~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ombkar Doke
Student ID: x18179525

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Iqbal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Omkar Doke
Student ID: x18179525
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Muhammad Igbal
Submission Due Date: 17/08,/2020
Project Title: Configuration Manual
Word Count: 1744
Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 10th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Omkar Doke
x18179525

1 Introduction

This configuration manual presents the software and hardware requirements along with
the details of programming codes written for model implementation in research project:
“Data Mining for Enhancing Silicon Wafer Fabrication”

2 System Configuration

2.1 Hardware Specifications

Table 1 represents hardware specification of the system on which the research was ac-
complished.

Table 1: Hardware Specification

RAM 8 GB
Processor Intel i7 8550U
Speed 1.99 GHz
Operating System Windows 10, 64 Bit
Storage 1 TB HDD
GPU NVIDIA GeForce MX150

2.2 Software Specifications

e Microsoft Excel 2019:
Both the data-sets used in the research were downloaded and stored in csv (comma
separated values) in excel. It was used for quick evaluation and exploratory plot.

e Jupyter Notebook from Anaconda Distribution:
Anaconda Navigator is an open source software downloaded from the anaconda
distribution website E] . It supports jupyter notebooks to implement machine learn-
ing models on research data. Latest version of jupyter notebook (version 5.7.4)
was used in the research for data preprocessing, exploratory data analysis (EDA),
manipulation of data, transformation and implementation of models.

'https://wuw.anaconda.com/products/individual

https://www.anaconda.com/products/individual

3 Development of Project

Python programming was used to accomplish the research in various phases viz. data
pre-processing of both the data-sets, EDA, merging of both the data-sets, addressing class
imbalance and normalization of data to overcome the impact of outliers. It was followed
by splitting data into train and test set for predictive modelling using classification-based
machine learning algorithms and their cross validation using stratified K-fold validation
technique. Sk-Learn (scikit-learn) and Keras were primary libraries used along with
numpy, panda, matplotlib for executing the code.

3.1 Data Preparation

Both data—setf] downloaded from different Websiteﬁ have been uploaded onto jupyter
notebook in csv format. Following sections provide a detail insight of data-processing,
EDA, feature engineering, dimensionality reduction performed on both data-sets followed
by merging of data-sets for implementation and evaluation of models after addressing class
imbalance.

3.1.1 UCI SEMCOM Dataset

Pre-processing of UCI SEMCOM dataset involves handling missing values. UCI SEM-
COM dataset consists of 591 attributes with 27 attributes having more than 50% of
missing values which were dropped as it didn’t lead to data loss. Apart from that, at-
tributes with zero variance (i.e. no effect of dependent variable) were dropped as their
presence or absence didn’t have any impact on research. Attributes with less than 50%
of missing values were imputed with median as the attributes had outliers and data has
skew symmetric distribution. Thereafter, dataset was normalized using MinMaxScaler
library for scaling because attributes consisted of outliers as well as the attribute values
were in different range. The dependent variable of UCI SEMCOM dataset consists of
pass category defined as ‘-1’ and fail category as ‘+1’. Code for preprocessing of UCI
SEMCOM dataset is highlighted in Figure 1.

3.1.2 WAFER Dataset

Pre-processing of WAFER dataset involves handling missing values. WAFER dataset
consists of 154 attributes with no attributes having more than 50% of missing values
thereby none of the attributes were dropped. Also, when checked for impact of attributes
on dependent variable, it was found that none of the attributes had zero variance. At-
tributes with less than 50% of missing values were imputed with mean as the attributes
didn’t have outliers. Thereafter, dataset was normalized using MinMaxScaler library for
scaling. The dependent variable of WAFER dataset consisted of pass category defined as
‘+1" and fail category as ‘-1’. To have standardized definition of pass and fail classes in
dependent variable, we interchanged the designation for WAFER dataset thereby assign-
ing ‘-1’ to pass class and ‘41’ to fail class. Code for preprocessing of WAFER dataset is
highlighted in Figure 2.

Zhttp://wuw.timeseriesclassification.com/description.php?Dataset=Wafer
3https://archive.ics.uci.edu/ml/datasets/SECOM

http://www.timeseriesclassification.com/description.php?Dataset=Wafer
https://archive.ics.uci.edu/ml/datasets/SECOM

Data Cleaning

RNV WNRE

BEOVAWN

£

#& Dropping 1st row
Wafer_fabrication_df = Wafer_fabrication_df.drop(Wafer_fabrication_df.index[@])

##Removing Columns with more than 58% NaN Values
cols Wafer_fabrication_df.columns[Wafer_fabrication_df._isnull().mean()>®.5]
Wafer_df = Wafer_fabrication_df.drop(cols, axis=1)

Dropping 1 column with date an time
wWafer_df = Wafer_df.drop(columns= [@], axis = 1)

#ADropping columns with @ varainace
Wafer_df = Wafer_df. loc[:,Wafer_df. apply(pd.Series_nunique) '= 1]

ww Looking for outlier

plt.rcParams["figure.figsize®] = (18, 16)
plt.subplot(2, 2, 1)

sns.boxplot{Wafer_df[1], cclor = 'blue')

plt.title('First Sensor Measurements', fontsize = 28)

plt.subplot(2, 2, 2}
ens.boxplot{Wafer df[20], color = 'darkred’)
plt.title('28th Sensor Measurements', fontsize = 28)

plt.subplot(2, 2, 3)

sns.boxplot(Wafer_df[201], <olor = ‘green’)

plt.title('201th Sensor Measurements', fontsize = 2@)

plt.subplot(2, 2,

sns . boxplot (WaFer_ dF[S?s] color = 'orange’)

ple.titlel 'S78th Sensor Measurements', fontsize = 28)

plt.show()

Since their are outlier's in the columns, we ore replaocing missing values with median instead of mean
##Imputing missing values in columns with less than 58% NaN by the median of that column
Wafer_df.fillna(Wafer_df.median(), inplace= True)

Separating dependent and independent varicbles and then Normalizing the independent variables (features)

Separating out the features
x = Wafer_df.loc[:, :59@]

Separating out the target
y = Wafer_df.loc[:,591]

Normalizing the features
norm = MinMaxScaler().fit(x)
x = norm.transform(x)

Figure 1: Data Cleaning of UCI SEMCOM Dataset

Wafer_fabrication2 = pd.read_csw{'D:/NCI - Research Project/DatafWafer/csv_result-Wafer.csv', header = None)
Wafer_ fabrication2_df = pd.DataFrame{Wafer_fabrication2}

#% Dropping 1st row
Wafer_fabrication2 df = Wafer_fabrication2 df.drop(Wafer_fabrication2_df.index[@]}

