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Production lines in pharmaceutical manufacturing generate numerous heterogeneous data sets from 
various embedded systems which control the multiple processes of medicine production. Such data 
sets should arguably ensure end-to-end traceability and data integrity in order to release a medicine 
batch, which is uniquely identified and tracked by its batch number/code. Consequently, auditable 
computerised systems are crucial on pharmaceutical production lines, since the industry is becoming 
increasingly regulated for product quality and patient health purposes. This paper describes the EU-
funded SPuMoNI project, which aims to ensure the quality of large amounts of data produced by 
computerised production systems in representative pharmaceutical environments. Our initial results 
include significant progress in: (i) end-to-end verification taking advantage of blockchain properties and 
smart contracts to ensure data authenticity, transparency, and immutability; (ii) data quality assessment 
models to identify data behavioural patterns that can violate industry practices and/or international 
regulations; and (iii) intelligent agents to collect and manipulate data as well as perform smart 
decisions. By analysing multiple sensors in medicine production lines, manufacturing work centres, and 
quality control laboratories, our approach has been initially evaluated using representative industry-
grade pharmaceutical manufacturing data sets generated at an IT environment with regulated processes 
inspected by regulatory and government agencies.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The pharmaceutical industry is consistently improving its man-
ufacturing processes [1] in compliance with good manufacturing 
practices [2]. However, inappropriate practices and medicine falsi-
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fication are still real problems. In the first 10 months of 2015, 16 
warning letters were sent out by the regulatory body, of which 12 
were Data Integrity specific, up from 10 in 2014 and 6 in 2013 [3]. 
That is to say, the pharma industry is acutely aware of the im-
plications of receiving a US FDA Form 483 reporting regulatory 
deficiencies, followed by a warning letter. European companies are 
not exempt (e.g., the 2016 warning letter to SmithKline Beecham), 
since it directly affects the pharma industry that manufactures 
for the American market. In 2017, the World Health Organiza-
tion (WHO) reported that 1 in 10 medical products in developing 
countries was substandard or falsified [4]. In fact, WHO publishes 
regularly a Medical Product Alert which, during the sanitary emer-
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gency in March 2020, “warns consumers, healthcare professionals, 
and health authorities against a growing number of falsified medi-
cal products that claim to prevent, detect, treat or cure COVID-19.” 
Controlling and tracing the pharmaceutical manufacturing process 
are the primary motivation of the SPuMoNI research project.

SPuMoNI aims to deliver innovative scientific approaches to es-
tablish and assure constant proof of the authenticity of pharma-
ceutical manufacturing data to support dynamic data quality, com-
pliance, and auditability. The SPuMoNI consortium benefits from 
previous collaborations among its participants in multi-agent ar-
chitectures for life sciences [5].

The European Union (EU) legislation in pharmaceutical sector is 
compiled into the EudraBook [6] (Directive 2001/83/EC – Medicinal 
products for human use). Specifically, its Falsified Medicines Di-
rective 2011/62/EU [7] introduces harmonised European measures 
which aim to fight medicine falsification and ensure that the trade 
in medicines is rigorously controlled. This directive is the legal 
framework which defines obligatory safety features and record-
keeping requirements to impose stricter controls for medicine 
manufacturing. Moreover, the European Union maintains a dedi-
cated information repository on falsified medicines.1

The pharmaceutical industry arguably requires effective tech-
niques to control and trace the medicine manufacturing process. 
There is no guarantee that the current instruments and methods 
are not susceptible to falsified or falsifiable data from the pharma-
ceutical data streams. The integrity of pharmaceutical data assets 
should be compliant by: (i) Attributable, Legible, Contemporane-
ous, Original, and Accurate (ALCOA) principles [8,9, chapter 1, sub-
chapter C]; (ii) European Medicines Agency (EMA); and (iii) Food 
and Drug Administration (FDA) regulations. In this scenario, phar-
maceutical manufacturing needs novel autonomous auditing and 
control mechanisms for data capture, governance, and compliance 
to guarantee the transparency, traceability, and data authenticity. 
These mechanisms should include effective data quality techniques 
to ensure non-falsified or non-falsifiable data and detect random 
or systematic acquisition errors from multiple manufacturing data 
streams.

This paper presents the methodology of the EU-funded SPuMoNI 
project to address these challenges within the pharmaceutical in-
dustry. It aims to contribute with open software systems and best 
practices for data integrity and traceability underpinned by the AL-
COA principles. The SPuMoNI framework includes:

(i) data quality controls specifically with respect to hinder data 
falsifiability;

(ii) traceability assurances that security, privacy, compliance and 
ownership concerns have been properly met; and,

(iii) intelligent control, coordinated data gathering, and processing 
within a number of contexts and environments.

This work documents the applicability of the SPuMoNI method-
ology with respect to industry-grade pharmaceutical manufactur-
ing data and environments in the following manner:

• Data quality assurance includes temporal and multi-source 
data variability analysis methods and data consistency quan-
tification methods to ensure the accuracy and trustworthiness 
of manufacturing information;

• Multi-agent systems have been adopted to implement an intel-
ligent control mechanism which ensures seamless data gather-
ing and manipulation, as well as flexible data integrity checks 
close to the data source, which enable early notification of 

1 https://ec .europa .eu /health /human -use /falsified _medicines _en (Last Accessed: 
2/Jan/2021).
2

the system operators about any data discrepancies and thus 
reduce any delays and costs that may be incurred to the man-
ufacturing process; and,

• Finally, blockchain is ensuring end-to-end verification of the 
pharmaceutical process via its traceability and immutabil-
ity properties. In this context, SPuMoNI integrates a private 
Ethereum network hosted and managed by the consortium to 
mitigate security threats.

