Tomato mosaic virus',
'Tomato_Late blight',
'Tomato_Septoria leaf spot',
'Tomato_Bacterial spot',
'Tomato_Spider mites',
'Tomato_Yellow_Leaf_Curl_Virus‘,
'Tomato_Leaf Mold',
'Tomato_Target Spot',
'Tomato_healthy’,
'Tomato_Early blight']

#Reading the Image to present how it look like
img = imread('/content/Total/Tomato Late blight/Tomato Late blight (1005).JPG')

plt.imshow (img)
plt.axis('off')
plt.show()

Figure 8: EDA Analysis

5

In Figure 8 we can observe that the data analysis is been evaluated where all the folders have stored in
the diseases_types and the other code is used for just knowing the system is understanding whether the
folders were containing images and reading those images or not. Where this is a single image from the
dataset.

PN eoB 8 AW
° |#Cirmy edge detection by resizing

default image size = tuple((128,128))

def img to np(DIR, flatten=True):
cv_j_mq:mplmg.lmread(DIR, 0)
cv_img=cv2.resize (cv_img,default image size)
img = np.uints (cv_img)
if (flatten):
img=img.flatten()
return img

[1 #Appending all the folders and image files in the dataset for providing the Graphical Representation of Tomato Diseases
TRAIN_DIR="/content/Total/"

index=0
data={}
for FOLDER in os.listdir(TRAIN DIR):
for image_dir in os.listdir (TRAIN_DIR+FOLDER) :
if index not in data:
datal[index]=[]
try:
data[index] .append (img_to_np (TRAIN DIR+FOLDER+"/"+image dir))
except:
print ("Error to load the image "+TRAIN DIR+FOLDER+"/"+image dir)
index=index+1

Figure 9: List Directory

Figure 9 gives the information of loading all the images to make the system understand and read all
the images present in the dataset around 17000 should be created into a listing directory and then we
have to convert those images into Num-py arrays. From the second block of the same diagram, we can
make sure that the images were getting stored in the Folder and using for a loop all the images were
being read by the image directory. Finally, they have appended all the data into the data variable by
adding the folder and the images present in the folder.

[1 #Declaring the limit size for the graphs

CLASS_LIMIT=500
colors=["darkorange", "crimson", "dimgray", "royalblue", "darkgreen", "gold", "coral", "darkviolet", "hotpink", "midnightblue"]
for index class in range(len(data)):
index=0
for arr in datal[index class]:
plt.hist (arr, color=colors[index class],alpha=0.5)
if (index>CLASS_LIMIT) :
plt.title (disease types[index class])
plt.show()
break
index=index+1

Figure 10: Printing Folder Data

Figure 10 is all about drawing the histogram for all the folder data which is around 1700 in all the 10
folders and visualizing the data in the form of histogram graphs which are present in the below
diagrams.

Tomato_mosaic_virus

30000 1

25000 1

20000 1

15000 1

10000 -

5000

100 150
Tomato_Late blight

40000 1

30000 4

20000 4

10000 1

[1 # Information for the Dataset Folders
labels = os.listdir (DATASET DIR)
print ("Number of Labels:", len(labels))

total = 0

for 1b in os.scandir (DATASET DIR):
print ('feolder: {} images: {}'.format (lb.name, len(os.listdir(lb)}))
total += len(os.listdir(1lb))

print ('Total images:', total)

[+ Number of Labels: 10
folder: Tomato Yellow Leaf Curl Virus images: 1700
folder: Tomato Late blight images: 1700
folder: Tomato healthy images: 1700
folder: Tomato mosaic_wirus images: 1700
folder: Tomato Target Spot images: 1700
folder: Tomato Early blight images: 1700
folder: Tomato Spider mites images: 1700
folder: Tomato:BacterIal_spot images: 1700
folder: Tomato Leaf Mold images: 1700
folder: Tomato Septoria leaf spot images: 1700
Total images: 17000

Figure 11: Data Folder Information.

This is to make a system to understand the folders and how many images were present in each folder.
Scan Directory is a function using scan directory | am storing the data into total which is initialized as
0.