##Removing Columns with more than 5% NaW Values
cols = wWafer_fabricaticn2_df.columns[Wafer_fabrication2 df.isnull{}.mean()>&.5]
Wafer2_df = Wafer_fabrication2_df.droplcols, axis=1)

Dropping 1st column with segence nuwber
Wafer2_df = Waferz_df.drop(columns= [@), axis = 1)

##0ropping columns with @ varainace

Wafer?_df = Wafer2_df.loc[:,Wafer2_df.apply{pd.Series.nunique) 1= 1]
#% Looking For outlier

plt.rcParams[' figure.figsize'] = (18, 16)

plt.subplot(2, 2, 1)

sns.boxplot{Waferd df[1], color = 'blue')

plt.title('First Sensor Measurements’, fontsize = 2a)
plt.subplot(2, 2, 2)

sns.boxplot(Wafer? df[10], color = ‘darkred')
plt.title{ '18th Sensor Measurements', fontsize = 28)

plt.subplot(2, 2, 3}
sns.boxplot{Wafera_df[142], color = “green’)}
plt.title{ 142th Sensor Measurements®, fontsize = 28)

plt.subplot{2, 2, 4)
sns.boxplot(Wafer2 df[150], colsr = "arange”)
plt.title('158th Sensor Measurements®, fontsize = 2@)

plt. show()

##5ince there ore no outliers as per the boxplot, we are replaocing the missing volues with mean
##Imputing missing walues in columns with Less than 5% NaN by the mean of that column
Waferz_df.fillna(Wafer2_df.mean(), inplace= True}

ww Placing +1 for fail cases and -1 for Pass cases
wWaferz_df[153].replace({l: @, -1: 1}, inplace=True)
wWaferz_df[153].replace({@: -1}, inplace=True)
Wafer2 df.head()

Separating dependent ond independent waricbles and then Normalizing the independent voriobles (feotures)
Separaoting out the Features
x2 = Wafer2_df.loc[:, :152]

Separating out the torget
¥2 = Wafer2_df. loc[:,153]

Normalizing the features

norm = MinMaxScaler().Fit(x2)
=x2 = norm.transform(x2)

Figure 2: Data Cleaning of WAFER Dataset

3.2 Dimensionality Reduction on both data-sets
3.2.1 UCI SEMCOM Dataset

Feature extraction was performed using principle component analysis (PCA) technique
to extract top components explaining 80% variance of the data. PCA was applied to
extract 250 components from 447 attributes. Then after, variance ratio was calculated
and plotted for principal components which led to the selection of top 100 components
as they explained more that 80% variance of data. Figure 3 represents the code for im-
plementation of PCA on UCI SEMCOM data for extracting principle components.

Applying PCA

1 #¢ Applying PCA to get top Principle components representing maximum variance in data
2 pca = PCA(n_components=258)

3 principalComponents = pca.fit_transform(x)

4 columns = ['pca %i' % 1 for i in range(258)]

5 principalDf = pd.Dataframe(data = principalComponents, columns = columns)

Identifying number of PCA's that explain maximum variance of data (we are attempting to find for 98-99% or more)
8 pca.fit(x)
5 variance = pca.explained variance_ratio_ #calculate variance ratios

18 var=np.cumsum(np.round(pca.explained variance ratio , decimals=3)*108)

11 var #cumulative sum of variance explained with [n] features

13 ##Plotting PCA's against variance to identify the PCA's to be selected
14 fig= plt.figure(figsize=(8,5))

15 plt.ylabel('% Variance Explained")

16 plt.xlabel("Number of PCA's")

17 plt.title('PCA Analysis')

18 plt.ylim(5,100.5)

19 plt.style.context('seaborn-blackgrid")

28 plt.grid(True)

21 plt.plot(var)

1 ##Thus from th previous plot, selecting first 1868 PCA for this research as they explain more than 88% variance of data
2 principalDf.drop(principalDf.iloc[:,180:258], axis = 1, inplace = True)

4 ##Concatinating Dependent Variable to the dataframe
5 FinalDf = pd.concat([principalDf, y], axis = 1)

##Renumbering Lost column count
¢ FinalDf.rename(columns={591: "Pass/Fail"}, inplace= True)

18 #Shifting Last column up by 1 row
11 FinalDf['Pass/Fail’] = FinalDf['Pass/Fail'].shift(-1)

13 #Dropping the last row
14 FinalDf = FinalDf[:-1]

Figure 3: Feature Extraction using PCA on UCI SEMCOM Data

Feature selection was performed using Analysis of Variance (ANOVA) technique to select
top features explaining more that 80% variance in data. Initially number of features
were gradually reduced to identify feature count for which models provide optimum per-
formance, however different models provided optimum performance for different feature
count. Then after, top 100 features were selected from the data to compare model’s
performance with that of feature extraction technique. Code for feature selection using

ANOVA is highlighted in Figure 4.

Applying ANOVA

1 ##Select Features With Best ANOVA F-Values
2 ## Create an SelectkBest object to select features with two best ANOVA F-Values
3 fvalue_selector = SelectKBest(f _classif, k=10@)

Apply the SelectKBest object to the features and target
6 X_kbest = fvalue_selector.fit_transform(x, y)
7 FS_1Df = pd.DataFrame(X_kbest)

5 ##Concatinating Dependent Variable to the dataframe
18 FS_1Df = pd.concat([FS_1Df, y], axis = 1)

12 ##Renumbering last column count
13 FS_1Df.rename(columns={591: "Pass/Fail"}, inplacez True)

15 ##Shifting last column up by 1 row
16 FS_1Df['Pass/Fail'] = FS_1Df['Pass/Fail'].shift(-1)

18 ##Dropping the last row
19 FS_1Df = FS_1Df[:-1]
20 FS_1Df.head()

Figure 4: Feature Selection using ANOVA on UCI SEMCOM Data

3.2.2 WAFER Dataset

Feature selection was performed using Analysis of Variance (ANOVA) technique to select
top features explaining more that 80% variance in data. Initially number of features
were gradually reduced to identify feature count for which models provide optimum per-
formance, however different models provided optimum performance for different feature
count. Then after, top 100 features were selected from the data to compare model’s

performance with that of feature extraction technique. Code for feature selection using
ANOVA is highlighted in Figure 5.

