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Abstract

Gordon E. Moore found that density of transistors doubled every two years on
a microchip. However, now it is doubling in every 18 montheE] thereby making
semiconductor manufacturing one of the most complicated technological process.
With increasing density, the transistor dimension is reducing thereby demanding
rigorous physical and electrical testing to ensure high die yield quality which ma-
jorly depends on smooth functioning of equipment’s. In the past, various research
projects were undertaken on wafer image data in semiconductor manufacturing
field to improve the quality and productivity by reducing the impact of contamin-
ants. This research aims at using machine learning techniques on numerical data
obtained from sensors in equipment’s to predict wafer failure in manufacturing
process thereby reducing equipment failure by providing timely maintenance (i.e.
predictive maintenance) which in turn would enhance productivity and improve die
yield quality. To achieve this, models like XGBoost, Decision Tree, Logistic Re-
gression, Support Vector Machine, Random Forest, K-Nearest Neighbor and Neural
Network are used for classification. Various case studies were conducted wherein
these models were evaluated for their performance based on their accuracy and
precision. Random Forest outperformed all other models with both accuracy and
precision over 98% thereby confirming that machine learning techniques can be used
to implement predictive maintenance in production line with an aim to improve the
productivity by making optimum use of equipment’s.

Keywords: Semiconductor Manufacturing, Die Yield Quality, Contam-
inants, Predictive Maintenance

1 Introduction

1.1 An Overview of Semiconductor evolution

The first point contact transistor was invented in 1947 by Bardeen and Brattain at
Bell Laboratories in the US followed by invention of junction transistor by Shockley
in 1948 which marked the beginning of transistor era?} Prior to that computers were
made using vacuum tubes which required huge storage space, consumed lot of electricity
and generated tremendous amount of heat. But with the invention and development of
semiconductors, computers have seen exponential development. World has moved from
handicraft age to big-data age and this swift evolution was possible because of constant

"https://www.investopedia.com/terms/m/mooreslaw.asp
?https://www.hitachihightech.com/global/products/device/semiconductor/history.html:
text=History’200f%20semiconductors, the’20junction’20transistor/20in’201948
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architectural framework provided by semiconductor industry as even in this big-data age,
large amount of data generated on daily basis is stored in small chips itself. This shows
how the capacity and functioning (i.e. quality) of integrated chips has enhanced over a
period.

1.2 Motivation

Due to overall development in technological world, electronic gadgets are finding their
applications in every aspects of life. The commercial and personal use of all devices has
increased tremendously which in turn has increased the demand for semiconductors as
they form the backbone of any hardware system. From the time of their birth till now,
primary focus in the field of semiconductor manufacturing was on improving their quality.
Companies trying to enhance the productivity using same old techniques of 24*7 use of
production line with bigger manufacturing plants, has made costly equipment’s/machines
of production line vulnerable to malfunctioning, damage, increasing the cycle time (CT)
etc. This means that even if productivity can be enhanced using the basic techniques,
it would increase the production cost as maintaining these equipment’s is costly and
building a big production plant also requires huge funding thereby reducing the profit
as well as making the final product expensive for consumer market. Thus, the primary
bottleneck for semiconductor manufacturing industries is to enhance the productivity
without affecting the quality and hampering the production cost. As per the statistics,
wafer fabrication equipment’s undergo 15% of downtime of which 8% is because of un-
scheduled maintenance and 7% is due to scheduled maintenance. Apart from that, the
equipment setting up takes around 27% of total time and for another 14% of overall time,
equipment’s sit idle (Lizaranzu and Rojoj 2012).

Unscheduled
Maintenance
8%

Scheduled
Maintenance _
7%

Productive
44%

Setting Up
27%

Figure 1: Equipment Utilization

Figure 1 shows that wafer fabrication equipment’s are productive only for 44% of over-
all time. Thus, to improve the productivity, industries need to work on reducing the



unscheduled maintenance thereby making equipment’s/machines productive for 52% of
total time. This unscheduled maintenance is mainly caused due to lack of equipment’s
health tracking which is nearly impossible for engineers to do manually. Machine learning
models can be implemented here to minimize the impact of unscheduled maintenance by
analyzing the data generated from the sensors mounted in the equipment’s of production
line to predict which equipment/machine is going to need maintenance (i.e. predictive
maintenance) by predicting whether the fabricated wafer using that equipment would
pass or fail the final test (Khakifirooz et al.; 2018). This would increase the productiv-
ity as maintenance time is reduced and due to predictive maintenance, operational cost
would reduce thus increasing the profit margin.

1.3 Research Question

“Can Machine Learning models be trained using data mining tools to predict the test
result of wafer produced thereby predicting if there is need of maintenance for any equip-
ment on production line?”

The motive of this research is to answer the above question which would help in gaining
useful knowledge benefiting semiconductor manufacturing industries. Since the target
variable to be predicted in this research is whether the wafer produced on a particular
production line is going to pass or fail the tests (i.e. a binary variable), classification
algorithms are used while implementing wafer test prediction model.

1.4 Research Objective

To meet the above research question, following objectives are defined:

e Data-preprocessing of two data-sets with wafer fabrication data recorded from
sensors mounted in equipment’s of production line.

e Normalization of data for transformation and scaling of features.

e Extracting best features contributing to wafer test prediction model using Principal
Component Analysis (PCA).

e Performing feature selection using Analysis of Variance (ANOVA) technique.
e Merging of two pre-processed and feature engineered data-sets.

e Handling class imbalance through various experiments.

e Implementing Machine Learning models on final data-set.

e Cross validation of models using K fold technique.

