

An Implementation of Deep Learning Techniques to Detect Tomato

Leaf Diseases – Configuration Manual

MSc Research Project

MSc in Data Analytics

Manikanta Dinesh Gudivada

Student ID: x18191851

School of Computing

National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Gudivada Manikanta Dinesh

Student ID: x18191851

Programme: MSc Data Analytics

Year: 2019 - 2020

Module: Research Project

Supervisor: Vladimir Milosavljevic

Submission Due Date: 17th August 2020

Project Title: An Implementation of Deep Learning Techniques to Detect Tomato
Leaf Diseases – Configuration Manual

Word Count: 3265

Page Count: 25

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the

National College of Ireland’s Institutional Repository for consultation.

Signature: G.M. DINESH

Date: 17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). Q

Attach a Moodle submission receipt of the online project submission, to

each project (including multiple copies).
Q

You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Q

Assignments that are submitted to the Programme Coordinator office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

1. Introduction

What exactly this report is for and why it is required? This is the first thing I want to explain this is

the overall setup report where all of my coding stuff, configurations of the systems, code

implementation using different languages were explained in detail and as well whole libraries and

major code part is explained to understand how exactly I approached my problem.

This document gives an overall picture of the codes how I have implemented the models. The

major information relates to the graphs and outputs and how I have predicted the diseases. The

main important this is that no information which is presented here is not explained in report work.

In simple words, any individual who does not have an idea of this research domain will get full

clarity of what I have implemented in my thesis by looking into this manual report.

In brief, my project is all about farming where many farmers were committing suicides because of

huge loss in their crops due to plant diseases. So, I have considered detecting the Tomato Plant

Diseases. So, I have considered 17000 images with 9 diseased leaf classes and 1 healthy class. I

have detected images using Deep Learning and Transfer Learning methods which are very much

useful in predicting image data. I have used 4 different models (Dense Net, Le Net, Mobile Net and

CNN).

2. Implemented specifications in experimenting the Predictions and

Results

2.1. Hardware requirements

In this section I have given the details of what hardware configurations is required in implementing the

code.

▪ Laptop Model: HP Performs very good for executing the code with its memory storage.

▪ Operating System used: Windows 10 Operating System is Convenient with 64 bites.

▪ Internal Processor: INTEL Core i5 processor helped me in running the code very fast with 8th

Generation.

▪ Memory requirement: Minimum 8 GB ram is compulsory, and I have used 8 GB.

2.2. Software requirements

This section projects the software requirements which to be installed in implementing the written code.

I have used python language to implement all the codes using multiple predefined libraries. To run the

python code, I have used Anaconda Navigator’s Jupyter Notebook and to be faster and more accurate I

have used Google Collab where the GPU is very fast all the codes run in the online cloud.

▪ Python: Version 3.7.3 is the latest version used for this project with all inbuilt libraries.

▪ Jupyter Notebook: 6.1.2 – This is where we run the code by creating multiple notebooks.

▪ Anaconda Navigator: 1.9.7 – This is a python platform where we have to open Python.

2

Figure 1

Figure 2: The above figures 1 & 2 are the list of the libraries used in python.

The above-mentioned figures give information about my libraries used in the program. Mainly I have

used Keras, Tensorflow, Matplotlib, Seaborn, Pandas and Numpy etc were the major libraries used for

the python. The libraries are mainly the predefined codes which are already the code is been set as an

3

inbuild in the libraries whereby importing those as packages we can directly use the features of the

libraries such as plotting graphs figures and calculations everything can be done easily.

2.3. Online Source for Data Collection

Figure 3: Kaggle Repository

The Figure 3 gives the insight of the dataset where I have collected the dataset from. In detail

about the dataset the dataset consists of 17000 Tomato Leaf Diseased Leaf images which are divided

into validation and Training sets. In each set there are 9 different diseased folders and 1 healthy leaf

folder. All the folders contains a balanced number of images with 1000 images for each folder in

training set and 700 images each in validation set. This is all about the data information I have gathered

for my research which is available in open source platform and no measures to be taken for security

purpose.