Applying ANOVA

1 ##Select Features With Best ANOVA F-Values
2 ## Create an SelectkBest object to select features with two best ANOVA F-Values
3 fvalue_selector = SelectKBest(f classif, k=108)

Apply the SelectKBest object to the features and target
6 X2_kbest = fvalue_selector.fit_transform(x2, y2)
7 FS_2Df = pd.DataFrame(X2_kbest)

9 ##Concatinating Dependent Variable to the dataframe
18 FS_2Df = pd.concat([FS_2Df, y2], axis = 1)

12 ##Renumbering Last column count
13 FS_2Df.rename(columns={153: "Pass/Fail"}, inplacez True)

15 ##Shifting last column up by 1 row
16 FS_2Df['Pass/Fail'] = FS_2Df['Pass/Fail'].shift(-1)

18 ##Dropping the last row
19 FS_2Df = FS_2Df[:-1]
20 FS_2Df.head()

Figure 5: Feature Selection using ANOVA on WAFER Data

Feature extraction was performed using principle component analysis (PCA) technique to

extract top components explaining 80% variance of the data. PCA was applied to extract
150 components from attributes. Then after, variance ratio was calculated and plotted
for principal components which led to the selection of top 100 components as they ex-
plained more that 80% variance of data. Figure 6 represents the code for implementation
of PCA on UCI SEMCOM data for extracting principle components.

Applying PCA

Applying PCA to get top Principle components representing maximum variance in data
pca2 = PCA(n_components=158)

principalComponents2 = pca2.fit_transform(x2)

columns = ["pca #i" % i for i in range(158)]

principal2 Df = pd.DataFrame(data = principalComponents2, columns = columns)

Identifying number of PCA's that exploin maximum variance of data (we are attempting to find for 98-99% or more)
pca2.fit(x2)

variance2 = pca2.explained_variance_ratio_ #calculate variance ratios

var2=np.cumsum({np.round(pca2.explained variance_ratio_, decimals=3)*1@8)

var2 #cumulative sum of variance explained with [n] features

##Plotting PCA's against variance to identify the PCA's to be selected
fig= plt.figure(figsize=(8,5))

plt.ylabel('% Variance Explained")

plt.xlabel("Number of PCA's")

plt.title('PCA Analysis')

plt.ylim(5,108.5)

plt.style.context(’seaborn-blackgrid')

plt.grid(True)

plt.plot(var2)

##Thus from th previous plot, selecting first 188 PCA for this research
principal2 Df.drop(principal2 Df.iloc[:,18@:158], axis = 1, inplace = True)

##Concatinating Dependent Variable to the dataframe
Final2 Df = pd.concat([principal2 Df, y2], axis = 1)

##Renumbering Last column counmt
Final2_Df.rename(columns={153: "Pass/Fail"}, inplace= True)

##Shifting Last column up by 1 row
Final2 Df['Pass/Fail’] = Final2_Df['Pass/Fail’].shift(-1)

##Dropping the Last row
Final2 Df = Final2 Df[:-1]

Figure 6: Feature Extraction using PCA on WAFER Data

3.3 Merging of data
3.3.1 Merging of feature extracted data frames

Two data frames are created of principle components extracted from both data-sets which
are then merged as both had same number of columns. The pass category which was
initially assigned ‘-1’ label was reassigned with label ‘0’ and descriptive analysis was
performed on final merged dataset. Code in Figure 7 shows how feature extracted PCA
data frames from both data-sets were merged together.

3.3.2 Merging of feature selected data frames

Two data frames are created of feature’s selected from both data-sets which are then
merged as both had same number of columns. The pass category which was initially
assigned ‘-1’ label was reassigned with label ‘0. Code in Figure 8 shows how feature
selected data frames from both data-sets were merged together.

Merging Two PCA Data Frames

1 ##Merging data frames
2 Wafer = pd.concat([FinalDf, Final2 Df], ignore index=True)

4 ## Changing -1 to 8
5 Wafer['Pass/Fail'].replace({-1.8: 0.8}, inplace=True)

##Statistical Values of Each Column
3 Wafer_des = Wafer.describe()
2 Wafer_des

Figure 7: Merging two PCA Data Frames

Merging Two Feature Selected Data Frames

1 ##Merging data frames
2 FS_Wafer = pd.concat([FS_1Df, FS_20f], ignore_indexzTrue)

A ## Changing -1 to @
5 FS_Wafer['Pass/Fail'].replace({-1.8: 8.8}, inplace=True)

Figure 8: Merging two Feature Selected Data Frames

3.4 Splitting the data into Train and Test set

After merging, both the data-set were split into train and test part in 75:25 ratio respect-
ively. Models were trained on train set and evaluated on test set. Their performance was
cross validated using stratified K-fold validation technique. Figure 9 illustrates the code
for train test split of final dataset.

1 ##Again separating the dependent and independent variables from FinalDf
2 x = Wafer.iloc[:,:100]
3y = Wafer.iloc[:, 160]

5 #Getting the shapes of new data sets x and y
5 print("Shape of x:", x.shape)
print("Shape of y:", y.shape)

9 ##Splitting the data into train and test sets
10 x_train, x_test, y train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 8)

12 # gettiing the shapes

13 print("Shape of x_train: ", x_train.shape)
14 print("Shape of x_test: ", x_test.shape)
15 print("Shape of y train: ", y_train.shape)
16 print("Shape of y test: ", y_test.shape)

Shape of x: (8731, 1@8)

Shape of y: (8731,)

Shape of x_train: (6548, 100)
Shape of x_test: (2183, 1@@)
Shape of y_train: (6548,)
Shape of y_test: (2183,)

Figure 9: Train Test Split of Merged Data

3.5 Addressing Class Imbalance
3.5.1 Oversampling of Feature Selected and Feature Extracted Data

After splitting the data, major class imbalance was observed in train set with fail class
contributing approximately 10% of entire data. This was then addressed using Syn-
thetic Minority Over-Sampling Technique (SMOTE) wherein the minority class was over-
sampled to 50% to that of majority class in both features extracted and features selected
data. Figure 10 represents the code for oversampling of minority class using SMOTE.

Oversampling using SMOTE of the Fail Cases

SM = SMOTE(sampling_strategy= ©.58, random_state= None)
x_train_os, y train_os = SM.fit_sample(x_train, y_train)

print("Shape of x_train_os: ", x_train_os.shape)

print("Shape of y_train_os: ", y_train_os.shape)

Figure 10: Oversampling of Train Set using SMOTE

3.5.2 Random Sampling of Feature Selected Data

In another experiment, class imbalance of feature selected data was address by random
oversampling of minority class along with random under-sampling of majority class. 3
different rations of oversampling and under-sampling respectively were experimented viz.
40:60, 45:55 and 50:50. Figure 11 represents the code for sampling of majority and
minority class using random sampling.