The remainder of the paper is structured as follows. Section 2
provides some background on the underlying techniques for this 
work. Section 3 presents a literature review regarding the ap-
plication of blockchain, data quality mechanisms, and intelligent 
agents in pharmaceutical industry. Section 4 describes the archi-
tectural specification of the SPuMoNI project. Section 5 contains 
an evaluation concerning these three areas of expertise. Finally, 
Section 6 presents some conclusions, analysis and a discussion of 
future work.

2. Background

The pharmaceutical industry continually assesses electronic 
data produced through their manufacturing processes and related 
activities to ensure the integrity of medicines and, ultimately, the 
safety and well-being of patients. In this context, pharmaceutical 
data assets should be compliant with data quality principles and 
international regulations, i.e., the ALCOA principles. The medicine 
manufacturing process involves a creation of a batch number 
which encodes its manufacturing history. The ultimate goal of 
SPuMoNI is to contribute to patient safety and well-being by en-
suring medicine tracebility and data integrity of batch numbers 
(ALCOA compliance). To address this challenge, SPuMoNI method-
ology involves blockchain, data quality assurance, and intelligent 
agents.

This section provides a background concerning the pharmaceu-
tical manufacturing process as well as the main areas of exper-
tise within SPuMoNI: (i) batch numbers and ALCOA principles (ii) 
blockchain technologies; (iii) data quality assurance; and (iv) intel-
ligent agents.

2.1. Batch numbers and ALCOA principles

Batch numbers The pharmaceutical manufacturing process is mar-
shalled through a batch number. Batch numbers are represented by 
any distinctive combination of letters and/or numbers which tradi-
tionally encode the complete history of the manufacturing, pack-
aging, labelling, and/or holding of a medicament intended to have 
uniform character and quality. According to the EudraBook [6], a 
batch comprises all the units of a pharmaceutical form which are 
made from the same initial quantity of material and have under-
gone the same series of manufacturing and/or sterilisation oper-
ations or, in the case of a continuous production process, all the 
units manufactured in a given period of time.

Batch numbers are not internationally homogenised, as they 
are typically determined only by individual manufacturers. Con-
sequently, this may hinder quality audits, compliance checks, and 
product recalls. Nonetheless, EU Member States are required to op-
erate a system to collect information useful in the surveillance 
of medicinal products, with particular reference to adverse reac-
tions in human beings, and to evaluate such information scientifi-
cally [10]. Therefore, there is an increasing international emphasis 
to improve pharmaceutical manufacturing traceability via emerg-
ing technologies in accordance with existing legal and regulatory 
standards [11].

https://ec.europa.eu/health/human-use/falsified_medicines_en
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ALCOA principles Data integrity must ensure that data records are: 
(i) authentic, immutable, and transparent i.e., the data remains un-
changed and cannot be deleted; (ii) traceable or auditable i.e., audit 
trails must exist for all the data; and (iii) safe, i.e., the data is pro-
tected against unauthorised access and data corruption. Therefore, 
data must be collected and maintained in a secure manner, such 
that they are:

– Attributable to the person generating the data
– Legible and permanent
– Contemporaneous – data is created/recorded when the activity 

is performed
– Original record (or ‘true copy’)
– Accurate

Such characteristics are widely known as the ALCOA principles. 
Within the pharmaceutical industry, data integrity is ensured by 
the ALCOA principles [8]. Moreover, data integrity is further safe-
guarded through appropriate data quality and risk management 
systems—including adherence to scientific principles—and good 
documentation practices. As the link between ALCOA principles 
and data quality is well established [12] and highly regulated [13], 
all new software and hardware systems implemented in pharma-
ceutical manufacturing lines should have dedicated documentation 
and be ALCOA compliant and, therefore, data records are required by 
law to meet the ALCOA primary requirements.

2.2. Blockchain technologies

Widely adumbrated as immutable time-stamped data struc-
tures, blockchains implement peer-to-peer networks where par-
ticipants can verify interactions concurrently using decentralised 
peer-to-peer consensus protocols. A blockchain is formed from 
a series of “blocks” where each block contains a cryptographic 
hash of the previous block creating a distributed ledger. Therefore, 
blockchain is a promising technology in pharmaceutical industry 
since it holds security, authenticity, immutability, and transparency 
as main characteristics ensuring end-to-end verification.

The cryptographic techniques in a blockchain ensure that the 
information contained in a block can only be altered by modify-
ing all subsequent blocks. The data is stored in the blockchain as 
data transactions. Data transactions, represented in the blocks as 
Merkle trees, are tamper-proof being validated by nodes of the 
network. In this context, a blockchain eliminates the centralised 
authority and enables disintermediation. Its peer-to-peer nature al-
lows secure transactions using a distributed authority to validate 
the process through consensus algorithms [14].