TRAIN.TAIL()

#Printing the tail wvalues which are stored by the system from the dataset

train data = []
for defects id, sp in enumerate (disease types):
for file in os.listdir(os.path.join(DATASET DIR, sp)}:
train data.append(['{}/{}'.format(sp, file), defects id, spl)
train = pd.DataFrame(train data, columns=['File',6 'DiseaseID', 'Disease Type'])

train.tail ()

G File DiseaseID Disease Type
16995 Tomato Early blight'Tomato_Early blight (421) JPG 9 Tomato_Early_blight
16996 Tomato_Early blight'Tomato_Early blight (520).JPG 9 Tomato_Early_blight
16997 Tomato_Early blight'Tomato_Early _blight (454) JPG 9 Tomato_Early_blight
16998 Tomato_FEarly blight'Tomato_Early blight (508) JPG 9 Tomato_Early_blight
16999 Tomato_ Early blightTomato_Early blight (912) JPG 9 Tomato_Early blight

Figure 12: Tail Values
The above code train.tail() is used to print the last 5 values in the data.
Train.columns
train.info
train.dtypes
train.count()
train.describe()
train.head()
train.hist()

Referring to the Figure 12 as it is mentioned that the tail values are given in the same way to
find all the different formats of the data, we have used the above formulae for the different kinds of
evaluations.

As here the above-mentioned implementation techniques such as Mounting, Unzipping,
Loading and EDA analysis are the same steps done in all the models and used as pre-processing steps
for training the data.

http://df.info/

3.3. Model Performance

3.3.1. Dense Net Model

C

#Reshaping the images for the better model performance
IMAGE SIZE = 64
def read image (filepath}:

return cv2.imread(os.path.join(TRAIN DIR, filepath)) # Loading a colored image as a default flag

Resizing the image to the target size which is given as 64
def resize image(image, image size):
return cvZ.resize(image.copy(), image size, interpolation=cv2.INTER ARER)

#To find the shape of the Train Folder in the Dataset
X train = np.zeros((train.shape[0], IMAGE SIZE, IMAGE SIZE, 2))
for i, file in tgdm(enumerate (train['File'].wvalues)):
image = read image (file)
if image is not None:
¥ train[i] = resize image(image, (IMAGE SIZE, IMAGE SIZE))

Normalization of the train data
X Train = X train / 255.
print('Train Shape: {}'.format(X Train.shape))

17000it [00:20, B847.5Bit/s]
Train Shape: (17000, 64, 64, 3)

Figure 13: Data Storage for Training the Model

From the Figure 13, | have declared the Image size to 64 and copied the resized images and then the
images were stored into X_Train and it is divided by the dimension to set all the images in one format.
At the end all the 17000 images were trained and stored to the model with input shape. Later | have
divided this data by created 10 class labels.

[

1

BATCH SIZE = 128

Split the train and wvalidation sets
X train, X val, ¥ train, Y val = train test split(X Train, Y train, test size=0.2,

random state=SEED)

Figure 14: Data Division

Based on Figure 14 we can understand that the data is divided for training and testing purpose. Where
the division is of 0.2 were 80% for training and 20% for testing.

Performing Model Using 50 Epochs
EPOCHS = 50

SIZE=€4

N _ch=3

° def build densenet (} :|

densenet = DenseNetl2l (weights='imagenet', include_ top=False)
input = Input (shape=(SIZE, SIZE, N_ch))

x = Conv2D(3, (3, 3). padding='same') (input)

#x = Maxpool2D (3, strides = 2, padding="same') (x)
x = densenet (x)

x = GlobalAveragePooling2ZD () (x)

X = BatchNormalization () (x)

x = Dropout (0.5) (x)

®x = Dense (256, activation="relu') (x)

x = BatchNormalization() (x)

x = Dropout (0.5) (x)

multi cutput
output = Dense (10, activation = "softmax', hame='root') (x)

model

model = Model (input, output)
optimizer = Adam(lr=0_.002, . 999 epsilon=0_.1, decay=0.0)
model .compile (loss="categorical crossentropy', optimizer=optimizer, metrics=['accuracy"]l)

model . summary ()

return model

Figure 15: Dense Net — 121

In Figure 15 the Dense Net 121 model is defined for the Tomato Disease Prediction here in the above
figure we have created a dense net model using image net dataset using transfer learning and all the
required pooling layers and activations functions were used for the model. Once after defining the
model | have compiled the model before fitting to the model.