40:60 Sampling Ratio

Oversample
oversample = RandomOverSampler(sampling strategy=0.48)
x_train ros 1, y train ros 1 = oversample.fit sample(x train, y train)

Undersample
undersample = RandomUnderSampler(sampling_strategy=0.68)
x_train_bd, y_train_bd= undersample.fit_sample(x_train_ros_1, y_train_ros_1)

45:55 Sampling Ratio

Oversample
oversample = RandomOverSampler(sampling_strategy=0.45)
x_train_ros_1, y_train_ros_1 = oversample.fit_sample(x_train, y_train)

Undersample
undersample = RandomUnderSampler(sampling_strategy=0.55)
¥_train_bd, y_train_bd= undersample.fit_sample(x_train_ros_1, y_train_ros_1)

50:50 Sampling Ratio

Oversample
oversample = RandomOverSampler(sampling strategy=0.58)
x_train_ros_1, y_train_ros_1 = oversample.fit_sample(x_train, y_train)

Undersample

undersample = RandomUnderSampler(sampling strategy=0.58)
x_train_bd, y_train_bd= undersample.fit_sample(x_train_ros_1, y_train_ros_1)

Figure 11: Random Sampling of Train Set in Feature Selected Data

3.6 Model Implementation and Cross Validation

Various classification models viz. Decision Tree, Logistic Regression, XGBoost, Ran-
dom Forest, SVM-Linear, SVM-RBF, Naive Bayes, KNN and basic Neural Network were
implemented on pre-processed and feature engineered data. Their performance was eval-
uated for precision and accuracy. The accuracy of each model was further cross validated
using stratified K-fold validation.

3.6.1 Decision Tree

Braha and Shmilovici (2002) used Decision Tree (DT) in their research and achieved an
accuracy of 77%. DT was implemented using default parameters and was cross validated
using K-fold validation with folds ranging from 10 to 50. Code for DT is illustrated in
Figure 12 whereas Figure 13 represents the K-Fold validation of DT.

Decision Tree and its Confusion Matrix

Decision Tree
DT = DecisionTreeClassifier()

Training OT
DT = DT.fit(x_train_fos, y train_fos)

Predicting response on Test
y_pred = DT.predict(x_test)

DT_A2
DT R2
DT_P2
DT_F2

metrics.accuracy_score(y_test, y_pred)*108
metrics.recall score(y test, y pred)*100
metrics.precision_score(y test, y pred)*10@
metrics.fl_score(y_test, y pred)#100

'Accuracy: %.2f%% ' % DT _A2)

"Recall Accuracy: %.2f%%" % DT R2)
"Precision_Accuracy: %.2f%%" % DT_P2)
"F1 Score: %.2f%%" % DT F2)

print
print
print
print

o~ —— — —

Accuracy: 96.98%

Recall Accuracy: 87.50%
Precision_Accuracy: 83.76%
F1 Score: 85.59%

cm = confusion_matrix(y_test, y_pred)
TP DT 2 = em[1][1]

plt.rcParams['figure.figsize'] = (5, 5)
#sns.set(style = 'dark’, font_scale = 1.4)

sns.heatmap(cm, annot = True, annot _kws = {"size": 15})

print(confusion_matrix(y test, y_pred))

[[1921 38]
[28 19%])

Figure 12: Code for Decision Tree

Decision Tree with Stratified K-Fold

1 ## Decision Tree for k = 18

2 skfold = StratifiedKFold(n_splits = 1@,random_state=Neone)

3 model_skfold = DecisionTreeClassifier()

4 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
5 DT_1 = (results_skfold.mean()*100)

5 print("Accuracy when k is 10 : %.2f%%" % DT_1)

Decision Tree for k = 28
skfold = StratifiedKFold(n_splits = 28,random_state=None)
18 model_skfold = DecisionTreeClassifier()
11 results skfold = cross_val score(model skfold, a_fos, b_fos, cv = skfold)
12 DT_2 = (results_skfold.mean()*100)
13 print("Accuracy when k is 20 : %.2f%%" % DT_2)

15 ## Decision Tree for K = 38

16 skfold = StratifiedKFold(n_splits = 3@,random_state=None)

17 model_skfold = DecisionTreeClassifier()

18 results_skfold = cross val score(model skfold, a_fos, b_fos, cv = skfold)
19 DT_3 = (results_skfold.mean()*1@@)

20 print("Accuracy when k is 38 : %.2f%%" % DT_3)

22 ## Decision Tree for K = 58

23 skfold = StratifiedKFold(n_splits = 5@,random_state=None)

24 model_skfold = DecisionTreeClassifier()

25 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv
26 DT_4 = (results_skfold.mean()*100)

27 print("Accuracy when k is 50 : %.2f%%" % DT_4)

skfold)

Accuracy when k is 18 : 92.53%
Accuracy when k is 28 : 95.41%
Accuracy when k is 30 : 95.55%
Accuracy when k is 50 : 96.47%

Figure 13: K-Fold Validation of Decision Tree

3.6.2 Logistic Regression

Logistic Regression was implemented using default parameters and was cross validated
using K-fold validation with folds ranging from 10 to 50. Code for Logistic Regression is
illustrated in Figure 14 whereas Figure 15 represents its K-Fold validation.

Logistic Regression & its Confusion Matrix

1 ## lLOgistic Regression
2 logreg = LogisticRegression(random_state=z @)

4 ## Training Model
LogReg = logreg.fit(x_train_fos, y_train_fos)

Predicting response
y_predLog = LogReg.predict(x_test)

10 LogReg A2 = metrics.accuracy score(y test, y predlLog)*10@
11 LogReg_R2 = metrics.recall_score(y_test, y_predlLog)*100
12 LogReg_P2 = metrics.precision_score(y_test, y_predlog)*100
13 LogReg_F2 = metrics.fl_score(y_test, y_predlLog)*100

15 print("Accuracy: %.2f%%" % LogReg A2)
16 print("Recall Accuracy: %.2f%%" % LogReg R2)

17 print("Precision_Accuracy: %.2f%%" % LogReg_P2)
18 print("F1 Score: %.2f%%" % LogReg_F2)

1 cm = confusion_matrix(y_test, y_predlog)
2 TP_LogReg_2 = cm[1][1]

4 plt.rcParams['figure.figsize'] = (5, 5)
#sns.set(style = 'dark’', font_scale = 1.4)

sns.heatmap(cm, annot = True, annot_kws = {"size": 15})

print(confusion_matrix(y_test, y_predlog))

Figure 14: Code for Logistic Regression

10

Logistic Regression with Stratified K-Fold

[F--- RN - I, B SOV N

B
WK =D

=
B

WO E~N OV

NMANNNMNNRNNRRR SR

NN R W N

logistic Regression for k = 18

skfold = StratifiedKFold(n_splits = 18,random_state=None)

model_skfold = LogisticRegression()

results_skfold = cross_val_score(model_skfold, a_fas, b_fos,

LogReg 1 = (results_skfold.mean()#*108)
print("Accuracy when k is 1@ : %.2f%%"

lLogistic Regression for k = 28

skfold = StratifiedKFold(n_splits = 20,random_state=None)

model_skfold = LogisticRegression()

% LogReg 1)

results_skfold = cross_val score(model skfold, a_fos, b_fos,

LogReg 2 = (results_skfold.mean()#*10a)
print("Accuracy when k is 20 : %.2f%%"

lLogistic Regression for K = 38

skfold = StratifiedKFold(n_splits = 3@,random_state=None)

model_skfold = LogisticRegression()