Ethereum Arguably the most popular blockchain-based distributed 
computing platform, Ethereum enables developers to implement 
decentralised and transaction-based systems using a trustful frame-
work [15]. Additionally, it enables the creation of smart contract 
agreements between peers via transaction-based state transitions. 
Ethereum also provides a cryptocurrency token “Ether” that can 
be exchanged between different accounts and used to compensate 
nodes for the performed calculations, exhibiting significant scal-
ability particularly for private networks [16]. Each Ethereum task 
uses an amount of gas, i.e., a fee to pay to execute a task. Specif-
ically, it measures the computational effort to perform Ethereum 
actions.

Consensus algorithms These processes are used to achieve agree-
ment on data transactions in a distributed peer-to-peer environ-
ment ensuring that the next block to be added in a blockchain 
is unique and reliable. This consensus algorithm property of en-
abling network nodes to validate transactions is called mining. 
3

Multiple consensus algorithms have emerged to ensure authentic-
ity, integrity, and consistency of the blockchain technology. Proof 
of Work (PoW) [17] is the first known consensus algorithm, and 
it is used in Bitcoin—the most popular blockchain implementa-
tion [18]. Several other consensus algorithms, such as Proof of 
Stake (PoS) [19] and Proof of Authority (PoA) [20], have been pro-
posed to address the problem of high energy consumption and 
computational work required by PoW. In particular, PoA is proper 
for private networks where the nodes/validators are aware of all 
identities. It has been explored mainly to track supply chain, logis-
tics, or manufacturing processes.

Smart contracts Blockchain technologies enable the deployment of 
pieces of software, known as smart contracts, without involving a 
trusted third-party entity [21]. A smart contract is a computer pro-
gram that executes a set of methods making decisions according 
to the rules defined in the contract methods. A smart contract 
incorporates a dedicated data structure to store, replicate or up-
date the blockchain transactions in the distributed network. While 
conventional contracts require a centralised authority involving a 
significant amount of time and cost, smart contracts eliminate this 
central authority automating the negotiation between entities, pro-
cesses, or assets [22]. We build upon our previous work on smart 
contracts for trust and reputation [23,24] in order to automate 
their secure distributed deployment.

SPuMoNI is leveraging blockchain technologies to better 
ascribe and ensure the traceability of medicine batches 
throughout the entire manufacturing process to enable 
procedural auditability and compliance with international 
regulations.

2.3. Data quality assurance

Data quality assurance in pharmaceutical industry is a key fac-
tor to improve the performance and for good practices implemen-
tation, i.e., ALCOA principles. Research into data quality has gained 
significant attention since the work by Wang and Strong [25]. 
Following their approach, many studies have been conducted to 
define what data characteristics are related to its quality, gener-
ally known as data quality dimensions. Several systematic reviews 
have been carried out seeking agreement on different data qual-
ity dimensions to be assessed in data repositories [26,27]. The 
literature highlights problems such as missing information, incon-
sistency among individual observations, and incorrect or outdated 
information. On the other hand, Sáez et al. [28] argue that classical 
statistics are not suitable for different types of data (e.g., numeri-
cal and categorical variables) or multimodal data. In addition, they 
are not appropriate for massive data given the dependency of the 
results on the sample size. To address these problems, the authors 
propose methods which compare probability distributions of the 
variables between different data sources or with different time pe-
riods. Specifically, the methods use Jensen-Shannon distance (JSD), 
a symmetrical and smoothed version of the Kullback-Leibler diver-
gence [29].

Within the pharmaceutical industry context, data quality assur-
ance must necessarily consider that data is generated by multiple 
heterogeneous sources (e.g., machines, operators, instruments, or 
even factories producing the same products). In addition, there is 
possible time variability in the manufacturing process. In this sce-
nario, the problem of temporal and multi-source variability has to 
be unequivocally addressed, otherwise it may lead to inaccurate 
and irreproducible scenarios [30,31], as well as invalid [32] results. 
Multi-source variability analysis use statistics [32,33] to describe 
variable distributions [34], or to compare data with a reference 
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data set [26]. Temporal variability analysis uses monitoring statis-
tics, e.g., Shewart tables [35], Levey-Jennings tables, and Westgard 
rules [36].

SPuMoNI is systematically applying probability distribu-
tion methods to robustly analyse temporal and multi-
source variability to determine ALCOA compliance.

2.4. Intelligent agents

Suitable for distributed, unstructured and decentralised archi-
tectures that can be dynamically altered and can accommodate 
high degrees of complexity, “agents” [37] are directly associated 
with a certain degree of autonomy, i.e. self-activity towards achiev-
ing designated objectives. Grouped into “Multi-Agent Systems 
(MAS)”, agents continually collaborate, coordinate, and negotiate 
to provide collective functionality that is non-trivial to be analyti-
cally predetermined.

Agent-based systems have long been used to achieve dynamic 
customisation, improved quality, reliability, and flexibility in in-
dustrial settings [38]. Agent-based solutions are particularly suited 
for complex manufacturing processes since they can offer decen-
tralised management and process control functions, coupled with 
intelligent cooperation and synchronisation capabilities. Such so-
lutions typically involve cooperative multi-agent architectures [39]
and have been largely employed for the integration of design, man-
ufacturing and shop-floor control activities, as well as for manufac-
turing process monitoring and optimisation [40].