3. Implementation & Results for Deep Learning Models

3.1. Pre-Processing Steps

This section gives the detailed information of my approach in finding predictions of Tomato Leaf

Disease using python language in Google Collaboratory platform. Before performing all these models

firstly, we must import the data to the google drive using google. Once after storing all this data in the

google, we can directly view the data.

Figure 4: Connecting to Google Drive

4

As we already stored all the data into Google Drive now, we are mounting the Google Drive to the

collab platform as we can see that the drive was connected to the platform.

Figure 5: Extracting the files from the zip folder

Figure 5 gives an image of how I have unzipped the files from the folder and stored it in the system.

1. These are the basic two steps which are same for all the 4 models.

2. Once after mounting and unzipping the files I have loaded the data.

Figure 6: Loading Data to the model.

In the above Figure 6 we can observe the data path is stored in a variable and all the folders stored in

total have been extracted as is mentioned there are total of 10 classes.

5

Figure 7: Packages imported for the model evaluation

Figure 7 provides information about the imported packages from Keras and different other libraries

used for the model.

3.2. Performance of Exploratory Data Analysis

Figure 8: EDA Analysis

6

In Figure 8 we can observe that the data analysis is been evaluated where all the folders have stored in

the diseases_types and the other code is used for just knowing the system is understanding whether the

folders were containing images and reading those images or not. Where this is a single image from the

dataset.

Figure 9: List Directory

Figure 9 gives the information of loading all the images to make the system understand and read all

the images present in the dataset around 17000 should be created into a listing directory and then we

have to convert those images into Num-py arrays. From the second block of the same diagram, we can

make sure that the images were getting stored in the Folder and using for a loop all the images were

being read by the image directory. Finally, they have appended all the data into the data variable by

adding the folder and the images present in the folder.

Figure 10: Printing Folder Data

Figure 10 is all about drawing the histogram for all the folder data which is around 1700 in all the 10

folders and visualizing the data in the form of histogram graphs which are present in the below

diagrams.

7

Figure 11: Data Folder Information.

This is to make a system to understand the folders and how many images were present in each folder.

Scan Directory is a function using scan directory I am storing the data into total which is initialized as

0.

8

TRAIN.TAIL()

Figure 12: Tail Values

The above code train.tail() is used to print the last 5 values in the data.

Train.columns

train.info

train.dtypes

train.count()

train.describe()

train.head()

train.hist()

Referring to the Figure 12 as it is mentioned that the tail values are given in the same way to

find all the different formats of the data, we have used the above formulae for the different kinds of

evaluations.

As here the above-mentioned implementation techniques such as Mounting, Unzipping,

Loading and EDA analysis are the same steps done in all the models and used as pre-processing steps

for training the data.

http://df.info/

9

3.3. Model Performance

3.3.1. Dense Net Model

Figure 13: Data Storage for Training the Model

From the Figure 13, I have declared the Image size to 64 and copied the resized images and then the

images were stored into X_Train and it is divided by the dimension to set all the images in one format.

At the end all the 17000 images were trained and stored to the model with input shape. Later I have

divided this data by created 10 class labels.

Figure 14: Data Division

Based on Figure 14 we can understand that the data is divided for training and testing purpose. Where

the division is of 0.2 were 80% for training and 20% for testing.

10

Figure 15: Dense Net – 121

In Figure 15 the Dense Net 121 model is defined for the Tomato Disease Prediction here in the above

figure we have created a dense net model using image net dataset using transfer learning and all the

required pooling layers and activations functions were used for the model. Once after defining the

model I have compiled the model before fitting to the model.

Figure 16: Model Summary

In the above code it is giving the summary of all the parameters and the model parameters.