% LogReg_2)

results_skfold = cross_val score(model skfold, a_fos, b_fos,

LogReg_3 = (results_skfold.mean()*10@)
print("Accuracy when k is 3@ : %.2f%%"

logistic Regression for K = 58

skfold = StratifiedKFold(n_splits = 5@,random_state=None)

model skfold = LogisticRegression()

% LogReg_3)

results_skfold = cross_val_score(model_skfold, a_fas, b_fos,

LogReg_4 = (results_skfold.mean()*108@)
print("Accuracy when k is 58 : %.2f%%"

% LogReg 4)

v

v

v

v

skfold)

skfold)

skfold)

skfold)

C:\Users\Omkar Doke\Anaconda3\lib\site-packages\sklearn\linear modell logistic.py:948: ConvergenceWarning: lbfgs failed to ¢
onverge (status=1):

Figure 15: K-Fold Validation of Logistic Regression

Model’s precision failure was further studied for its threshold for classification of its

probabilities.

It was then adjusted after plotting the histogram plot and the model

was re-implemented which saw further reduction in precision. Figure 16 shows code for
experiment with logistic regression.

Understanding why True Positive is less and how to adjust the threshold of classification for that

WONGWNEWNR VO NGW A WN G W e

NOWhWN R

BN OB W R

print the first 25 true and predicted responses

print({ True:", y_test.values[@:18&])
print('Predicted: ", y_predLog[@©:1e8])

print the first 18 predicted probabilities of class membership

LogReg.predict_proba(x_test)[79:108]

print the first 1@ predicted probabil
LogReg.predict_proba(x_test)[e:18, 1]

store the predicted probabilities for
y_pred_prob = LogReg.predict_proba(x_te
y_pred_prob_df = pd.DataFrame(y_pred_pr

histogram of predicted probabilities
8 bins
plt.hist(y_ pred_prob, bins=5)

x-axis Limit from & to 1
plt.xlim{e,1)

ities For class 1

class 1
st)[:, 1]
ob)

plt.title('Histogram of predicted probabilities®)
plt.xlabel('Predicted probability of wafer test')

plt.ylabel("Frequency"”)

predict wafer fail if the predicted probability is greater than 8.4, it will return 1 for all values above 8.2 and @ other

results are 2D so we slice out the fi

y_pred_class = pd.DataFrame(binarize(y_pred_prob_df, @.2))

LogReg_B_Al
LogReg_B_R1
LogReg B _P1
LogReg B _F1

metrics.recall_score(y_te
metrics.precision_score(y.
metrics.fl_score(y_test,

print(“Accuracy: %.2f%%" % LogReg_B_Al)
print({“Recall Accuracy: %.2f%%" % LogRe
print({“Precision_Accuracy: %.2f%%" % Lo
print(“Fl1 Score: %.2f%%X" % LogReg B_F1)

rst column

st, y_pred_class)*iee
_test, y_pred_class)*10@

y_pred_class)™109

g B_R1)
gReg B_P1)

m = confusion_matrix(y_test, y_pred class)

TP_LogReg B = cm[1][1]

plt.rcParams[' figure.figsize'] = (5, 5)
#sns.set(style = 'dark’, font_scale = 1.4
sns.heatmap(cm, annot = True, annot_kws = {"size": 15})

print{confusion_matrix(y_test, y_pred_class))

metrics.accuracy_score(y_test, y_pred_class)*18@

Figure 16: Understanding Poor Performance of Logistic Regression

11

3.6.3 XGBoost

XGBoost was implemented using default parameters and was cross validated using K-fold
validation with folds ranging from 10 to 50. Code for XGBoost is illustrated in Figure
17 whereas Figure 18 represents its K-Fold validation.

XGB Classifier and its CM

1 ## XGB Boost
2 XGB = XGBClassifier()

4 ## Training Model
5 XGB = XGB.fit(x_train_fos, y_train_fos)

Predicting response on Test
vy _pred = XGB.predict(x test)

) XGB_A2 = metrics.accuracy_score(y_test, y_pred)*1lee
1 XGB R2 = metrics.recall score(y test, y pred)*180

12 XGB_P2 = metrics.precision_score(y test, y pred)*100
% XGB_F2 = metrics.fl_score(y_test, y pred)*lee

15 print("Accuracy: %.2f%%" % XGB_A2)

5 print("Recall_Accuracy: %.2f%%" % XGB_R2)

17 print("Precision_Accuracy: %.2f%%" % XGB_P2)
8 print("Fl1 Score: %.2f%%" %XGB_F2)

Accuracy: 98.44%

Recall Accuracy: 88.84%
Precision_Accuracy: 95.67%
F1 Score: 92.13%

1 cm = confusion_matrix(y_test, y_pred)
2 TP_XGB_2 = cm[1][1]
4 plt.rcParams['figure.figsize'] = (5, 5)

#sns.set(style = 'dark’', font_scale = 1.4)
sns.heatmap(cm, annot = True, annot_kws = {"size": 15})

print(confusion_matrix(y_test, y_pred))

[[195@ 2]
[25 199]]

Figure 17: Code for XGBoost Classifier

XGB with Stratified K-Fold

1 ## XGB for k = 18

2 skfold = StratifiedKFold(n_splits = 1@,random_state=None)

3 model_skfold = XGBClassifier()

4 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
XGB_1 = (results_skfold.mean()*100)

print("Accuracy when k is 1@ : %.2f%X" % XGB_1)

XGB for k = 28
9 skfold = StratifiedKFold(n_splits = 2@,random_state=None)
16 model_skfold = XGBClassifier()
1 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
2 XGB_2 = (results_skfold.mean()*100)
13 print("Accuracy when k is 20 : %.2f%X" % XGB_2)

5 ## XGB for K = 30

16 skfold = StratifiedkKFold(n_splits = 3@,random_state=None)

17 model_skfold = XGBClassifier()

8 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
9 XGB_3 = (results_skfold.mean()*100)

280 print("Accuracy when k is 38 : %.2f%¥%" % XGB_3)

22 ## XGB for K = 58

23 skfold = StratifiedKFold(n_splits = 5@,random_state=None)

24 model_skfold = XGBClassifier()

results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
XGB_4 = (results_skfold.mean()*100)

27 print("Accuracy when k is 58 : %.2f%%" % XGB_4)

is 18 : 92.78%
is 20 : 97.17%
is 3@ : 98.05%
is 5@ : 98.27%

Accuracy when
Accuracy when
Accuracy when
Accuracy when

A A A

Figure 18: K-Fold Validation of XGBoost

12

3.6.4 Random Forest

Random Forest was implemented using default parameters and was cross validated using
K-fold validation with folds ranging from 10 to 50. Code for RF is illustrated in Figure
19 whereas Figure 20 represents its K-Fold validation.