1.5 Contribution

Major contribution of this research is in reducing production cost by application of pre-
dictive maintenance. This technique increases the productivity without impacting the
quality of wafers thus improving the die yield. Implementing predictive maintenance
would avoid sudden failure of equipment’s and would reduce the time taken for manual
tracking of equipment’s by engineers which can be then utilized in an efficient manner to



accomplish other objectives.

Further, the paper is organized as follows, the review of related work is presented in Sec-
tion 2, proposed approach for equipment fault detection is explained in Section 3, design
flow of implementation is discussed in Section 4, machine learning model implementation
is illustrated in Section 5, evaluation of obtained results is illustrated in Section 6, finally
Section 7 concludes the expected findings from the paper.

2 Related Work

2.1 Improving Manufacturing Process Efficiency using IoT and
Cloud

Availability of abundant data from production line in this big data era has made it easy
to extract quality information and understand important aspects of process using the
available data. CT is defined as the time taken to process a wafer lot from start to end.
It is an important aspect to be considered while increasing productivity as it emphasis on
efficient use of production lines to maintain the required quality standards. Wang et al.
(2020)) in their research proposed a feature selection method which would select all those
features from big data which explain fluctuations in C'T and can be used to reduce CT.
This method was tested on the data-set from Singapore based Silicon Wafer Fabrication
System (SWEF'S) which provided prediction accuracy of more than 60%. However, they
did not take into consideration the correlation between various parameters that signific-
antly contributes in controlling the CT.

Another research with an aim of CT reduction was conducted by (Wang and Zhang; 2016])
wherein they designed Big Data Analytics technique (BDA) to improve production line
reliability by detecting the failures using Hadoop. Although, this technique was effective,
but it worked well with a limited number of features. This technique thus needs fine
tuning to incorporate the factors impacting wafer production based of their correlation
matrix. Reducing device dimension has demanded for precision in producing chips as it
poses challenge of physical failure due to nano dust particles, contaminants etc. There-
fore, (Chien et al.;|2015) in their research proposed an approach which would identify root
cause of excursion from big data thereby improving the circuit probing yield. Empirical
study showed that proposed methodology has an accuracy of over 70%. However, major
drawback is that it works well when studied for excursion caused my single root cause
but fails when implemented to identify multiple root causes.

March and Scudder| (2019) used Internet of Things (IoT) for proposing predictive main-
tenance technique which can be used on big data to accomplish the maintenance require-
ments. The proposed technique focused on improving industries production efficiency
with collaborative use of Big Data and IoT. The evaluation of this technique highlighted
that although model took more time for execution but provided with better knowledge
quality. Cloud is reshaping industrial dynamics, as large amount of data can be processed
at once. Predictive maintenance can be achieved with the help of cloud as well. Mobile
agent was thus designed with the help of cloud computing by (JOUR et al.; 2017) that
would act as a remote system for predictive maintenance of production line. Technological
giants of this field would be benefited by this system as they have their headquarters and
production plants set up in different geographical locations thereby reducing the need of



centralized maintenance units. This approach however has safety concerns as to taking
responsibility of any failure and completely depends on resource reliability, availability
and adaptability.

Tao et al. (2018) in their research aimed to create smart semiconductor manufacturing
process by simultaneous use of artificial intelligence (AI), IoT and Big Data. Cloud com-
puting along with Hadoop was used to enhance flexibility of semiconductor fabrication
wherein the smart system developed would provide timely maintenance to the equip-
ment’s after analyzing the data stored in cloud using Hadoop. However, this technique
failed when implemented on data collected from devices performing multiple functions.
With availability of abundant data, how big data influences production process was stud-
ied by (Kuo; 2019) wherein they proposed an approach for monitoring and improving
equipment’s in production line and system as a whole. Since it took into consideration
all the aspects of production line to improve the system, it worked as designed but was
not that accurate as compared to data mining approach.

2.2 Improving Manufacturing Process Efficiency using Simula-
tion

Simulation of massive production plant helps engineers to operate and track all equip-
ment’s simultaneously. This approach was undertaken by (Qiao et al.; |2020) in their
research where they proposed a simulation model consisting of scheduler and criteria
selector which would help in rescheduling the production and change the delivery date
in order to have minimum impact and stress on equipment’s by providing them partial
maintenance. This simulation model when evaluated proved to be more stable and robust
than previous simulation models as it is adaptable to dynamic and unplanned changes.
Equipment’s breakdown is one of the major reasons for dynamic nature of production
plant. This was addressed by (Wang et al.; 2019)) in their research wherein they proposed
a simulation model which aimed at increasing the throughput by focusing on ways to
increase the availability of equipment’s. This simulation model took into consideration
the production constraints, dispatching rules, and equipment behavior to classify equip-
ment’s in various groups making it easy for their timely maintenance. The equipment
management and maintenance problem was addressed by (Gallo et al.; 2007) by propos-
ing a simulation model which worked on two predefined viz. event driven and time driven
models which provided alternative decision for maintenance and management of equip-
ment’s by analyzing data. This simulation model when evaluated proved to be effective
but didn’t consider the effect of collinearity as it worked on two pretrained models.