11

Figure 17: Prediction Module

The above model has predicted the Tomato Disease. I have passed the image of the test set and

evaluated using the model which is already compiled and fitted by Dense Net and using the algorithm

the system predicted the correct prediction of disease.

▪ Evaluation Metrics Results

Figures 18 & 19: Graphs for Model Loss and Accuracy

These graphs give us the information about how accurate the model evaluated the images internally by

each epoch up to 50 epochs. The model loss is decreased to 0.2 approximately for both train and test

consistently and accuracy have increased to 0.9 approx. where there is no overfitting of the data and the

model performance is very good and predicted the correct outputs.

12

Figure 20: Results

The above figure provides us the Evaluation metrics results for the model. By considering this result

we can assure that the Dense Net model has performed very good with 96% Accuracy.

Figure 21: Error Results

13

These above results give us the information for all the evaluation techniques in the

classification report. As well the errors for the model were perfectly good with good values

where the error values should be equal to zero (Huang et al., 2017).

3.3.2. Le Net Model:

Figure 22: Le Net Model

Figure 22 provides the of the parameters, layers, functions used for the Le Net model. Here

in the model, we have used two convolutional layers and then we have used different

activation functions to activate the model.

Figure 23: Model Compilation

This step is common for any Deep Learning model where before fitting the model we must

compile the model and then we must train the loss functions involved in the model and the

optimizer improves the model performance.

Figure 24: Fitting the model.

14

The above figure is mentioning about the model fitting where the training and testing data is

giving to the model with an epoch of 50 and by-passing batch size of 128.

Figure 25: Model Prediction for Le Net

In this step the model is trained and fitted by compiling and later step is to predict the disease.

Here we are passing the test image for the model and loading the model to predict the

outcome by using model.predict we can find the output as Tomato Late Blight.

Figure 26: Model Plotting

Here we are just plotting the model which is evaluated for understanding all the parameters

used for the model in a detailed way.

15

▪ Evaluation Results

Figure 27: Model Results

These results provide the good results with good accuracy of 86% and the precision for all the

classes were very good and all the other techniques have also evaluated.

Figure 28: Model Results 2 for Le Net

In the second results section, there are few more techniques where the absolute and mean

errors were calculated and are equal to zero. The whole report for the metrics was also given

in the figure above.

16

Figure 29: Confusion Matrix

This matrix is used for understanding the values which the model have predicted properly

considering all the images training images were 1360 and remaining were 340 out of that

almost all the classes have predicted the proper results with good accuracy.

These graphs were used to understand the values that happened between each epoch in a

sequence manner. If we observe the train and test for the model loss was decreased gradually

and increased accuracy and stood at 0.8 approximately which gives the good model

performance.

17

3.3.3. CNN Outputs

Figure 30: CNN Model Initialization

This model is one of the famous models which is used by many authors and this model helps

in detecting the diseases. In the above figure same as other models I have read all the 17000

images and stored in the X_Train variable and with a shape 64 and depth 3. Later I have

created 10 class variables for predicting the outputs.

Figure 31: Epochs Declaration

In the above figure, I have initialized the model with 50 epochs and height, width and depth

are also pre-defined for the CNN model.

18

Figure 32: CNN Model Architecture

This is the major part of the code for the CNN where after diving the data and stored with all

the dimensions I have created 5 convolutional layers for better results. If we increase the

layers the level of understanding for the model will be increased. All the max-pooling and

different functions have also used for the model evaluation.

Figure 33: CNN Model Fitting

After creating all the layers and initializing the shapes for each layer we are fitting the model.

While fitting the model the X and Y train values were given for the model and the X and Y

validation were given for the results sections with a batch size of 128. Where at once the

model will take 128 images instead of taking one on one image.

19

▪ Evaluation Metrics Outputs for CNN

Figure 34: CNN Results Section 1

In section 1 results of CNN, we have got Accuracy, Precision, Recall and F1 Score values

where the precision and Recall values were calculated for all the classes with a good

outcome.