Random Forest and its CM

1 ## Random Forest
2 RF = RandomForestClassifier()

4 ## Training Model
5 RF = RF.fit(x_train_fos, y train_fos)

7 ## Predicting response on Test
2 y _pred = RF.predict(x_test)

18 RF_A2

= metrics.accuracy score(y test, y pred)*100
11 RF_R2 = metrics.recall_score(y_test, y_pred)*180
12 RF_P2 = metrics.precision score(y test, y pred)*100
13 RF_F2 = metrics.fl_score(y_test, y_pred)*160

15 print("Accuracy: %.2f%%" % RF_A2)

16 print("Recall_Accuracy: %.2f%%" % RF_R2)

17 print("Precision_Accuracy: %.2f%%" % RF_P2)
18 print("F1 Score: %.2f%%" % RF_F2)

Accuracy: 98.40%

Recall_ Accuracy: 87.50%
Precision_Accuracy: 96.55%
Fl Score: 91.80%

1 cm = confusion_matrix(y test, y pred)
2 TP_RF_2 = em[1][1]

4 plt.rcParams['figure.figsize'] = (5, 5)
#sns.set(style = 'dark', font scale = 1.4)
sns.heatmap(cm, annot = True, annot_kws = {"size": 15})

print(confusion_matrix(y test, y pred))

[[1952 71
[28 196]1]

Figure 19: Code for Random Forest

Random Forest with Stratified K-Fold

1 ## Random Forest for k = 18

? skfold = StratifiedKFold(n_splits = 18,random_state=None)

3 model_skfold = RandomForestClassifier()

4 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
5 RF_1 = (results_skfold.mean()*108)

print("Accuracy when k is 10 : %.2f%%" % RF_1)

Random Forest for k = 28
9 skfold = StratifiedKFold(n_splits = 28,random_statezNone)
18 model_skfold = RandomForestClassifier()
11 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
12 RF_2 = (results_skfold.mean()*10@)
13 print("Accuracy when k is 26 : %.2f%%" % RF_2)

15 ## Random Forest for K = 38

16 skfold = StratifiedKFold(n_splits = 3@,random_state=None)

17 model_skfold = RandomForestClassifier()

18 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
19 RF_3 = (results_skfold.mean()#*100)

20 print("Accuracy when k is 3@ : %.2f%%" % RF_3)

22 ## Random Forest for K = 58

23 skfold = StratifiedKFold(n_splits = 5@,random_state=None)

24 model_skfold = RandomForestClassifier()

results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
RF_4 = (results_skfold.mean()*1e@)

27 print("Accuracy when k is 58 : %.2f%%" % RF_4)

Accuracy when k is 10 : 94.81%
Accuracy when k is 28 : 97.50%
Accuracy when k is 3@ : 98.14%
Accuracy when k is 50 : 98.28%

Figure 20: K-Fold Validation of Random Forest

13

3.6.5 SVM-Linear

Yu et al| (2017) used SVM-Linear in their research and achieved a F1 Score of 90%.
SVM was implemented with ‘Linear’ Kernel using default parameters and was cross
validated using K-fold validation with folds ranging from 10 to 50. Code for SVM-Linear
is illustrated in Figure 21 whereas Figure 22 represents its K-Fold validation.

SVM-Linear and its Confusion Matrix

1 ## SVM Linear
2 SVM= svm.SVC(kernel = 'linear’')

4 ## Training Model
5 SVM = SVM.fit(x_train_fos, y_train_fos)

Predicting response on Test
y_pred = SVM.predict(x_test)

18 SVM_A2

= metrics.accuracy_score(y_test, y_pred)*lee
11 SVM_R2 = metrics.recall score(y test, y pred)*100
12 SVM_P2 = metrics.precision_score(y_test, y pred)*100
13 SVM_F2 = metrics.fl_score(y_test, y_pred)*100@

15 print("Accuracy: %.2f%%" % SVM_A2)

16 print("Recall Accuracy: %.2f%%" % SVM_R2)

17 print("Precision_Accuracy: %.2f%%" % SVM_P2)
18 print("Fl Score: %.2f%%" % SVM_F2)

Accuracy: 92.81%
Recall_Accuracy: 58.93%
Precision_Accuracy: &7.01%
Fl Score: 62.71%

1 cm = confusion_matrix(y_test, y_pred)
2 TP_SWM 2 = em[1][1]

4 plt.rcParams['figure.figsize'] = (5, 5)
#sns.set(style = 'dark', font scale = 1.4)
sns.heatmap(cm, annot = True, annot_kws = {"size": 15})

print (confusion_matrix(y_test, y_pred))

[[1894 65]
[92 132]]

Figure 21: Code for SVM-Linear

SVM Linear with Stratified K-Fold

1 ## SVM Linear for k = 18

2 skfold = StratifiedKFold(n_splits = 1@,random_state=None)

3 model_skfold = swm.SVC(kernel= 'linear')

4 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
5 SVM_1 = (results_skfold.mean()*10@)

print("Accuracy when k is 18 : %.2f%%" % SVM_1)

SVM Linear for k = 20
9 skfold = StratifiedKFold(n_splits = 28,random_state=None)
16 model_skfold = swm.SVC(kernel= 'linear')
11 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
12 SWM_2 = (results_skfold.mean()*10a)
13 print("Accuracy when k is 28 : %.2f%%" % SVM_2)

15 ## SVM Linear for K = 3@

16 skfold = StratifiedKFold(n_splits = 3@,random_state=None)

17 model_skfold = swm.SVC(kernel= 'linear')

18 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
19 SWM_3 = (results_skfold.mean()*10@)

20 print("Accuracy when k is 38 : %.2f%%" % SVM_3)

22 ## SVM Linear for K = 58

23 skfold = StratifiedKFold(n_splits = 5@,random_state=None)

24 model_skfold = svm.SVC(kernel= 'linear')

25 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
26 SVM_4 = (results_skfold.mean()*1080)

27 print("Accuracy when k is 58 : %.2f%%" % SVM_4)

is 1@ : 77.85%
is 20 : 82.89%
is 3@ : 83.95%
is 5@ : 84.39%

Accuracy when
Accuracy when
Accuracy when

k
k
k
Accuracy when k

Figure 22: K-Fold Validation of SVM-Linear

14

3.6.6 SVM-RBF

Adly et al| (2015) used SVM-RBF in their research and achieved an accuracy of 87.5%.
SVM was implemented with ‘Radial Basis Function” Kernel using default parameters and
was cross validated using K-fold validation with folds ranging from 10 to 50. Code for
SVM-RBF is illustrated in Figure 23 whereas Figure 24 represents its K-Fold validation.