Shi and Zhou| (2009)) addressed this issue by accounting collinearity between error and
requirement with the help of mathematical equations instead of using any pretrained
model. This helped in improving the manufacturing process and provided quality con-
trol check with increasing productivity by efficient equipment utilization. (Lizaranzu and
Rojo; 2012)) in their research designed a Java based software to track equipment’s activity
in order to identify the fatigue level to provide maintenance and avoid failure. Their ap-
proach works well in final stage of production line where wafer is tested for their quality.
Although the approach was innovative wherein equipment activity was tracked but it had
a major drawback of not notifying the need of maintenance for equipment based on its
fatigue.

Advanced process control (APC) was designed with an aim to predict yield and provide
timely maintenance by (Moyne et al.; 2016). Better troubleshooting performance was



achieved as they made use of Impala which provided large storage. However, the primary
objective of providing predictive maintenance was not achieved by their model. Yield pre-
diction was also aimed by (Bomholt et al.; [2018) in their research where they developed
TCAD application to predict and enhance wafer production. This application works best
prior to initialization of fabrication as it takes into consideration the electric specifica-
tions provided by client and then calculates the specifications for fabrication equipment
in order to increase the die yield, productivity and keeps the failure to bare minimum.
Photolithography is used for etching and implanting conducting layers onto silicon wafer
and minor fault in any of this layer’s results into lower die yield. This was addressed
by (Ishida et al.; |2014)) by proposing a model based volume diagnosis (MVD) which
uses support vector regression (SVR) to handle noise and R square for silicon design
mismatch. This model tracks and detects any faults caused during the etching process.
When evaluated, their model achieved an accuracy of 91% but it is observed that this
result is because of the use of data with predefined faults and high R square value.

2.3 Improving Manufacturing Process Efficiency using Statist-
ical Approach

Statistical approach helps in achieving an optimal solution between enhanced semicon-
ductor production and enhanced quality as it addresses this bottleneck issue with a
mathematical perspective. Khakifirooz et al. (2018) in their approach made use of Gibbs
sampling, Cohen’s Kappa coefficient and Bayesian Inference to analyze data for identify-
ing influential factors and detecting defect to provide smart manufacturing process. Even
though this approach accounted for the collinearity between factors, it had no function
for auto calculation of external factors and process impacting the die yield and quality.
This led to manual calculation of this values which were then feed to system making it
highly sensitive to an individual’s approach.

Ge and Song (2010) adapted statistical approach in their research to design adaptive
PCA to minimize the negative impact from any factor in data which was then monitored,
processed and analyzed by support vector data description (SVDD) without future value
estimation. The proposed approach when evaluated worked well on data with linear and
stationary characteristics whereas failed when implemented on non-linear data. Smart
decision making statistical model was designed by (Chien et al.; 2016) which focused on
lowering the energy consumption in fabrication by making efficient use of equipment’s
with the help of overall process energy efficiency (OPE) indicator. This approach when
evaluated worked well for implementing efficient use of equipment’s in their active state
but didn’t address the underline objective of how to increase the usage of equipment’s by
avoiding the failure.

2.4 Improving Manufacturing Process Efficiency using Machine
Learning Approach

Traditional statistical process control charts (SPC) used in semiconductor manufactur-
ing plant have their limitation when used on today’s multi-dimensional and vast data for
monitoring of production line as SPC fails in detecting outliers thereby resulting in false
alarms and reducing the efficiency. Machine Learning models can thus be used to handle
large datasets generated in production plants on daily basis for monitoring and improv-
ing the productivity of plant. Table 1 illustrates the performance of machine learning



Table 1: Classification studies in semiconductor manufacturing field

Author Model Used | Best Accuracy
Fernandes et al.| (2020) Neural Network 89.64%
" |Chien et al.| (2012) KNN 75%
Adly et al/| (2015) SVM-RBF 87.5%
| Braha and Shmilovici (2002) | Decision Tree %

models implemented in previous research projects on wafer image dataset by various re-
searcher’s.

Yu and Kuo (2016) in their approach made use of Back Propagation Neural Network
which determined the resources requirement and optimized their allocation to the process.
This assured timely allocation of resource and tools to active equipment’s on production
line after forecasting the scheduled maintenance for each of them. This in turn reduced
the cycle time because of uninterrupted functioning thereby increased the productivity.
Identifying the main cause of excursion was aimed by (Wei-Chou Chen et al.; |2004)) in
their research with the help of exploratory data analysis (EDA). Their approach identi-
fied whether the excursion is because of any contaminant or equipment’s fault, but since
this approach didn’t include any use of models, engineers had to intensely study the
charts and graphs obtained after EDA to come to a conclusion which proved to be time
consuming. Machine learning tools were used by (Shan et al.f [2017)) on image data-set
obtained at the end of fabrication process to detect faults and identify their cause. They
also made use of Chi-square test of independence to identify relation between detected
and actual defect. The model was evaluated, and it worked well when implemented only
on impacted region of wafer image to detect defects but failed when implemented on
entire wafer image.