‘, #Printing the model for identifying the DenseNet Parameters
model = build densenet ()
annealer = ReducelROnPlateau(monitor='val accuracy', factor=0.5, patience=5, verbose=1l, min lr=le-3)
checkpoint = ModelCheckpoint ('model.h5', werbose=1, save_best only=True}

[» Model: "functional 5"

Layer (type) output Shape Param #
input_€ (InputLayer) [(None, 64, 64, 3)1] o]
convZd 2 (ConvZD) (None, €4, 64, 3) B84
densenetl2l (Functional) (None, None, None, 1024) 7037504
glokal average pooling2d 2 ((None, 1024) o

batch normalization_4 (Batch (None, 1024) 4096
dropout_4 (Dropout) (None, 1024) o]
dense 2 (Dense) (None, 256) 262400
batch normalization_5 (Batch (None, 256) 1024
dropout 5 (Dropout) (None, 256) o

root (Dense) (None, 10) 2570

Total params: 7,307,678
Trainable params: 7,221,470
Non-trainable params: 86,208

Figure 16: Model Summary

In the above code it is giving the summary of all the parameters and the model parameters.

10

[1 from skimage import io
from keras.preprocessing import image

disease types = ['Tomato_mosaic_virus',
'Tomato L blight',
'Tomato_Septoria leaf spot',
'Tomato_Bacterial spot’,
'Tomato_Spider mites',
'Tomato Yellow Leaf Curl Virus',
'Tomato_;ea: Mold',
'Tomato_ Tar
'Tomato_healthy',
'Tomato Early blight']

img = image.load_img('/content/Total/Tomato_Late_blight/Tomato Late_blight (1086).JPG')
show_img=image.load img('/content/Total/Tomato Late blight/Tomato Late blight (108€).JPG', grayscale=False, target size=(224, 224))

x = image.img_to_array (img)
% = np.expand dims (x, axis = 0)
#x = np.array(x, 'float32")

x /= 255

disease = model.predict(x)
print (disease[0])

plt.imshow (show_img)
plt.show()

a=disease[0]
ind=np.argmax(a)

print ('Prediction:',disease types[ind])

Figure 17: Prediction Module
The above model has predicted the Tomato Disease. | have passed the image of the test set and
evaluated using the model which is already compiled and fitted by Dense Net and using the algorithm
the system predicted the correct prediction of disease.

= Evaluation Metrics Results

model loss model accuracy
35 | — train 109 — train
test a9 test
20 f
08
15 Z o7
& o
| g 06
140
05
0.5 ¥ 04
0.0 0.3
o 10 20 0 40 50 0 10 20 0 40 50
epoch epoch

Figures 18 & 19: Graphs for Model Loss and Accuracy

These graphs give us the information about how accurate the model evaluated the images internally by
each epoch up to 50 epochs. The model loss is decreased to 0.2 approximately for both train and test
consistently and accuracy have increased to 0.9 approx. where there is no overfitting of the data and the
model performance is very good and predicted the correct outputs.

11

° from sklearn.metrics import accuracy score

imy t sklearn.metrics as metriecs

print ("Accuracy : ", metrics.accuracy score(Y_true, ¥ pred)*100)

BAccuracy : 96.73529411764706

[1 # precision

from sklearn.metrics impert precision score

precision_score(Y_true, Y pred, average=None)

)

array([1.
0.5719888

.95689655, 0.95014663, 0.9622083 , 0.853
0.97337278, 0.95481928, 0.59132948, 0.958

[1 # Recall

from sklearn.metrics import recall score

recall score (Y true, Y pred, average=None)

array([0.99698795, 0.53802817, 0.96716418, 0.57067445, 0.5632107 ,
0.99142857, 0.97916667, 0.55155195, 0.98847262, 0.33010753])

[1
from sklearn.metrics import £1_score
£1_seore(Y_true, ¥_pred, average=None)
array([0.9984317 , 0.9473€842, 0.95857988, 0.9664233E, 0.35840266,
0.98161245, 0.97626113, 0.95238346, 0.98588893, 0.54408548])
[] from sklearn.metries import r2_score

r2 score(Y_true, ¥ pred)

0.9130904054952927

Figure 20: Results

The above figure provides us the Evaluation metrics results for the model. By considering this result
we can assure that the Dense Net model has performed very good with 96% Accuracy.