For agents to be able to reason and communicate with each 
other, particularly in open environments, explicit application do-
main models are needed. To this purpose, ontologies are com-
monly employed for agent communication since they can explicitly 
represent domain concepts, relationships between them, as well as 
domain rules and their semantics. This is particularly relevant in 
industrial agent applications since the execution of industrial pro-
cesses should depend not only on their internal state and on user 
interactions, but also on the context of their execution [41]. There-
fore, ontologies are a particularly suitable approach for represent-
ing manufacturing knowledge in a machine-interpretable manner.

Agent-based architectures have been successfully used to en-
sure the integrity of stored data [42]. The approach typically in-
volves having agents periodically testing the integrity of specified 
data volumes, e.g., by regularly verifying the hash value of stored 
data files. Furthermore, agents are commonly used to maintain 
data integrity in conjunction with blockchain infrastructures, for 
example by using smart contracts to monitor file hash values [43]
and by using agents to eventually implement efficient deduplica-
tion of the blockchain stored data [44].

Along these lines, agents are used in SPuMoNI to form an intel-
ligent data gathering and processing mechanism where incoming 
data are matched with an extended pharma manufacturing ontol-
ogy providing suitable constructs for explicitly representing ALCOA 
compliance information, and initial data integrity checks are per-
formed closed to the data source to ensure early notification and 
reactions by the system operators. Furthermore, the integrity and 
end-to-end verification of the generated batch number records and 
intermediate process data is ensured by storing relevant medica-
ment data. Finally, agents are used to execute collective pattern 
prediction models which enable reaction to forthcoming process 
data discrepancies before they are actually recorded and affect pro-
duction performance.

The SPuMoNI framework is using agents to smartly 
extract, transform, and control diverse heterogeneous 
data sources generated at distinct points within the 
manufacturing process and, subsequently, ensure the 
integrity of the generated data records.
4

3. Related work

Disclosure risk assessment techniques in pharmaceutical man-
ufacturing typically depend on background knowledge, the be-
haviour of intruders and the specific value of the data. Often only 
heuristic arguments are used without numerical assessment [45]. 
In this context, there is no pharma-related literature, to the best of 
our knowledge, which couple blockchain and smart contracts with 
MAS and data quality mechanisms for ALCOA principles. SPuMoNI 
approach will enable to track the medicines manufacturing pro-
cess and ensure that all generated data is ALCOA compliant. How-
ever, the literature shows that some research in pharmaceutical 
has been conducted to guarantee transparency and traceability.

Blockchain and smart contracts SPuMoNI is particularly timely as 
blockchain has been recently proposed to become “a new Digital 
Service Infrastructure” for Europe [46]. In this domain, blockchain 
has been explored mainly to be a distributed authority in the 
supply chain process which typically include the manufacturer, 
the wholesaler, and the retailer [47–49]. Furthermore, blockchain-
based smart contracts are used to define the relationships be-
tween the participants and to ensure traceability through an inter-
organisational business process [50].

Intelligent agents The explosive growth of manufacturing data 
has resulted in the proliferation of intelligent data analytics sys-
tems that are based on intelligent agents. Such systems are typ-
ically divided in layers, e.g., as Tang et al. (2018) [39], learn and 
adapt to dynamic environments [51], and continuously analyse 
incoming data aiming to optimise manufacturing processes [52]. 
Along this line, recent attempts have focused on integrating agents 
with blockchain technologies aiming to ensure accountability and 
trusted interactions [53]. Specifically in the pharmaceutical indus-
try, solutions based on blockchain and agents have been developed 
for the coordination of logistic services [54].

Agents are commonly used in conjunction with ontologies to 
manage data and reduce complexity of pharmaceutical manufac-
turing processes. Cao et al. (2018) [55] propose an ontological in-
formation infrastructure which integrates data within pharmaceu-
tical manufacturing plants, based on the ANSI/ISA-88.01 batch con-
trol standard. Similarly, a tablet production ontology for a generic 
drug tablet production expert system is described by Chalortham 
et al. (2008) [56]. Furthermore, an ontological information infras-
tructure aiming to reduce pharmaceutical process development 
time and achieve better quality assurance is discussed by Haile-
mariam et al. (2006) [57] and Hailemariam et al. (2010) [58].

Finally, ontologies have been employed to model and ensure 
compliance of pharmaceutical manufacturing processes to inter-
national standards and regulations. Sesen et al. [59] introduce an 
ontological infrastructure to support decision making for pharma-
ceutical regulatory compliance. The proposed system, termed On-
toReg, is integrated with a reasoner and a Java rule engine.

However, none of the above approaches specifically cater for 
regulatory and ALCOA compliance of the pharmaceutical manufac-
turing process data.

3.1. Contributions

Blockchain for pharmaceutical manufacturing, particularly when 
coupled with data quality assurance and intelligent agents, re-
mains an emerging research topic. Table 1 provides a comparison 
of pharma-related blockchain applications which have been ap-
plied mainly to ensure reliability in supply chain. In this context, 
the SPuMoNI project contributes with an innovative solution cou-
pling MAS, blockchain technology, and data quality assurance.
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Table 1
Comparison of Pharma-related Applications.