Increased production increases the energy consumption which goes against the climate
protection policy of any manufacturer. This issue was addressed by (Yu et al.; 2017) in
their research wherein they made use of support vector regression and neural network to
develop a smart decision making model which would provide with efficient energy saving
ways. Their approach could develop the relation between energy consumption of tools
and input features/factors at each stage but couldn’t provide an efficient energy usage
prediction model which they aimed for. (Chien et al.| (2015) made use of logistic regression
and random forest in their research with an aim to identify main cause of excursion for
increasing die yield. Logistic regression clustered features with high correlation thereby
avoiding collinearity followed by random forest classifying continuous and categorical fea-
tures. Their approach reduced troubleshooting time and provided high accuracy when
implemented to identify only one major cause of excursion.

Improving die yield was also aimed by (Nakata et al.; 2017)) in their research for which
they used convolution neural network (CNN) and K-mean clustering on wafer image data-
set. K-mean clustering was used to form clusters of wafer images with failures and CNN
was then implemented to identify a pattern in those clusters. This research helped engin-
eers in identifying and classifying failures using pattern mining which thereby helped in
addressing the cause of this fault, mending it and improving die yield. Another research
was performed on wafer image data for identifying failure patterns by (Wu et al.; |2015)
wherein they initially performed feature reduction in order to reduce the data dimension
followed by implementing support vector machine (SVM) to identify and classify failure
patterns. However, this approach didn’t work well on data with low dimensions.
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Adly et al| (2015) undertook research in the same field on wafer image data wherein
they made collaborative use of data mining tools and general-regression-network-based
(RGRN) model. The model was then trained on values of independently sampled image
dataset and thus when evaluated provided 98% accuracy, had low variance, and success-
fully detected failure patterns in image data. Improving die yield by detecting micro-
contaminants was aimed by (Braha and Shmilovici; 2002) in their research wherein they
used decision tree along with neural network to build a classification model which was
then implemented on data with low dimensions and high multicollinearity. As it works
on lower dimension data, the execution time is comparatively less but it acts as a draw-
back because of increasing data size in today’s world on which this model fails to work
efficiently.

Researchers usually focus on detecting few causes of low yield and work on overcoming
them. However, a very different approach was followed by (Chien et al.; 2012) wherein
they aimed at detecting any fault leading to loss in die yield. Feature extraction using
PCA followed by machine learning classification tools were implemented for constructing
smart manufacturing. The model when evaluated worked well for identifying and classi-
fying faults but failed in providing smart manufacturing as it lacks auto decision making
capability. [Fernandes et al.| (2020) made use of Long Short-Term Memory (LSTM) Neural
Network on numerical data obtained from the equipment’s to detect failure in advance
to apply predictive maintenance on those equipment’s. When evaluated their Neural
networks were 85-90% precise based on the number of hidden layers in them however it
was found that this method of predictive maintenance worked well when applied on data
over longer time.

Most of the research projects are either focused of improving the productivity by applying
predictive maintenance on equipment’s to avoid their failures or on improving die yield
(i.e. quality) by detecting root cause of faults to overcome those. Lee et al.| (2019)) in
their research proposed an approach for systematic assignment of wafers to equipment’s
on production line to maintain predetermined productivity with better die yield. They
made use of an innovative statistical model which predicted the path for wafer in pro-
duction line with ANOVA for feature selection and was successful in obtaining binary
optimization. The approach however lacked implementation of machine learning tools
apart from regression.

In conclusion, various research projects conducted in the field of wafer fabrication focused
on improving die yield by working on wafer image to identify the faults and rectify their
root cause whereas very few research were focused on improving the productivity by op-
timum allocation of wafers to various equipment’s of production line. This encouraged
an idea on working on sensor data from equipment’s to increase the productivity without
impacting the die yield by applying predictive maintenance with the help of machine
learning tools and techniques.

3 Methodology

Different stages of this research resemble cross-industry standard process for data min-
ing (CRISP-DM) stages. Wafer fault prediction methodology is represented in Figure
2 which covers 6 main stages viz. understanding the wafer fabrication business model,
collecting data for research, pre-processing data collected from various resources, model-
ling, evaluation of machine learning models. The generated results could then be used



for effective decision making.
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Figure 2: Wafer Fault Prediction Methodology

3.1 Business Understanding

Common factors responsible for lower die yield and moderate productivity are primarily
considered to be faults on wafer caused by microcontaminants and non-optimal wafer
allocation to equipment’s on production line. However, other factors like health and
functioning of equipment’s which are primary backbone for smooth transition and timely
completion of process are often overlooked. One practical approach to enhance productiv-
ity and die yield, is to consider a research on gaining insights about equipment’s working
and enhancing their performance by understanding and predicting the failure patterns
for providing them timely maintenance to avoid future failures thereby increasing the
availability of equipment’s for various tasks. This would help in optimal allocation of
wafers to available equipment’s thereby increasing productivity.

3.2 Data Acquisition

Two datasets are gathered from two different sources as shown in Table 2. Both the data
files were downloaded in .csv format. Both the datasets consist of data recorded from
sensors in the equipment’s of wafer fabrication production line, with dependent variable
classified into 2 classes viz. pass (-1) and fail (+1) depending on the test results of
fabricated wafer.