from sklearn.metrics import mean_absolute error

mean_sbsolute_srror(Y_true, Y_pred)

0.1361764705882353

[1 #MSE L2 loss function - Should be close to 0

from sklearn.metrics import mean squared error

mean_squared error(Y_true, ¥_pred)

0.7338235294117647

[1 from sklearn.metrics import classification report

print(classification report(Y_true, Y pred))

precision recall fl-score support

] 1.00 1.00 1.00 33z

1 0.96 0.94 0.95 355

2 0.85 0.97 0.96 335

2 0.%8 0.97 0.97 341

4 0.85 0.98 0.96 253

S 0.97 0.99 0.98 350

[0.57 0.58 0.58 336

7 0.85 0.95 0.95 332

] 0.%3 0.93 0.99 247

9 0.96 0.93 0.94 372
accuracy 0.57 3400
macro avg 0.57 0.97 .57 2400
weighted avg 0.97 0.97 97 3400

Figure 21: Error Results

12

These above results give us the information for all the evaluation techniques in the
classification report. As well the errors for the model were perfectly good with good values
where the error values should be equal to zero (Huang et al., 2017).

3.3.2. Le Net Model:

1):
model = Sequential (}# creating a sequential model
model.add (Convolution2D(20, 5, S5, padding—"same",input_shape=(60, 60,3)))
model . add (Dropout (0-2))
model.add (Activation ("relu”))
model.add (MaxPooling2D (pool_size=(2, 2), strides=(2, 2))

f second layer is setting to CONV — RELU - POOL
model.add (Convolution2D (50, S, S5, padding="same"))
model .add (Dropout (0.
model .add (Activation ("relu"))

model .add (MaxPooling2D (pool_size=(2,2),strides=(2, 2))) £ spec

f Adding the set of FC - RELU layers to the model Le Net
model .add (Flatten())

model.add (Dense (500})

model .add (Dropout (0.2))

model .add (Activat "relu))

$ Activating the model with
model .add (Dense (10)) # 10 o
model . add (Dropout (0.2))

model.add (Activation ("softmax"))

return model]

Figure 22: Le Net Model

Figure 22 provides the of the parameters, layers, functions used for the Le Net model. Here
in the model, we have used two convolutional layers and then we have used different
activation functions to activate the model.

[1 # Compiling the model before fitting with cost and optimization method

model .compile (loss='categorical crossentropy',
optimizer="Adam",
metrics=['accuracy'])

Figure 23: Model Compilation

This step is common for any Deep Learning model where before fitting the model we must
compile the model and then we must train the loss functions involved in the model and the
optimizer improves the model performance.

*rNeoB R AT
° # Fits the model on batches with real-time data augmentation
It took around 20 Min to complete all the 100 Epochs

hist = model.fit(datagen.flow (X train, YJtrain, batch size=BATCH SIZE),# Here we are fitting the model with divided data
steps_per_epoch=X_train.shape[0] // BATCH_ SIZE,
epochs=EPOCHS,
verbose=2,
callbacks=[annealer, checkpoint],
validation data=(X val, Y val))

Figure 24: Fitting the model.

13

The above figure is mentioning about the model fitting where the training and testing data is
giving to the model with an epoch of 50 and by-passing batch size of 128.

©G', grayscale=False, target_size=(&0, 60))

img = image.load img('/content/Total/Tomato_Early ht/Tomato ! ', target_size=(60, 60)

x = image.img_te_array (img)

=0)

plt.imshow (show_img)
plt.show()

[

Prediction: Tomato_Late blight

Figure 25: Model Prediction for Le Net

In this step the model is trained and fitted by compiling and later step is to predict the disease.
Here we are passing the test image for the model and loading the model to predict the
outcome by using model.predict we can find the output as Tomato Late Blight.

[1 from keras.utils import plot model

plot_model (model, to_file='modell.png’, show_shapes=True, rankdir='TB', expand nested=True)

Figure 26: Model Plotting

Here we are just plotting the model which is evaluated for understanding all the parameters
used for the model in a detailed way.