Approach Blockchain
Data Quality

MAS Field
Assurance

Mackey et al. [47] � Supply chain
Helo and Hao [48] � Supply chain
Bocek et al. [49] � Supply chain
Casado-Vara et al. [54] � � Logistics

SPuMoNI Proposal � � � Manufacturing lines

Fig. 1. SPuMoNI Architectural Specification. It illustrates the three SPuMoNI framework pillars: End-to-End Verification, Data Quality, and Intelligent Data Analytics.
Agents initially match collected data with suitable data descrip-
tions based on a pharmaceutical ontology so as to provide for AL-
COA compliance. For example, in temperature measurements taken 
from a given machine, the actual temperature values are bundled 
together with additional information concerning the method of ob-
taining the data (e.g. sensor id and frequency of measurements). 
Furthermore, agents convert data to a unified format, such as en-
suring that all measurements have the same number of decimal 
digits.

In addition to data manipulations due to their inherent distri-
bution and flexibility, agents very effectively perform online pre-
liminary data integrity checks close to the data source during data 
collection. In this way both data integrity issues can be discov-
ered early, the appropriate users can be subsequently notified and 
appropriate actions can be taken immediately, reducing thus the 
costs incurred.

Then, the novel probability distribution methods verify the AL-
COA compliance of manufacturing records data. On the one hand, 
each ALCOA principle is quantified through DQA outcomes among 
each batch record. On the other hand, temporal variability and 
multi-source variability among manufacturing data repositories are 
evaluated. These results may uncover patterns, clusters, or devi-
ations; and therefore supporting pharmaceutical companies and 
external auditory in decision-making.

Blockchain and smart contracts ensure traceability and end-to-
end verification. Moreover, the immutability of blockchain arguably 
enables SPuMoNI datasets to remain unchanged and unaltered, 
thus supporting the ALCOA principles and, ultimately, data in-
tegrity. Additionally, the sensitive nature of pharma-related data 
is benefiting from the use of blockchain with its high level of 
security. Nevertheless, to mitigate security threats, SPuMoNI has 
enforced a private Ethereum network fully hosted and managed 
within the consortium. Although PoA is widely considered suitable 
for private networks requiring an identity validation of all nodes, 
our private Ethereum network has been evaluated with both PoW 
and PoA. By using the “Ether”—Ethereum own currency—SPuMoNI 
will eventually monitor and assign the processing costs in a future 
commercial version of the system.
5

4. Architectural specification

This section introduces the architectural specification of the in-
telligent agents and ALCOA compliant mechanisms to trace the 
pharmaceutical process and ensure its quality, transparency and 
authenticity. Our approach to medicament manufacturing trace-
ability within SPuMoNI is predicated on three data-intensive pil-
lars, whose interactions are represented in Fig. 1:

1. End-to-End Verification
2. Data Quality
3. Intelligent Data Analytics

4.1. End-to-end verification

Pharmaceutical manufacturing requires end-to-end verification 
where each step of the process should be recorded and docu-
mented. Therefore, SPuMoNI has created a novel blockchain-based 
end-to-end verification system for medicament manufacturing to 
serve two purposes: (i) marshalling data generation within pro-
duction processes; and (ii) serving as an audit mechanism for any 
operations that are performed on any data set within the sys-
tem. Both purposes require a system of processing, analysing and 
accessing data transparent, auditable, and secure. Therefore, the 
SPuMoNI data records are stored within a distributed ledger pre-
venting manipulative and coercive activities.

Due to different GDPR and pharmaceutical industry regula-
tions, SPuMoNI uses an Ethereum private network. This private 
network is mainly used by the project consortium to store data 
which should not be visible to the outside community. It acts as 
a distributed database containing private data where the access is 
permission-based. In addition, in Ethereum private networks, it is 
possible to manage the price of transactions and allocate ethers, 
i.e., Ethereum coins to the network accounts.

The SPuMoNI Ethereum network deployment is composed of 
virtual machines (nodes) which mine and approve all data transac-
tions using consensus algorithms. These consensus algorithms are 
used to achieve agreement concerning transaction values from the 
manufacturing production lines and their provenance. Currently, 
SPuMoNI Ethereum network has been tested using two consensus 
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algorithms, namely PoW and PoA, to enable the empirical eval-
uation of the system performance. SPuMoNI system intends to 
fully marshal ALCOA principles in the pharmaceutical manufactur-
ing process using Blockchain and smart contracts.

At this stage, some asset-centric security threats have been 
considered, essentially to ensure the ALCOA compliance for data 
integrity. Since the majority of blockchain attacks are at the net-
work level [60], we have already taken into account threats to the 
mining process and to the network. To mitigate those threats and 
due to the sensitive level of SPuMoNI data, the current SPuMoNI 
version uses a private Ethereum network hosted and managed by 
the consortium. The private Ethereum network is composed of two 
nodes as miners. The consortium manages the access control to 
the private network as well as the users authentication and their 
role assignment. Additionally, PoA ensure that, to become a net-
work miner, the existing miners should vote in order to prove that 
the new miner’s identity is true and reliable. The PoA configura-
tion requires a “master” miner responsible for adding new miners 
because we intend to keep the blockchain network comparatively 
small and fully private. Therefore, being hosted and managed by 
a private entity, it avoids dishonest miners that may carry out 
network-related attacks.