Table 2: Dataset Information

Dataset Records | Attributes
UCI SEMCOM?|| 1567 591
WAFER/| 7164 152

B

3https://archive.ics.uci.edu/ml/datasets/SECOM
4http:/ /www.timeseriesclassification.com /description.php?Dataset=Wafer




3.3 Data Pre-processing

Crucial steps like handling missing values, feature engineering such as normalization and
merging of datasets were done in this phase. UCI SEMCOM dataset consists of 591 at-
tributes with 27 attributes having more than 50% of missing values which were dropped
as it didn’t lead to data loss. Apart from that, attributes with zero variance (i.e. no effect
of dependent variable) were dropped as their presence or absence didn’t have any impact
on research. Attributes with less than 50% of missing values were imputed with median
as the attributes had outliers and data has skew symmetric distribution. Thereafter,
dataset was normalized because attributes consisted of outliers as well as the attribute
values were in different range. The dependent variable of UCI SEMCOM dataset consists
of pass category defined as ‘-1’ and fail category as ‘+1’.

WAFER dataset consists of 154 attributes with no attributes having more than 50% of
missing values thereby none of the attributes were dropped. Also, when checked for im-
pact of attributes on dependent variable, it was found that none of the attributes had zero
variance. Attributes with less than 50% of missing values were imputed with mean as
the attributes didn’t have outliers. Thereafter, dataset was normalized for scaling. The
dependent variable of WAFER dataset consisted of pass category defined as ‘+1’ and fail
category as ‘-1’. To have standardized definition of pass and fail classes in dependent
variable, we interchanged the designation for WAFER dataset thereby assigning ‘-1’ to
pass class and ‘417 to fail class.

First Sensor Measurements Second Sensor Measurements
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Figure 3: Probability Density Function Curve of Attributes with attribute values on
X-axis

Figure 3 shows the probability of occurance of particular sensor value in data whereas
Figure 4 illustrates the presence or absence of outliers in both data-sets to address the
imputation of missing value by median and mean respectively. Final dataset had class
imbalance with minor class just 9.92% of total data. Since the research focused on
classification and dependent variable was binary, the class imbalance was handled using
Synthetic Minority Over-Sampling Technique (SMOTE) wherein the minority class was
oversampled to 50% to that of majority class thereby keeping a ratio of 2:1 (i.e. for every
2 cases of majority class there is 1 case of minority class).

Figure 5 shows the class imbalance in final merged data followed by Figure 6 illustrating
various techniques in which this class imbalance was addressed. PCA was then applied
on both the datasets after preprocessing to extract top features which explained more
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Figure 4: Box Plot of attributes from both dataset
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Figure 5: Class Imbalance of final dataset

than 80% of variance of entire dataset. Both the datasets were normalized prior to PCA
to improve data integrity and reduce data redundancy. To normalize both the dataset,
dependent variable was separated from independent variables which was then joint to the
normalized variables of datasets.

Figure 7 illustrates the variance explained by extracted components in both data-sets.
For UCI SEMCOM dataset, PCA was applied to extract 250 components from 447 at-
tributes whereas for WAFER dataset PCA was applied to extract 150 components. Then
after, variance ratio was calculated and plotted for principal components of both data-
sets. To merge two PCA data-frame’s, top 100 principal components were selected as
they explained more than 80% variance of both datasets.
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Figure 7: PCA Analysis for components of both datasets
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In similar way, feature selection was also performed of both the datasets using ANOVA
technique to select top 100 features from both the dataset which were then merged to form
a final dataset which was then processed for overcoming class imbalance using SMOTE.

4
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Figure 8: Wafer test Prediction - Design Flow

The architecture followed for this project is illustrated in Figure 8.

In first stage, 2 datasets related to wafer production line are downloaded from UCI
and CMU websites.

The datasets are then loaded in Python where they are initially preprocessed. Then,
exploratory data analysis (EDA) was performed to get some valuable insights from
both datasets. Both the datasets are then normalized to perform feature extraction
using PCA and featuring selection using ANOVA. The 2 data-frames of PCA are
merged to form 1 finalized data frame and similarly 2 data-frames of ANOVA are
merged to for other data frame.

Train-test split is then applied in 75:25 ratio respectively followed by addressing
class imbalance in training set using SMOTE oversampling of minority class to
50% of that of majority class, followed by implementation of machine learning
classification models and a basic neural network with 5 hidden layers, 1 input and
1 output layer.

Class Imbalance was also addressed using random under-sampling and oversampling
together in the ratio of 60:40, 55:45, 50:50 respectively followed by implementation
of models.

The models were then evaluated using precision, F1 score, recall and classification
accuracy. They were also cross validated using stratified K-fold cross validation.

Lastly, the results were visualized in form of plot using various python libraries.
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5 Implementation

The implementation consists of following steps: data preparation, implementation of
models, cross validation of models under a range of stratified K-fold (10-50 folds) valid-
ation.

5.1 Data Preparation

The final dataset obtained after data cleaning, preprocessing and feature engineering
(i.e. feature extraction using PCA and feature selection ANOVA) and merging consist
of 100 columns and 8731 cases. This data was then split into 75% training dataset
and 25% testing set. The class imbalance in training set was addressed in two ways
viz. oversampling the minority class using SMOTE, applying random over-sampling and
under-sampling in the ratio of 40:60, 45:55, 50:50 respectively. To reduce overfitting of
models while being trained on training dataset, cross validation using K-fold test was
performed for all the models. Table 3 illustrates size and proportion of train and test
data-set.