14

= Evaluation Results

0)

precision_score (¥_true, ¥ pred, avera ge=None)

., 0.74193548,
7156, 0.77605322])

array([0.96304025, 0.35065789, 0.99583333, 0.888252
0.55013158, 0.32425022, 0.782

., 0.52307652,
. 0.540860221)

array([0.95572519, 0.87708643, O.
0.92048%3 , 0.85739663, 0.74725275, 0.88633461, 0.85054678]1)

. 0.82265276,

from sklearn.metrics import r2_score

(¥ true, ¥ pred)

3328077585997

Figure 27: Model Results

These results provide the good results with good accuracy of 86% and the precision for all the
classes were very good and all the other techniques have also evaluated.

aceurac:
macro avg 0.88
weighted avg 0.88

Figure 28: Model Results 2 for Le Net

In the second results section, there are few more techniques where the absolute and mean

errors were calculated and are equal to zero. The whole report for the metrics was also given
in the figure above.

15

Temate_mosaic_virus JEaEiate

Tomato_Late blight -

300

250
Tomato_Septoria_leaf_spot - 30
Tmato_Bacterial_spot - o
200
D Tomato_Spider_mites - 1z
e
Tomato_Yellow_Leaf_Curl_Virus - o
U mato_Yellow_Leaf_Curl_Virus | 150
Tomato_Leaf Mald - 5
Tomato_Target_Spot - 4 - 100
Tomato_healthy - o
- 50
T©mato_Early_hlight - 2 B8 2 1z 34 15 & 27 2 2.6e+02
i i ' ' ' i i i i
2) g H £ E 2 g £ £
= 5, ot 2 E, = = il] =
H & B g] E] b5 & o z
QA &} I = h=] [s] 4 =] =
=} =, o = = ! 1 = = = -0
g o g2 B 2 5 =2 | ,
g 2 £ =, g R N 2 & 2
= £ = o= = | = i =]
E o F & % E 0§ & E £
= 2 15 =] s
= = B
: i
£
=
Predicted

Figure 29: Confusion Matrix

This matrix is used for understanding the values which the model have predicted properly
considering all the images training images were 1360 and remaining were 340 out of that
almost all the classes have predicted the proper results with good accuracy.

model loss model accuracy
i 109 — train
— frain - U —— — —
257 — TN, S —~
test 09 ool N -
201 08 4
7 0.7
15 1 L
@ e
2 £ 06
10 A
0.5 I
051 0a{ |
0.0 1 03
T T T T T T T T T T T
] 10 20 30 40 50 o 10 20 0 40 50
epoch epoch

These graphs were used to understand the values that happened between each epoch in a
sequence manner. If we observe the train and test for the model loss was decreased gradually
and increased accuracy and stood at 0.8 approximately which gives the good model

performance.

16

3.3.3. CNN Outputs

[18] TRAIN DIR='/content/Total/’

fReshaping the images for the better model performance
IMAGE_SIZE

def read image (filepath):

return cv2.imread(os.path.join(TRAIN_DIR, filepath)) # Loading a colored image as a default flag

e image to the target size which is given as 64

lage (image, image_size):

return cv2.resize (image.copy(), image_size, interpolation=cv2.INTER AREZ)

[15] #To find the shape of the Train Folder in the Dataset
X_train = np.zeros((train.shape[0], IMAGE SIZE, IMAGE SIZE, 3))
for i, file in tgdm(enumerate (train['File'].values)):
image = read image (file)
if image is not None:
X train[i] = resize_image (image, (IMAGE SIZE, IMAGE_SIZE))

f Normalization of the train data

X_Train = X_train /

print ('Train Shape: {}'.format(X_Train.shape))
[> 17000it [00:26, 647.03it/s]

Train Shape: (17000, &4, &4, 3)
[2€] ¥_train = train['DiseaseID'].values

print ("Before shape value:',Y train.shape)

¥_train = to_categorical (¥ _train, num classes=10

print ('shape value after adding the classes:',Y_ train.shape)

[Before shape wvalue: (17000,)
shape valus after adding thes classes: (17000, 10)

Figure 30: CNN Model Initialization

This model is one of the famous models which is used by many authors and this model helps
in detecting the diseases. In the above figure same as other models | have read all the 17000
images and stored in the X_Train variable and with a shape 64 and depth 3. Later | have
created 10 class variables for predicting the outputs.

[1 EPOCHS = 50
N_ch=3
INIT LR = le-3

width=64
height=¢4
depth=3

Figure 31: Epochs Declaration

In the above figure, | have initialized the model with 50 epochs and height, width and depth
are also pre-defined for the CNN model.