4.2. Data quality assurance

The data quality assurance aims to verify the ALCOA compliance 
of the data originated throughout the manufacturing process. This 
analysis encompasses single and multiple batch evaluation analy-
sis. While the single batch evaluation intends to assess each ALCOA 
principle of the corresponding batch, the multiple evaluation in-
cludes a temporal and multi-source variability characterisation of 
both the ALCOA principles and the specific variables of manufac-
turing sensors.

Fareva (IDA) has provided pharmaceutical manufacturing re-
ports which will enable the quantification of ALCOA principles 
using data from a real industrial environment.

It is duly noted that the IDA IT environment and their regulated 
processes have been inspected and audited by different phar-
maceutical governmental agencies in Europe and abroad, ergo 
the SPuMoNI data sets on which this work is based upon are 
highly representative.

Fig. 2 summarises the report structure through an Entity-
Relationship Diagram (ERD) using the Unified Modelling Language 
(UML) notation. These reports describe the entire manufacturing 
process of a pharmaceutical batch record. The process is composed 
of several stages with multiple instructions according to the corre-
sponding medicine recipe. Additionally, these reports provide the 
manufacturing data records created throughout the entire process. 
DQA evaluates and quantifies each ALCOA principle as temporal 
and multi-source variability (see Section 2.3) among the manufac-
turing data records.

4.3. Intelligent data analytics

The SPuMoNI MAS can be viewed as forming a cognition layer 
on the top of the manufacturing process supporting data extrac-
tion and process control. Agents are organised in a distributed 
software architecture highly coupled with the SPuMoNI blockchain 
infrastructure. The SPuMoNI approach includes a 3-layer system 
architecture to address both pre-processing control and data man-
agement of pharma manufacturing processes. Input data is collec-
tively gathered and processed based on distributed interactions 
of agents that act as wrappers on heterogeneous data sources. 
6

Data flows towards the upper layers, and the information is ag-
gregated, analysed, and visualised as needed. An example of the 
main SPuMoNI system dashboard depicting outlier of the execut-
ing process is shown in Fig. 3.

Apart from data sensing, management and fusion, the responsi-
bilities of agent components include data analysis and prediction. 
The approach followed is to use Distributed Artificial Intelligence 
techniques to find patterns that may lead to deviations of manu-
facturing process data and send an alert before actual deviations 
are recorded. Among others, biologically inspired deep learning 
models, such as Spiking Neural Networks for instance [61], are 
used to drive prediction of deviations and produce alerts for multi-
variate conditions that change dynamically over time. In this way, 
prediction models can be constructed on the combined set of pa-
rameters to reveal collective patterns that might result in devia-
tions, even when currently all parameters are within limits. This 
approach, combined with the multi-source variability models men-
tioned in Section 5.4, ensures that manufacturing processes will 
produce the best drug quality.

5. Evaluation

SPuMoNI encompasses three data-intensive pillars: (i) end-to-
end verification supported by a blockchain infrastructure; (ii) data 
quality assurance to evaluate the ALCOA compliance; and (iii) in-
telligent data analytics managed by a MAS. Specifically, to evaluate 
the blockchain infrastructure, we have carried out experiments us-
ing industry-grade pharma data sets whose manufacturing lines 
are depicted in Fig. 5.

5.1. Blockchain infrastructure

Our blockchain infrastructure is composed of a private Ethereum 
network hosted at National College of Ireland’s OpenStack private 
cloud. It uses go-ethereum2 as Ethereum client, Web3J3 as Java Ap-
plication Programming Interface, and Solidity4 as a smart contract 
language. This infrastructure has been tested with the Java Devel-
opment Kit version 13.0.2 and deployed in the OpenStack platform 
(Train release). Each OpenStack instance has 16 GB in RAM, 8 CPU 
and 160 GB of hard-disk space. New nodes can be dynamically 
added to the network because it allows the synchronisation of the 
entire chain hold by the remaining nodes.

Fig. 4 contains a high-level diagram of the SPuMoNI blockchain 
infrastructure. We have employed this infrastructure to evaluate 
the performance using PoW and PoA consensus algorithms. Since 
PoW requires a mining time between 15-20 seconds, we have con-
figured PoA with a period of 12 seconds for comparison purposes. 
Additionally, the private Ethereum network has been configured 
with a block gas limit of 0x8000000 providing cost-free process-
ing, i.e., the transactions are submitted using 0 as gas price. We 
have carried out all the experiments using industry-grade pharma 
data sets.

Data set The data sets contain time series from two different ma-
chines from pharmaceutical manufacturing product lines. Each ma-
chine generates raw data from non-stop sensors. Specifically, the 
data set contains values from six different sensors and the cor-
responding timestamp. Specifically, each blockchain transaction is 
composed of: (i) a batch or asset identifier (ID); (ii) timestamp of 
the sensors data records; and (iii) six values of multiple sensors. 
Our experiments involve 103 403 transactions.