Table 3: Dataset Structure Details

Total Size Proportion

Training Set 6548 0.75
Testing Set 2183 0.25
Total 8731 1

5.2 Decision Tree Classifier

Decision Tree Classifier (DT) is a supervised model as it is trained on the data with its
correct output in order to learn the pattern which the model then uses to predict the
output of new data on which it is implemented. It is a basic machine learning model
with 3 components viz. nodes, edges, and leaf nodes. Node is the classification question
whereas edges are the answer to that question (i.e. yes or not) and leaf node marks the
exit point. DT classifies data into subplot by identifying lines. This process is performed
repetitively as there might be multiple regions of same class. Real time data consist
of impurity i.e. the distribution of classes is random and not defined in specific region,
this is known as gini impurity (Braha and Shmilovici; 2002). Entropy is randomness
of variable i.e. measure of impurity, is used to calculate information gain which then
identifies which division would provide less impurity. DT thus selects the decision which
has best information gain thereby correctly identifying majority of the classes. Due to
comparatively smaller data size and reduction of attributes by feature engineering, DT
was used in this research for classification.

5.3 Logistic Regression

Logistic Regression is a predictive analysis model which explains the relation between
one dichotomous dependent variable and multiple independent variables with any data
type. It is best suitable when multicollinearity of independent variables and impact of
outliers is addressed. The working of logistic regression is mainly focused on estimating
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log of odds of an event which explain the variance of data, thereby making it prone to
overfitting with increasing number of independent variables. As multicollinearity was
absent and impact of outliers was addressed by normalizing the data, logistic regression
was used in this research.

5.4 Extreme Gradient Boosting Classifier

Extreme Gradient Boosting (XGBoost) Classifier is a popular classifier algorithm as it
is efficient, portable, and flexible. It is a boosted decision tree for better performance as
it learns from previous predictor variable residuals. XGBoost is used in this research as
model outperforms most of the other classification predictive models when implemented
on tabular data obtained in comma separated value (.csv) files.

5.5 Random Forest Classifier

Random Forest Classifier is an ensemble algorithm as it builds multiple decision trees by
creating subsets of training dataset which are then used for classification by aggregating
their votes to decide final class in test dataset (T'sanas and Xifaraj; 2012)). This aggregation
of decisions from various decision trees reduced the loss due to noise making random forest
more accurate than just single decision tree. Random forest uses 10 decision trees in
default setting to calculate the entropy of gini impurity as that of decision tree classifier.
Random forest is used in this research due to its better performance and computational
efficiency.

5.6 Support Vector Machine

Support Vector Machine (SVM) developed by Vapnik in AT and T Bell Laboratories
(1997), is one of the robust prediction methods. SVM constructs an optimal hyper plane
creating a separation with help of quadratic programming in hidden feature space to find
unique solution (Adly et al.; [2015). SVM supports various kernels (i.e. mathematical
functions) which can be used based on the aim of research. In this research, linear
and radial basis function (RBF) kernels are used to compare the SVM performance on
precision scale as no prior knowledge of data is required for these kernels.

5.7 (Gaussian Naive Bayes

Naive Bayes Classifier is used for binary or multiclass classification and is famous among
researcher’s because its hypothesis calculation is tractable. Gaussian Naive Bayes (NB)
is an extension to Naive Bayes as it works on the principle of normal distribution by
estimating mean and standard deviation of training data. Thus, NB uses probabilistic
approach for prediction and performance better when implemented on imbalanced dataset
(Tao et al.; |2018). Functioning of NB can be beneficial in classifying and predicting
equipment fault as the data is highly class imbalanced.

5.8 K Nearest Neighbour

KNN is a supervised machine learning technique which assumes that similar things exist
in proximity. It was used in the research as it is easy to implement with no pre-requisite

15



of parameter tuning. The performance of the same was recorded and displayed in the
tables of evaluation.

5.9 Neural Network

Neural Network (NN) works as a human brain to recognize the relation and pattern in
data. NN architecture consists of three layers viz. input layer, hidden and output layer.
Keras library is used to implement sequential NN which uses output of previous layer as
input to next layer (Fernandes et al.; 2020). Dense constructor was used to define the
layers of basic NN designed for this research. Compiler was used to add loss function and
optimizer. Table 4 illustrates the input dimension for input, hidden and output layers
along with the activation function used for each of those layers while designing a basic
NN deigned for this research. ‘Sparse Categorical Crossentropy’ is used as loss function
and ‘adam’ as an optimizer function to improve the accuracy. The NN was tested for
different batch sizes and epochs.

Table 4: Dataset Structure Details

Layers Input Dimension Activation Function
Input 100

1st Hidden 51 RELU

2nd Hidden 27 RELU

3rd Hidden 15 RELU

4th Hidden 9 RELU

5th Hidden 6 RELU
Output 2 SIGMOID

6 Evaluation

Models were evaluated for their precision over accuracy because to apply predictive main-
tenance on equipment’s of production line, our models need to be precise in detecting the
failed wafer category.

6.1 Feature Extraction Experiment using PCA

Dimensionality reduction using PCA was conducted on both datasets as they contained
large number of attributes. Top 100 PCA’s were selected from both the datasets which
explained more than 80% variance of data and were merged to form a final dataset which
was split into train and test set in 75:25 ratio respectively. Then after, class imbalance
in train set was addressed using SMOTE where the minority class was oversampled to
50% of majority class. Table 5 shows the performance of all the models implemented.
As per the results, Random Forest outperformed all other models in terms of precision
followed by SVM-RBF and XGBoost.