17

°. model = Seguential ()
inputShape = (height, width, depth)
chanDim = —1

if H.image_ data_ format ()} == "channels firstct":
inpucShape = (depth, heightc, width)
chanDim = 1

model . add (ConwvZD (64, (3, 3), padding="same",input_ shape=inputShape))
model . add (Activation ("relu™))
model . add (BacchMNHormalization (axis=chanDim))

model . add (MaxPooling2D (pool_ size= (3, 3)))
model . add (Dropoat (0.25))
model . add (ConwvZD (64, (3, 3), padding="same="))

model . add (Activation ("relu™))
model . add (BacchNHormalization (axis=chanDim))

model . add (ConwZD (64, (3, 3), padding="=sam="))
model . add (Activation ("relu™))

model . add (BacchMNormalization (axis=chanDim))
model . add (MaxFPoolingZD (pool size=(2Z, Z)))
model . add (Dropouat (0.25))

model . add (ConwvzZD (64, (3, 3), padding="=sam="))
model . add (Activation ("relu™))
model . add (BacchMNormalization (axis=chanDim))

model . add (ConvZD (64, (3, 3}, padding="same")})
model . add (Activation ("relwu™))

model . add (BacchMormalization (axis=chanDim))
model . add (MaxPooling2D (pool_ size=(2, 2Z)})
model . add (Dropouat (0.25))

model . add (Flatten ())

model . add (Activation ("relwu™))
model . add (BacchMormalizacion ())
model . add (Dropouat (0.5))

model . add (Denss (10))

model . add (Activation ("softmax™))

Figure 32: CNN Model Architecture

This is the major part of the code for the CNN where after diving the data and stored with all
the dimensions | have created 5 convolutional layers for better results. If we increase the
layers the level of understanding for the model will be increased. All the max-pooling and
different functions have also used for the model evaluation.

Fits the model on batches with real-time data augmentation
fIt took around 20 Min to complete all the 50 Epochs

hist = model.fit (X train, Y train, batch size=BATCH SIZE,
steps_per epoch=X train.shape([0] // BATCH SIZE,
epochs=EPOCHS,
verbose=2,
callbacks=[annealer, checkpoint],
validation data=(X_wal, Y wal))

Figure 33: CNN Model Fitting

After creating all the layers and initializing the shapes for each layer we are fitting the model.
While fitting the model the X and Y train values were given for the model and the X and Y
validation were given for the results sections with a batch size of 128. Where at once the
model will take 128 images instead of taking one on one image.

18

Evaluation Metrics Outputs for CNN

from sklearn.metrics import accuracy score

import sklearn.metrics as= metrics

print "Accuracy ", metrics.accuracy score(Y true, ¥ pred)*100)

Boccocuracy 88.2924117647058832

Precision

from sklearn.metrics import precision score

precision score(¥_true, ¥_pred, average=None)

array{([0.25614035, 0.91554054, ©0.59255255, 0.S57z222222, 0.8232151132,
0.27265116, 0.8B121547, 0.93913043, 0.&63837638, 0.91556728])
L1 # Recall
from sklearn.metrics import recall score
recall_ score (¥_true, ¥_pred, average—None)
array ([0.584533%376, 0.76338028, 0.8 . D.5232753€7, 0.85618723,
0.96285714, 0.54940476, 0.648¢4865, 0.59%9 lele 0.532273357 1)
L1 # Fl_score
from sklearn.metrics import £1_score
£1_score(¥_true, ¥_pred, average—None)
array ([0.27022c41, 0.8325¢6528, 0.88555041, 0.5473c842, 0.83532442¢,
0.37118156, 0.91404011, 0.76731794, 0.7784027 , 0.2241012])

Figure 34: CNN Results Section 1

In section 1 results of CNN, we have got Accuracy, Precision, Recall and F1 Score values
where the precision and Recall values were calculated for all the classes with a good

outcome.

from sklearn.metrics import

r2_ score(¥_true, Y_pred)