2 https://geth .ethereum .org (Last Accessed: 2/Jan/2021).
3 https://web3j .io (Last Accessed: 2/Jan/2021).
4 https://solidity.readthedocs .io (Last Accessed: 2/Jan/2021).

https://geth.ethereum.org
https://web3j.io
https://solidity.readthedocs.io
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Fig. 2. ERD manufacturing report structure.
Performance results The performance was assessed using latency 
and throughput using benchmarking best practices [16,62] as fol-
lows:

Throughput (transactions per second (tps)) to determine the 
number of successful blockchain transactions per time unit. 
It is the number of successful transactions per second.

Latency (seconds (s)) to establish the time delay between the sub-
mission and completion of a blockchain transaction. It is the 
difference between the submission and completion of a trans-
action.

For a set of transactions, the average of latency and through-
put corresponds to the average of all transactions in the data set. 
Table 2 presents the SPuMoNI blockchain network performance 
evaluation using the industrial pharma-related data where μ is the 
average and σ is the standard deviation of latency and through-
7

put concerning all transactions in the data set submitted to the 
blockchain. The network was tested with the minimum resources, 
i.e., the transactions are received by one node in order to verify the 
minimum latency and throughput of the network for both consen-
sus algorithms.

The results indicate a better performance of PoA. Moreover, it 
provides more stable throughput values once the σ of mining time 
is 0. In this context, we have adopted PoA within the SPuMoNI 
blockchain infrastructure. Despite the cost-free processing in the 
current Ethereum settings, we are using Ethereum since SPuMoNI 
project intends to create a commercial product for pharmaceutical 
industry using Ethereum currency to manipulate the costs.

5.2. Pharmaceutical manufacturing lines

As illustrated in Fig. 5, any major pharmaceutical plant involves 
multiple manufacturing lines structured in independent packaging 
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Fig. 3. SPuMoNI Dashboard showing consolidated information of batch processing notifications.

Fig. 4. High-level diagram of the private Ethereum network.

Table 2
SPuMoNI private Ethereum network performance in terms of latency and throughput and mining 
time. It compares the average (μ) and standard deviation (σ ) of the aforementioned metrics.

Metric
PoW PoA

Latency Throughput Mining Time Latency Throughput Mining Time
(s) (t/s) s (s) (t/s) s

μ 0.014 56 13 0.012 84 12
σ 0.013 77 11 0.003 23 0
lines and manufacturing work centres with multiple concurrent 
production flows (indicated by IN yellow highlighting and OUT
blue highlighting in the figure) and collaborating control entities. 
Thus, the IN and OUT flows cover those stages where the physical 
and logical handling of products and materials between procure-
ment and shipping are executed, e.g., at reception areas (upper-
right corner), the IN flow comprises trucks from suppliers, material 
travelling documents, and IT transactions from suppliers. The OUT 
8

flow entails pallets/bins with materials labelled and tracked in the 
IT Systems database as well as storage tanks for excipients.

In summary, the IN-OUT materials handling flows encompass 
the methods, equipment, and systems for conveying materials from 
the incoming bays to various machines and processing areas, and 
for transferring finished parts to assembly, packaging and ware-
house and, ultimately, to shipping areas. Finally, the production 
stages highlighted in pink in Fig. 5 typically entail dispensing, 
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Fig. 5. A major pharmaceutical plant schema. It involves multiple manufacturing lines structured in independent packaging lines and manufacturing work centres with 
multiple concurrent production flows and collaborating control entities. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)
manufacturing and bulk supply (tanks plus automated pipelines), 
and packaging.

Pharma production lines generate large amounts of data from 
non-stop sensors located at multiple industrial machines and in-
struments. As in any real big data context, the pharma-related data 
repositories are large, variable, and heterogeneous, but critical to 
the pharmaceutical industry, data must be traceable, auditable, and 
ALCOA compliant. To approach this problem, the SPuMoNI archi-
tecture is composed of: (i) MAS for data management; (ii) data 
quality assurance for ALCOA compliance; and (iii) a blockchain-
based infrastructure to ensure data authenticity, immutability, and 
traceability.

Sourced from their validated ICT environment, Fareva (IDA) has 
provided fully-anonymised manufacturing reports and raw time-
series data concerning the process data and the environmen-
tal conditions for the generation of multiple batches of distinct 
medicament recipes. They have enabled the simulation of agent in-
teraction and the corresponding validation of the data quality and 
ALCOA compliance from the manufacturing processes underpinned 
by blockchain technologies and smart contracts.

5.3. Multi-agent system

MAS aims to ensure the batch number validity and guarantee 
ALCOA compliant data records. To this purpose, the system gen-
erates reports providing a global view of the manufacturing envi-
ronment and enabling prompt corrective actions. Moreover, agents 
perform a-priori ALCOA compliance tests and complex data oper-
ations such as high-dimensional heterogeneous data management, 
and adaptive and evolving data classification. Fig. 6 exemplifies the 
batch outlier detection within the SPuMoNI framework. Upon fi-
nalising the respective deep learning and prediction algorithms the 
SPuMoNI system will be tested and evaluated in pilot scenarios us-
ing real-world data provided by IDA-Fareva.
9

5.4. Data quality assurance

The current data quality analysis module is designed for evalu-
ating each ALCOA principle compliance among the manufacturing 
records but also includes a temporal and multi-source variability 
characterisation of the manufacturing data. In order to measure the 
magnitude of changes, these metrics facilitate its comparability on 
different domains. An example of this variability characterisation is 
shown in Fig. 7.