6.1.1 Stratified K-fold Cross Validation

The accuracy of all the models was cross validated using K-fold cross validation technique
with folds ranging from 10 to 50. It was observed that model’s accuracy increased in
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Table 5: Results of Feature Extraction

Machine Learning Algorithm | Accuracy | Recall | Precision | F1 Score
Decision Tree 95.28% | 84.37% | 77.46% 80.77%
Logistic Regression 85.80% | 59.82% | 37.85% 46.36%
XGBoost 98.03% | 86.16% | 94.15% 89.97%
Random Forest 98.21% | 84.38% | 97.23% 90.65%
SVM-Linear 90.52% 58.93% | 53.44% 56.05%
SVM-RBF 98.26% | 87.50% | 95.15% 91.16%
Naive Bayes 50.39% | 83.93% | 12.22% 25.77%
KNN 93.31% | 94.64% | 61.27% 74.39%

decimal points when number of folds were incremented from 30 to 50 therefore, Table 6
represents accuracy of all models up to 30 folds. From the table, XGBoost has the best

Table 6: Results of K-Fold Validation

Machine Learning Algorithm | K =10 | K =20 | K = 30
Decision Tree 94.17% | 94.69% | 95.92%

Logistic Regression 80.64% | 80.78% | 80.99%
XGBoost 95.86% | 97.94% | 98.90%

Random Forest 98.76% | 98.79% | 98.76%
SVM-Linear 84.12% | 84.23% | 84.39%
SVM-RBF 94.76% | 96.83% | 98.03%

Naive Bayes 42.43% | 54.42% | 57.98%

KNN 91.96% | 92.25% | 92.74%

accuracy followed by Random Forest but the difference between 2 is just 0.14%.
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Figure 9: Comparison of Model Accuracy

Figure 9 compares model’s for accuracy under feature extraction and K-fold validation.

6.1.2 Experiment with Logistic Regression

From Table 5, logistic regression model is not precise enough even after achieving ac-
ceptable accuracy. Logistic Regression threshold for classification of probabilities was
identified to understand the cause of low precision.
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Figure 10: Histogram of predicted probabilities

From the histogram in figure 10 and array of first 10 predicted probabilities for class 1,
it was found that it used probability of 0.5 as the threshold above which model classified
case to be true positive. The threshold was then adjusted to 0.2 following the histogram
and it was found that model’s precision fell to 18.72% and accuracy to 61.89% indicating
that logistic regression failed in identifying wafer failure.

6.2 Feature Selection Experiment using ANOVA

Feature selection was conducted using ANOVA to reduce dimensions of both datasets.
Initially number of features were gradually reduced to identify feature count for which
models provide optimum performance, however different models provided optimum per-
formance for different feature count. Then after, top 100 features were selected from
both the datasets and merged to form a final dataset to compare model’s performance
with that of feature extraction technique. Data was split into train and test set in 75:25
ratio respectively and class imbalance in train set was addressed using SMOTE where the
minority class was oversampled to 50% of majority class. Table 7 shows the performance
of all the models implemented.

Table 7: Results of Feature Selection

Machine Learning Algorithm | Accuracy | Recall | Precision | F1 Score
Decision Tree 96.93% | 87.95% | 83.12% 85.47%
Logistic Regression 86.80% | 61.16% | 40.53% 48.75%
XGBoost 98.35% | 87.05% | 96.53% 91.55%
Random Forest 98.58% | 87.50% | 98.49% 92.67%
SVM-Linear 92.99% | 60.27% | 67.84% 63.83%
SVM-RBF 98.26% | 87.95% | 94.71% 91.20%
Naive Bayes 72.61% 58.48% | 20.60% 30.47%
KNN 95.37% | 89.73% | 72.04% 79.92%
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From Table 5 and Table 7, it is seen that performance of most of the models improved
over all parameters with feature selection technique and Random Forest once again out-
performed rest of the models in both accuracy and precision.

6.2.1 Stratified K-fold Cross Validation

The accuracy of all the models was cross validated using stratified K-fold cross validation
technique with folds ranging from 10 to 50. It was observed that model’s accuracy in-
creased in decimal points when number of folds were incremented from 30 to 50 therefore,
Table 8 represents accuracy of all models up to 30 folds from which Random Forest is
found to have the best accuracy followed by XGBoost with difference of just 0.09%.

Table 8: Results of Stratified K-Fold Validation

Machine Learning Algorithm | K =10 | K =20 | K = 30
Decision Tree 95.53% | 95.41% | 95.55%
Logistic Regression 74.11% | 78.64% | 79.95%
XGBoost 92.78% | 97.17% | 98.05%
Random Forest 94.00% | 97.50% | 98.14%
SVM-Linear 77.85% | 82.89% | 83.95%
SVM-RBF 88.88% | 93.48% | 94.63%
Naive Bayes 58.03% | 61.88% | 65.34%
KNN 98.12% | 93.89% | 94.84%
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Figure 11: Comparison of Model Accuracy

Figure 11 compares model’s for accuracy under feature extraction and K-fold validation.
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6.3 Implementation of both over-sampling and under-sampling
simultaneously

Since feature selection technique provided better model performance, the class imbalance
in the train set of feature selected data was addressed in this experiment by random
over-sampling of minority class and random under-sampling of majority class in 40:60,
45:55, 50:50 ratio respective. All models were implemented for 3 different ratios and it
was found that models provided optimum performance for 45:55 ratio. Table 9 represents
model’s performance for 45:55 sampling ratio.