Figure 35: CNN Section 2 Results

20

In section 2 of CNN evaluation results, we have calculated the MSE and MAE along with the

R2 Score where the values should be equal to zero.

Figure 3: Confusion Matrix for CNN Model

If we observe the graph the actual values and predicted values were showing in the graphs the

values which are predicted correctly has shown in dark green with a good number of

predictions and the remaining 1 or 2 values were not predicted correctly by the model. On

average, all the images in all the classes are showing good results.

These graphs give us the loss and accuracy outcomes for both train and test models for 50

epochs. If we consider the loss values, it is decreased to 0 and accuracy increased to 1 which

is a good prediction outcome for CNN model (Khan et al., 2020).

21

3.3.4. Mobile Net Outputs

The mobile net model is also trained based on the transfer learning where this model is

trained in a different way where the images were already divided into two different folders

for training and testing purpose and while training the model we have given the model train

path and test path separately.

Figure 37: Mobile Net Transfer Learning Technique

The above code gives us the correct information about how I have trained the model

separately for both training and testing purpose. I have used the image net data and

considered the mobile net to detect tomato diseases. Here I am training the mobile net model

with an image size of 224. In the other steps once after collecting the data the model was

flattened and created a model objective for the model. Finally checking the summary values

of the model.

Figure 38: Model Fit for Mobile Net

22

After checking all the parameters of the mobile net, we have compiled the model and used

callbacks function where this will help in overfitting the data. Finally, we ran the model by

giving the training set images to the model and storing the test set image values in the

validation results.

▪ Evaluation Metrics Graphs

The above graphs are showing up to only 5 epochs values because the model is not learning

anything from there as all the images were been fitted into the model. There is no increase in

the val_accuracy of the model (Sinha and El-Sharkawy, 2019).

Comparing the Models

Figure 39: Over all Epochs Values

This graph gives detailed information on which model has how much accuracy and loss

values at different epoch stages. If we observe in all the epochs (25, 50, 100) the Val

Accuracy and Accuracy values are high for Dense Net. The Loss and Val Loss is very low for

Dense Net. Which means out of all the models Dense Net is providing the better results

(Kumar and Vani, 2019).

23

Figure 40: Over all Metrics Results

On overall, the Accuracy and R2-Score are high for Dense Net. Absolute and Square Error-

values are low for Dense Net which is nearly equal to zero which means they are providing

good results with no error values. Comparatively, Le Net and CNN both are almost equal for

R2-Score and Error-values are differentiated.

4. Conclusion

To conclude the model this whole report is useful for individuals to understand clearly what I

have done to achieve my output. So, this whole report is submitted with all the codes, graphs

and components used to complete this project with a detailed explanation. All these codes

have implemented in Google Collaboratory platform using GPU memory which will increase

the speed of the model and helped me to get outputs in less than one hour.

5. References

Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K. Q. (2017) ‘Densely connected

convolutional networks’, Proceedings - 30th IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017. IEEE, 2017-Janua, pp. 2261–2269. doi:

10.1109/CVPR.2017.243.

Khan, A., Sohail, A., Zahoora, U. and Qureshi, A. S. (2020) ‘A survey of the recent

architectures of deep convolutional neural networks’, Artificial Intelligence Review, pp. 1–70.

doi: 10.1007/s10462-020-09825-6.

Kumar, A. and Vani, M. (2019) ‘Image Based Tomato Leaf Disease Detection’, 2019 10th

International Conference on Computing, Communication and Networking Technologies,

ICCCNT 2019. IEEE, pp. 1–6. doi: 10.1109/ICCCNT45670.2019.8944692.

Sinha, D. and El-Sharkawy, M. (2019) ‘Thin MobileNet: An Enhanced MobileNet

Architecture’, 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile

Communication Conference, UEMCON 2019, pp. 0280–0285. doi:

10.1109/UEMCON47517.2019.8993089.