SVM-RBF and its COnfusion Matrix

1 | ## SVM RBF
2 SVM= svm.SVC(kernel = 'rbf')

4 ## Training Model
5 SWM = SVM.fit(x_train_fos, y_train_fos)

Predicting response on Test
v_pred = SVM.predict(x_test)

18 SVM_RBF_A2

= metrics.accuracy_score(y_test, y pred)*18@
11 SVM_RBF_R2 = metrics.recall_score(y_test, y_pred)*180
12 SVM RBF_P2 = metrics.precision score(y test, y pred)*1e@
13 SVM_RBF_F2 = metrics.fl_score(y_test, y_pred)*100

15 print("Accuracy: %.2f%%" % SVM_RBF_A2)

16 print("Recall Accuracy: %.2f%%" % SVM _RBF_R2)

17 print("Precision_Accuracy: %.2f%%" % SVM_RBF_P2)
18 print("F1 Score: %.2f%%" % SVM_RBF_F2)

Accuracy: 97.76%
Recall_Accuracy: 87.58%
Precision_Accuracy: 90.32%
F1l Score: 88.89%

1 em = confusion_matrix(y_test, y_pred)
2 TP_SVM RBF 2 = em[1][1]

4 plt.rcParams['figure.figsize'] = (5, 5)
#sns.set(style = 'dark’, font_scale = 1.4)
sns.heatmap(cm, annot = True, annot kws = {"size”: 15})

print(confusion_matrix(y_test, y_pred))

[[1938 21]
[28 196]]

Figure 23: Code for SVM-RBF

SVM RBF with Stratified K-Fold

1 ## SVM RBF for k = 18

2 skfold = StratifiedKFold(n_splits = 18,random_state=None)

3 model_skfold = swm.SVC(kernel= 'rbf')

4 pesults_skfold = cross _val score(model skfold, a_fos, b_fos, cv = skfold)
5 SVM_RBF_1 = (results_skfold.mean()*188)

print("Accuracy when k is 10 : %.2f%%" % SVM_RBF_1)

SVM RBF for k = 28
9 skfold = StratifiedKFold(n_splits = 28, random_state=None)
160 model_skfold = swm.SVC(kernel= 'rbf')
11 results_skfold = cross_wval_score(model_skfold, a_fos, b_fos, cv = skfold)
12 SVM_RBF_2 = (results_skfold.mean()*188)
13 print("Accuracy when k is 28 : %.2f%%" % SVM_RBF_2)

15 |## SVM RBF for K = 30

16 skfold = StratifiedKFold(n_splits = 3@,random_state=None)

17 model_skfold = svm.SVC(kernel= 'rbf')

18 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
19 SVM_RBF_3 = (results_skfold.mean()*108)

280 print("Accuracy when k is 30 : %.2f%%" % SVM_RBF_3)

22 ## SVM RBF for K = 5@

23 skfold = StratifiedKFold(n_splits = 5@,random_state=None)

24 model_skfold = svm.SVC(kernel= 'rbf')

results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
26 SVM_RBF_4 = (results_skfold.mean()*10@)

27 print("Accuracy when k is 508 : %.2f%%" % SVM_RBF_4)

Accuracy when k is 18 : B88.88%
Accuracy when k is 28 : 93.48%
Accuracy when k is 38 : 94.63%
Accuracy when k is 58 : 95.11%

Figure 24: K-Fold Validation of SVM-RBF

15

3.6.7 Naive Bayes

Naive Bayes was implemented using default parameters and was cross validated using
K-fold validation with folds ranging from 10 to 50. Code for NB is illustrated in Figure
25 whereas Figure 26 represents its K-Fold validation.

Naive Bayes and its Confusion Matrix

Naive Bayes
NB = GaussianNB()

S W Nk

Training Model
= NB.fit(x_train_fos, y_train_fos)

U
=
m

7 ## Predicting response on Test
yv_pred = NB.predict(x_test)

o ®

16 NB_AZ = metrics.accuracy_score(y_test, y_pred)*108
11 NB_R2 = metrics.recall score(y test, y pred)*lee
12 MNB_P2 = metrics.precision_score(y_test, y_pred)*1080
13 NB_F2 = metrics.fl score(y test, y pred)*100

15 print("Accuracy: %.2f%%" % NB_A2)

16 print(“Recall_Accuracy: %.2f%%" % NB_R2)

1 print("Precision_Accuracy: %.2f%%" % NB_P2)
18 print("Fl Score: %.2f%%" % NB_F2)

Accuracy: 72.47%

Recall_ Accuracy: 58.84%
Precision_Accuracy: 20.41%
Fl Score: 30.20%

cm = confusion_matrix(y_test, y_pred)
TP NB 2 = em[1][1]

[N

plt.rcParams['figure.figsize'] = (5, 5)
#sns._set(style = 'dark’', font_scale = 1.4)
sns.heatmap(cm, annot = True, annot_kws = {"size": 15})

[

8 print(confusion_matrix(y_test, y_pred))

[[1452 5607]
[94 138]]

Figure 25: Code for Naive Bayes

Naive Bayes with Stratified K-Fold

Naive Bayes for k = 10

skfold = StratifiedKFold(n_splits = 18,random_state=None)

model_skfold = GaussianNB()

results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
NB_1 = (results_skfold.mean()*1ee)

print("Accuracy when k is 10 : %.2f%%" % NB_1)

WA e

[

8 ## Naive Bayes for k = 26

9 skfold = StratifiedKFold(n_splits = 28,random_state=None)

18 model_skfold = GaussianNB()

11 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
12 NB_2 = (results_skfold.mean()*10a)

13 print("Accuracy when k is 20 : %.2f%%" % NB_2)

15 ## Naive Bayes for K = 30

16 skfold = StratifiedKFold(n_splits = 3@,random_state=None)

17 model skfold = GaussianNB()

results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
NB_3 = (results_skfold.mean()*18@)

print("Accuracy when k is 3@ : %.2f%%" % NB_3)

Naive Bayes for K = 50

skfold = StratifiedKFold(n_splits = 58,random_state=None)

model_skfold = GaussianNB()

results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
NB_4 = (results_skfold.mean()*1ee)

27 print("Accuracy when k is 50 : %.2f%%" % NB_4)

is 18 : 58.03%
is 20 : 61.88%
is 30 : 65.34%
is 50 : B7.67%

Accuracy when
Accuracy when
Accuracy when

k
k
k
Accuracy when k

Figure 26: K-Fold Validation of Naive Bayes

16

3.6.8 KNN

(Chien et al.| (2012) used KNN in their research and achieved an accuracy of 75%. KNN
was implemented using default parameters and was cross validated using K-fold validation
with folds ranging from 10 to 50. Code for KNN is illustrated in Figure 27 whereas Figure
28 represents its K-Fold validation.

