ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc. In Data Analytics

Jigar Bhatt
Student ID: x18179959

School of Computing
National College of Ireland

Supervisor: Prof. Paul Stynes

Student
Name:

Student ID:

Programme:

Module:
Supervisor:

Submission
Due Date:

Project Title:

Word Count:

National College of Ireland

MSc Project Submission Sheet

School of Computing

Jigar Sanjay Bhatt

X18179959

MSc. In Data Analytics

Research in Computing

Prof. Paul Stynes

17-08-2020

Year:

‘——
\ National

2019-20

Collegeof
Ireland

Using hybrid deep learning and word embedding based approach for
advance cyberbullying detection

1109

Page Count: 10

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Jigar Sanjay Bhatt

16-08-2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual
Jigar Bhatt (x18179959)

1. Introduction

This configuration manual provides detailed instructions on the steps required to replicate the
work done in research study and achieved the desired results. The manual includes the
minimum system requirements, configuration and the procedure to perform the pre-
processing, transformation, training, testing and evaluation.

2. Pre-requisites and configuration

Since the techniques used in this study are processing intensive, normal CPU cannot be able
to cope up with the resource and memory required in order to perform the experiments. So
entire implementation of the code was performed on an online platform Google
Collaboratory. Google Collaboratory is an online resource that provides additional processing
capabilities like TPU and GPU in a Jupyter notebooks fashioned environment. Google Colab
provides 12 hours of uninterrupted processing availability for implementing data analytics
projects. The specifications provided by Google Colab is as follows: -

CPU GPU TPU

Intel Xeon Processor with | Up to Tesla K80 with 12 Cloud TPU with 180
two cores @ 2.30 GHz and | GB of GDDR5 VRAM, Intel | teraflops of computation,

13 GB RAM Xeon Processor with two Intel Xeon Processor with
cores @ 2.20 GHz and 13 | two cores @ 2.30 GHz and
GB RAM 13 GB RAM

Figure 1: Google Colab Specifications?

This project made use of GPU in order to perform the implementation.
Before running the code, click on the Runtime option on the menu bar and click on the
Change runtime type. Change the Hardware Accelerator setting to GPU.

The Programming language used for writing the entire code was Python. Python was used
throughout the research for data cleaning, processing, transformation and training the models.
For coding, inspiration has been taken from (Agrawal and Awekar, 2018) in order to create a
similar experimental setup.?

3. Datasets and other supporting files

1 https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-deep-learning/
2 https://github.com/sweta20/Detecting-Cyberbullying-Across-SMPs

1

https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-deep-learning/
https://github.com/sweta20/Detecting-Cyberbullying-Across-SMPs

The datasets were requested from (Agrawal and Awekar, 2018) for carrying out the research
study. ® Two primary datasets were used for the purpose of the study i.e. Wikipedia and
Formspring. The datasets consisted of 2 columns in which 1 column consisted of texts and
other column consisted of labels annotated by experts as cyberbullying or not cyberbullying.

This study incorporates the use of fastText embedding. FastText embedding have pre-
trained vector files in which consists of database of words with its associated vector
representations. The vector file can be found and downloaded online on the fast text official
website.*

4. Uploading and Authenticating the drive for data retrieval

All the files required for the implementation of the code have to be first uploaded on the
google drive of the user who is performing the implementation. Inside google drive the user
will have to create the same path in his drive as used in the code. For this, the user has to
create a folder named ‘Colab Notebooks’ and upload all the relevant files relating to the study
in that folder. For implementing the code, the notebook has to be uploaded on google colab.
For accessing the files from the drive, the authentication needs to be completed.

Mounting the drive to the notebook to import relevant files

@ frov google.colab inport drive

drive.mount(" /c

we GO to this

ounts.google. com/o/oauth2/auth?client_id=047318989803-6bnéqksqdgfanagipfeesaoihcabreai. apps . googleusercontent. comdredirect_uri=urn¥3aietfizawg

The user will have to click on the link that will take him to the drive authorization page
where he will have to allow the colab to have access to the drive. The drive will then provide
an authorization code that the user has to type in the dialog box below the link.

5. Importing the required libraries and setting up the
environment

In this step the prerequisite steps like setting up the tensor flow version, installing and
importing the required libraries is done as can be seen in the following screenshots.