The data quality module of SPuMoNI system has initially been 
evaluated and validated through the analysis of a set of retrospec-
tive pharmaceutical manufacturing reports described in Section 4. 
The evaluation process consists in scoring ALCOA principles among 
both a single report and multiples reports as well as analysing the 
temporal and multi-source variability of relevant variables. Once 
retrospective data is evaluated, we will evaluate the data quality 
module in a pilot, in order to evaluate its performance.

6. Conclusions and further work

Pharmaceutical manufacturing lines are composed of multiple 
automated systems, some embedded, which control the medicine 
production generating a large amount of data. This data must 
be collected and maintained without compromising its integrity 
which is ensured by the ALCOA principles. In this context, the 
pharmaceutical industry is consistently looking for effective tech-
nological solutions to improve the manufacturing process in terms 
of ALCOA compliance. Therefore, these solutions must ensure 
data integrity and end-to-end traceability of medicine production. 
SPuMoNI has started to address this problem by building a de-
centralised system based on intelligent agents and data quality 
mechanisms upon blockchain technology.

The data integrity is evaluated by data quality assurance meth-
ods. These methods evaluate if the data records created and man-
aged by manufacturing lines are ALCOA compliant, i.e. this mod-
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Fig. 6. Batch outlier detection in SPuMoNI.

Fig. 7. Temporal heatmap of simulated values across a 5-year period of the variable Temperature within a manufacturing line. This simulation illustrates the Data Quality 
capabilities module.
ule includes methods to analyse the temporal and multi-source 
variability. However, the retrospective reports do not have fully-
validated ALCOA scores. This validation process will be executed 
by the project consortium pharmaceutical industry experts (Fareva 
(IDA) and PQE) who will evaluate a set of qualitative and quantita-
tive metrics to validate the data quality module results. Addition-
ally, these experts will supervise the variability analysis approaches 
in order to achieve a set of functionalities that will have significant 
impact in pharma manufacturing environments.

The SPuMoNI agent module includes dedicated agents that col-
lectively implement intelligent data management, regulatory com-
pliance verification and predictive analytics. Eventually, the sens-
ing agents will collect data from non-stop sensors managing large 
amounts of data. Additional agent types collect data from other 
databases and construct batch number records, interact with the 
blockchain infrastructure, and perform real-time inference and pre-
diction analytics. Agents use ontologies to represent and communi-
cate domain knowledge, and bio-inspired algorithms for collective 
learning and decentralised data processing.
10
Furthermore, the SPuMoNI MAS will furnish intelligent process 
monitoring and predictive analysis of the pre-processed data. Spe-
cific requirements for manufacturing process monitoring, control 
and optimisation will be considered, such as identification and se-
lection of informative attributes in high-dimensional data, adaptive 
and evolving data classification, and dynamic event prediction. The 
decentralisation of data processing will enable end-to-end pharma-
ceutical process monitoring and alert generation, such as ‘outlier’ 
detection, in a timely fashion.

Moreover, various bio-inspired data analytics approaches [63], 
are currently investigated, aiming to predict future process data 
quality problems based on current and historical process data. 
Such analyses will eventually transcend manufacturing lines and 
medicament manufacturers, and they will cover both histori-
cal non-compliance anomalies, and estimations of future non-
compliance risks. To this purpose, Quality Risk Management (QRM) 
techniques will be used, so as to be compliant with Quality by 
design (QbD) standards and good manufacturing practices (GMP), 
such as the GAMP v-model [64].
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Blockchain and smart contracts underpin data quality assur-
ance for manufacturing processes and enable communication with 
and between intelligent agents to perform decision making. The 
blockchain characteristics ensure the reliability of transactions us-
ing consensus algorithms. Given the big data scenario of the phar-
maceutical industry, the SPuMoNI system is managing a large 
number of transactions and blockchain infrastructure is bench-
marked against the PoW and PoA consensus algorithm perfor-
mance. As expected, the results show that PoA provides better 
latency as well as less power and energy consumption.

Initially, the SPuMoNI blockchain ledger is acting as an au-
dit and operational table. Nonetheless, it will be eventually ex-
tended to specific areas of zero-knowledge proof for very sensitive 
data in communication with third parties, which is not in place 
in blockchain solutions at the moment. Through blockchain dis-
tributed consensus mechanisms, this will also hinder malicious 
actors falsifying and duplicating key information artefacts.

In this paper, we have presented the first version of SPuMoNI 
implementation. The project aims to reach a Technology Readi-
ness Level of 7—system prototype demonstration in operational 
environment. The pharmaceutical company has provided manufac-
turing data sets and streams from real production lines. In this 
context, as near future work we intend to interconnect the three 
modules of the project (agents, data quality, and blockchain) simu-
lating the real environment. SPuMoNI solution is bringing reliabil-
ity and transparency to pharmaceutical industry where compliance 
and risk assessment are critical to maintain its reputation and, ul-
timately, to save lives allowing very large availability of quality 
proven products packaged according to any country drug agency 
requirements.
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