0.72251&20067154328

fMAE L1 loss function — Sho

from sklearn.metrics import

mean absclute error (¥ true,

FMRE L2

from sklearn.metrics import

mean sguared error (¥__trus,

2.34254117c470588

from sklearn.metrics import
print {classification report

precision

(o] C.2¢
1 0.%2
=2 0.399
2 o.357
4 o.82
S O.928
=) 0.88
7 0.54
8 O.64
=] o.52

accuracy

r2 scors

mean_ absolute error
¥ pred)

mean sguared esrror
Y pred)

classification report

(Y true, Y pred))

recall fl—-score support

C.28 0.27 232
.78 o.83 355
o.80 o.8% 235
0.352 0.55 241
o.86 O.84 299
O.92c 0.97 350
o.925 o.921 336
O.65 0.77 233
1.00 0.78 2347
o.53 o.s2 372

0.88 3400

Figure 35: CNN Section 2 Results

19

In section 2 of CNN evaluation results, we have calculated the MSE and MAE along with the
R2 Score where the values should be equal to zero.

Tomato_mosaic_virus JEEEEltr

300
Tomato_Late_blight -
250
Toemato_Septoria_leaf_spot - 10
Temato_Bacterial_spot - o
fU 200
Tomato_Spider_mites - 2
et
U Tomato_Yellow_Leaf Curl_Virus ~ o
< - 150
Tmato_Leaf_Mold - 1
Tomato_Target_Spot - 2 - 100
Temato_healthy - o
- 50
Tomato_Early_blight - o 19 1 o o 4
i i ! i i i ' i i
w = a = w wn =] = =
= = g & £ £ s EL £ £
:' EI = = EI = -E—' ' z =,
o o w ; . = = W = =)
2 & o & b 3 5 g < = _a
g | B =] =3 w! o' = =} i}
| 2 =] o bl @ k=] I £ s
2 2 =3 = 2 = £ =] = =
£ = & = z z = £ £
£] = £ 2 = =
] =] *
£ a'
5 2
[}
£
8
Predicted

Figure 3: Confusion Matrix for CNN Model

If we observe the graph the actual values and predicted values were showing in the graphs the
values which are predicted correctly has shown in dark green with a good number of
predictions and the remaining 1 or 2 values were not predicted correctly by the model. On
average, all the images in all the classes are showing good results.

model loss model accuracy
] 10 A
— ftrain
101 test
l 0.8 4
08{ | |
l \ l"\' |
o AN 1 | U v
w D6 E 06 4 II| | 1 |
a 3
2 o \ 1]
1, | B |
04 A I 0.4 I|
N \ I |
| | i1 |'|I II | |
021 \ [P NIA T 02{ |
4 AT LA L
B PV \/\/)
0.0 1
T T T T T T T T T T T T
o 10 20 30 40 50 o 10 20 30 40 50
epoch epoch

These graphs give us the loss and accuracy outcomes for both train and test models for 50
epochs. If we consider the loss values, it is decreased to 0 and accuracy increased to 1 which
is a good prediction outcome for CNN model (Khan et al., 2020).

20

3.3.4. Mobile Net Outputs

The mobile net model is also trained based on the transfer learning where this model is
trained in a different way where the images were already divided into two different folders
for training and testing purpose and while training the model we have given the model train
path and test path separately.

[1 IMAGE SIZE = [224, 224]

train path = '/con t/Research Dataset/Train'

Research Dataset/Test’'

valid_path = '/con

for layer in den.layezs

layer.trainable = False
[Downloading data from https://storage.googleapis.com/tensorflow/keras—applications/mobilenet/mobilenet 1 0 224 tf no top.hS
17227776/17225%24 [1 - 0= Ous/step

Tomato Leaf Diseases_Train), activation='softmax', kernel regularizer=regularizers.12(0.0001)) (x)

$Using 12 regularizer to avoid overfitting.

creating a model object

model = Model (inputs=den.input, ocutputs=prediction

f viewin the structure of the model

model . summary ()

Figure 37: Mobile Net Transfer Learning Technique

The above code gives us the correct information about how | have trained the model
separately for both training and testing purpose. | have used the image net data and
considered the mobile net to detect tomato diseases. Here |1 am training the mobile net model
with an image size of 224. In the other steps once after collecting the data the model was
flattened and created a model objective for the model. Finally checking the summary values
of the model.