KNN and its Confusion Matrix

1 ## KNN

2 KNN = KNeighborsClassifier()

4 ## Training Model

5 KNN = KNN.fit(x_train_fos, y_train_fos)

7 ## Predicting response on Test

5 y_pred = KNN.predict(x_test)

10 KNN_A2 = metrics.accuracy score(y test, y pred)*10@
11 KNN_R2 = metrics.recall score(y_test, y pred)*1@@
12 KNN_P2 = metrics.precision_score(y_test, y_pred)*l0@
13 KNN_F2 = metrics.fl score(y test, y pred)*10@

14

15 print("Accuracy: %.2f%%" % KNN_A2)

16 print("Recall_ Accuracy: %.2f%%" % KNN_R2)

17 print("Precision_Accuracy: %.2f%%" % KNN_P2)

18 print("Fl1 Score: %.2Ff%%" % KNN_F2)

Accuracy: 94.96%

Recall_ Accuracy: 89.29%
Precision_Accuracy: 69.93%
F1 Score: 78.43%

cm = confusion_matrix(y_test, y_pred)
TP KNN 2 = em[1][1]

plt.rcParams['figure.figsize'] = (5, 5)
#sns.set(style = 'dark’', font_scale = 1.4)
sns.heatmap(cm, annot = True, annot_kws = {"size": 15})

00N VU AW N

print(confusion_matrix(y_test, y_pred))

[[1873 88]
[24 208]]

Figure 27: Code for KNN

KNN with Stratified K-Fold

KNN for k = 18
skfold = StratifiedKFold(n_splits = 18,random_state=None)

2

3 model_skfold = KNeighborsClassifier()

4 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
5 KNN_1 = (results_skfold.mean()*100)

6 print("Accuracy when k is 10 : %_2f%%" % KNN_1)

-

8 ## KNN for k = 20

9 skfold = StratifiedkFold(n_splits = 28,random_statezNone)

19 model skfold = KNeighborsClassifier()

11 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
12 KNN_2 = (results_skfold.mean()*1088)

13 print("Accuracy when k is 20 : %.2f%%" % KNN_2)

14

15 ## KNN for K = 30

16 skfold = StratifiedKFold(n_splits = 3@,random_state=zNone)

17 model skfold = KNeighborsClassifier()

18 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
19 KNM_3 = (results_skfold.mean()*108@)

260 print("Accuracy when k is 3@ : %.2f%%" % KNN_3)

21

22 ## KNN for K = 58

23 skfold = StratifiedKFold(n_splits = 5@,random_state=zNone)

24 model skfold = KNeighborsClassifier()

25 results_skfold = cross_val_score(model_skfold, a_fos, b_fos, cv = skfold)
26 KNM_4 = (results_skfold.mean()*10@)

27 print("Accuracy when k is 50 : %.2f%%" % KNN_4)

Accuracy when k is 10 : 91.12%
Accuracy when k is 20 : 93.89%
Accuracy when k is 3@ : 94.84%
Accuracy when k is 58 : 95.17%

Figure 28: K-Fold Validation of KNN

17

3.6.9 Neural Network

Fernandes et al. (2020 used KNN in their research and achieved an accuracy of 89.64%.
Basic Neural Network was designed and implemented. It was tested for epochs 25 and
50 with constant batch size of 60. Code for design, training and implementation of NN
is illustrated in Figure 29.

Neural Network & its Confusion Matrix

1 ##Neural Network

2 NN = Sequential()

3 NN.add(Dense(51, input_dim = 108, activation = 'relu'))

4 NN.add(Dense(27, activation = 'relu'))

5 NN.add(Dense(15, activation = 'relu'))

6 NN.add(Dense(9, activation = 'relu'))

7 NN.add(Dense(6, activation = 'relu'))

8 NN.add(Dense(2, activation = 'sigmoid'))

9 NN.compile(loss='sparse_categorical crossentropy', optimizerz'adam', metrics=['accuracy'])

1 ## Training Neural Network
2 Neural N3 = NN.fit(x_train_fos, y_train_fos, epochsz25, batch_sizez 60)

1 ## Testing Neural Network
2 y_pred = NN.predict(x_test)

4 #Converting predictions to label
5 pred = list()
6 for 1 in range(len(y_pred)):

pred.append(np.argnax(y_pred[i]))
8 NN 3 = accuracy score(pred,y test)*100

9 print('Accuracy is: %.2F%%" % NN_3)

1 ## Confusion Matrix for Neural Network

2 cm = confusion matrix(y_test, pred)

3 TPIN3 = en[1][1]

4 plt.rcParams['figure.figsize'] = (5, 5)

5 #sns.set(style = 'dark’, font_scale = 1.4)

5 sns.heatmap(cm, annot = True, annot_kws = {"size": 15})
7 print(confusion_matrix(y test, pred))

Figure 29: Code for Neural Network

References

Adly, F., Yoo, P. D., Muhaidat, S., Al-Hammadi, Y., Lee, U. and Ismail, M. (2015).
Randomized general regression network for identification of defect patterns in semicon-
ductor wafer maps, IEEE Transactions on Semiconductor Manufacturing 28(2): 145
152.

Braha, D. and Shmilovici, A. (2002). Data mining for improving a cleaning process
in the semiconductor industry, IEEE Transactions on Semiconductor Manufacturing
15(1): 91-101.

18

Chien, C.-F., Hsu, C.-Y. and Chen, P.-N. (2012). Semiconductor fault detection and
classification for yield enhancement and manufacturing intelligence, Flexible Services
and Manufacturing Journal 25.

Fernandes, S., Antunes, M., Santiago, A., Barraca, J., Gomes, D. and Aguiar, R. (2020).

Forecasting appliances failures: A machine-learning approach to predictive mainten-
ance, MDPI Journals .

Yu, C., Chien, C. and Kuo, C. (2017). Exploit the value of production data to discover
opportunities for saving power consumption of production tools, IEEE Transactions
on Semiconductor Manufacturing 30(4): 345-350.

19

	Introduction
	System Configuration
	Hardware Specifications
	Software Specifications

	Development of Project
	Data Preparation
	UCI SEMCOM Dataset
	WAFER Dataset

	Dimensionality Reduction on both data-sets
	UCI SEMCOM Dataset
	WAFER Dataset

	Merging of data
	Merging of feature extracted data frames
	Merging of feature selected data frames

	Splitting the data into Train and Test set
	Addressing Class Imbalance
	Oversampling of Feature Selected and Feature Extracted Data
	Random Sampling of Feature Selected Data

	Model Implementation and Cross Validation
	Decision Tree
	Logistic Regression
	XGBoost
	Random Forest
	SVM-Linear
	SVM-RBF
	Naive Bayes
	KNN
	Neural Network