Table 9: Results of Random Over-Sampling and Random Under-Sampling

Machine Learning Algorithm | Accuracy | Recall | Precision | F1 Score
Decision Tree 96.47% | 85.27% | 81.28% 83.22%
Logistic Regression 84.24% | 59.37% | 34.46% 43.61%
XGBoost 97.98% | 85.26% | 94.55% 89.67%
Random Forest 98.21% | 83.48% | 98.94% 90.56%
SVM-Linear 90.56% | 60.71% | 53.54% 56.90%
SVM-RBF 97.66% | 87.05% | 89.86% 88.44%
Naive Bayes 85.57% | 92.86% | 41.02% 56.91%
KNN 96.47% | 89.29% | 79.05% 83.86%

Table 9 illustrates that Random Forest has outperformed all other models for precision
and accuracy. From all the experiment’s, Random Forest and XGBoost have proven to
have best precision in predicting wafer failure.

6.4 Experiment with Neural Network

Neural Network with 5 hidden layers, 1 input and 1 output layer was implemented on
data sets obtained from feature extraction, feature selection and 50:50 ratio of random
over-sampling and random under-sampling with 25 and 50 as epoch and batch size of 60.
Performance of NN improved in 50:50 sampling on feature selected data with an accuracy
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Figure 12: Neural Network Performance
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over 97% for both 25 and 50 Epochs. Overall NN with epoch 50 has a better accuracy.
Figure 12 illustrates the performance of NN in 3 different experiments for epochs 25 and
50.

6.5 Discussion

This research was conducted with an intention of exploring the relation between sensor
data from equipment’s and the test result of final wafer fabricated. Unlike the traditional
approaches of predicting which equipment caused the failure by analyzing wafer image
data for its failures, this approach included use of data from equipment’s itself to identify
their correlation with wafer test results. Major challenges faced include:

1. Addressing the impact of missing values:
Due to limited number of cases, attributes with more than 50% of missing values
were dropped to keep the data loss minimum. Then after, imputing attributes with
median and mean depending on presence or absence of outliers respectively.

2. Addressing the impact of class imbalance:
Class imbalance was addressed by conducting various experiments over-sampling
and under-sampling to assure that models don’t over-fit and provide bias results.

Nine machine learning models were implemented and evaluated. Various experiments
were conducted to improve the performance of models, such as feature extraction us-
ing PCA, feature selection using ANOVA, implementation of random over and under
sampling in 40:60, 45:55, 50:50 ratio on train set of feature selected data. All models
except binary logistic regression and Naive Bayes performed with precision of above 80%.
Neural Network achieved an acceptable accuracy over 75% in all the experiments with
highest of 97.85% for 50:50 ratio of sampling. Random Forest has the highest precision of
over 95% in all experiments followed by XGBoost and SVM-RBF. Random Forest used
10 decision trees because of which it achieved better accuracy and precision over others.
Figure 13 and 14 illustrates the performance of all models for precision and accuracy
respectively.

Comparative analysis illustrates that feature selection using ANOVA performed better
than feature extraction using PCA and 45:55 sampling. When compared with results
obtained in previous researches conducted using data mining algorithms, KNN algorithm
used in research by (Chien et al.; [2012) achieved an accuracy of 75% on wafer image
data, while this research produced an accuracy of 95.37% for KNN. Similarly, SVM-RBF
used by (Adly et al.; [2015)) had an accuracy of 87.5%, while in this research SVM-RBF
achieved an accuracy of 98.26%. Decision tree used by (Braha and Shmilovici; 2002)) on
wafer image data had an accuracy of 77% whereas in this research DT has an accuracy
of 96.93%. On the other hand, SVM-Linear used in previous research had a F1 score of
88.9% where as SVM-Linear in this research has a F1 score of 90%.

Logistic Regression even though has a good accuracy but failed in precisely predicting
True Positive class (i.e. true wafer failure) because it could not categorize the probabilit-
ies of events. Similarly, Naive Bayes failed because of phenomenon called zero frequency
where it assigns 0 to an event if the category is not observed in training dataset. Also, ma-
jor limitation of Naive Bayes is its assumption of predictors to be completely independent
which is impossible in real world data.
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Figure 14: Comparative Analysis for Accuracy

7 Conclusion and Future Work

The proposed research worked has implemented one of the recent approaches for applying
predictive maintenance in the manufacturing field. This research made use of 2 data sets
consisting of numerical data collected from the sensors in equipment’s of production line
which were thoroughly processed before implementing nine classification-based machine
learning algorithms under various experiments. Feature selection using ANOVA achieved
better model performance than other experiments as Random Forest outperformed all
models in terms of precision and accuracy, followed by XGBoost and SVM. This research
highlighted that, numerical data from wafer fabrication is of equal use as that of image
data to predict the wafer failure and identify the equipment responsible for that. This
can help in implementing predictive maintenance for equipment’s to avoid near future
failures, thus increasing the productivity and enhancing the die yield.

In future, classification algorithms developed in this research can be used on real time
data of production line and they can be incorporated into company systems to provide
timely servicing to all equipment’s. The research made use of basic Neural Network as
data size was limited, but when working on real time big data, this Neural Network can
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be modified by adding hidden layers and nodes and then testing it for various epochs.
Alternatively, if working on real time time-series data from wafer fabrication, these models
can be further optimized and deployed in end to end deployment to automate the task
thereby saving time.
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