loss='categorical_crossentropoyv',
optimizer='adam",

metrics=['accuracy "]

fDividing the data for training and testing purposs

training set = train datagen.flow from directory('/contents/Research Dataset/Train",

test set = test_ _datagen-flow from directory({'/content/Research Dataset/Test",
target_size = (224 224)
batch_=ize = 32
class _mode = "categorical™)

> Found 10000 images kelonging to 10 classes-

Found 7000 images belonging to 10 classes.

my_callbacks — [tf.keras.callbacks.EarlyStopping(paticence=2)]

FFitting the Model

steps_ per epoch=len(training set) .

validation steps=len (test_set) ,callbacks=my callbacks)

Figure 38: Model Fit for Mobile Net

21

After checking all the parameters of the mobile net, we have compiled the model and used
callbacks function where this will help in overfitting the data. Finally, we ran the model by
giving the training set images to the model and storing the test set image values in the

validation results.

= Evaluation Metrics Graphs

Model loss with Mobilenet Model accuracy with Mobile NET

24 y 0.94 1 — train acc
/
/ val acc
23 | / 0.92
201 S/ 0.90 - _
18 = 085 1
" — g
516 1 S 086
&
144 0.84
124 0.82 1
104 — trainloss n.80 4
val loss
0.8 T T T T T T T T T T T T T T T T T T
0.0 05 10 15 20 25 3.0 35 40 00 05 10 15 20 25 30 35 4.0

epoch epoch

The above graphs are showing up to only 5 epochs values because the model is not learning

anything from there as all the images were been fitted into the model. There is no increase in
the val_accuracy of the model (Sinha and El-Sharkawy, 2019).

Comparing the Models

LLoss and Accuracy values in
Different Models at Different Epochs

Accuracy

=
(=)
=
=
=3
=)
<<
=
=

Accuracy
Val Accuracy
Accuracy
Val Accuracy

25 Epochs 50 Epochs 100 Epochs

DENSE_NET ™ lLe NET m™ Mobile_ NET m CNN

Figure 39: Over all Epochs Values

This graph gives detailed information on which model has how much accuracy and loss
values at different epoch stages. If we observe in all the epochs (25, 50, 100) the Val
Accuracy and Accuracy values are high for Dense Net. The Loss and Val Loss is very low for
Dense Net. Which means out of all the models Dense Net is providing the better results

(Kumar and Vani, 2019).

22

|

2.5

15

P
F
-_—
P
=
b

MAE I:

MAE t
-

MSE
Accuracy

MSE

w
e
=]
W
W
~

=
o
Accuracy E

R2_Score
Accuracy
R2_Score

o«
25 Epochs 50 Epochs 100 Epochs

W DENSE_NET mle NET CNN

Figure 40: Over all Metrics Results

On overall, the Accuracy and R2-Score are high for Dense Net. Absolute and Square Error-
values are low for Dense Net which is nearly equal to zero which means they are providing
good results with no error values. Comparatively, Le Net and CNN both are almost equal for
R2-Score and Error-values are differentiated.

4. Conclusion

To conclude the model this whole report is useful for individuals to understand clearly what |
have done to achieve my output. So, this whole report is submitted with all the codes, graphs
and components used to complete this project with a detailed explanation. All these codes
have implemented in Google Collaboratory platform using GPU memory which will increase
the speed of the model and helped me to get outputs in less than one hour.

5. References

Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K. Q. (2017) ‘Densely connected
convolutional networks’, Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017. IEEE, 2017-Janua, pp. 2261-2269. doi:
10.1109/CVPR.2017.243.

Khan, A., Sohail, A., Zahoora, U. and Qureshi, A. S. (2020) ‘A survey of the recent
architectures of deep convolutional neural networks’, Artificial Intelligence Review, pp. 1-70.
doi: 10.1007/s10462-020-09825-6.

Kumar, A. and Vani, M. (2019) ‘Image Based Tomato Leaf Disease Detection’, 2019 10th
International Conference on Computing, Communication and Networking Technologies,
ICCCNT 2019. IEEE, pp. 1-6. doi: 10.1109/ICCCNT45670.2019.8944692.

Sinha, D. and El-Sharkawy, M. (2019) ‘Thin MobileNet: An Enhanced MobileNet
Architecture’, 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile
Communication Conference, UEMCON 2019, pp. 0280-0285. doi:
10.1109/UEMCON47517.2019.8993089.

23