Setting up the tensorflow version

3 https://drive.google.com/file/d/11RMLCSIAO3dWk9ejSkVYc5tQwwK5pquG/view
4 https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip

2

https://drive.google.com/file/d/11RMLCSIAO3dWk9ejSkVYc5tQwwK5pquG/view
https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip

Installing the required libraries

[3] | pip install tweet-preprocessor

> Collecting tweet-preprocessor
Downloading https://files.pythonhosted.org/packages/17/9d/71bd016a%edcefaR6AC6A7531F30hdooh] 3103¢7951 3673dd2b 174163/ tweet_preprocessor-.6.0-py3-none-any.whl
Installing collected packages: twest-preprocessor
successfully installed tweet-preprocessor-9.6.8

Importing the required libraries

U = I I |

© import sys

import numpy as np # linear algebra

import pandas as pd # data processing, €SV file I/0 (e.g. pd.read_csv)

import re

from urllib.parse import urlparse

from math import floor, ceil

import matplotlib.pyplot as plt

import seaborn as sns

import pickle

import string

import preprocessor as p

from preprocessor import tokenize

import plotly.figure factory as ff

from plotly.subplots import make_subplots

from tqdm.notebook import tqdm

from sklearn.preprocessing import OneHotEncoder

from sklearn.model_selection import KFold

from sklearn.feature_extraction.text import Tfidfvectorizer

from sklearn.multiclass import OneVsRestClassifier

from scipy.stats import spearmanr, rankdata

from nltk.tokenize import RegexpTokenizer

from nltk.corpus import stopwords

import tensorflow as tf

from keras.preprocessing import text, sequence

from keras.models import Model

from keras.layers import Input, LSTM, Bidirectional, ConviD, Dense, Dropout, GlobalAveragePoolinglD, Embedding, Activation, Lambda, Batchhormalization

from keras.optimizers import adam, RMSprop

from keras.callbacks import Callback

import keras.backend as K

import argparse

import pickle

import string

import numpy as np

from sklearn.medel_selection import train_test_split, kFold

from sklearn.metrics import roc_auc_score

from collections import Counter

import os

from sklearn import metrics

from sklearn.metrics import classification_report, confusion matrix

from tensorflow.contrib import learn

from tflearn.data_utils import to categorical, pad_sequences

from scipy import stats

import tflearn

import json

from sklearn.linear_model import MultiTaskElasticet

from sklearn.datasets import make classification

from matplotlib import pyplot

from numpy import where

from sklearn.utils import resample

from sklearn.metrics import precision_score

from sklearn.metrics import f1_score

from sklearn.metrics import recall score

6. Setting up the parameters

This step involves in setting the parameters like selecting the train data, type of embedding
method, model type and test data out of the options described in the markdown. The user can
select any combination of parameters in order to perform the experiment.

Setting up the parameters

1. Choose one of the dataset for training the data.

+ formspring dataset - “formspring”
+ wikipedia dataset - “wiki*

5]

. Choose one the embedding type.
« fastText - 'fasttext”
+ ELMo - "ELMO"
« Stacked(Flair forward + Flair Backward + GloVe) - "stacked"

w

. Choose one of the model type.
* BLSTM-"BLSTM"
s CNN-"CNN
* LSTM - "LSTM"

&

. Choose the testing dataset for transfer learning.

= formspring dataset - "formspring”
wikipedia dataset - "wiki"

[5] train_data = "formspring”
test_data "
embedding acked”
model_type = "CHN"

7. Importing and basic pre-processing of train data

This section includes importing the datasets into the notebook and applying some basic pre-
processing. Steps like checking and dealing with missing values. If the dataset is Wikipedia
and embedding method is ELMo or Stacked embedding, the data is sliced in order to avoid
out of memory issues in the later stages.

Importing the train dataset

[25] if(train_data == "wiki"):
train_df = pd.read_csv(’/content/drive/My Drive/Colab Notebooks/cyberbullying wiki.csv')
if(train_data == "formspring”):

train_df = pd.read csv('/content/drive/My Drive/Colab Woteboocks/data.csv')

#Checking the missing values in data
missing_values = train_df.isna().sum()
rint("Missing values in data", missing_values)

#Dropping the rows with missing values

nan_value = float("NaN")

train_df.replace(”", nan_value, inplace=True)

train_df.dropna(subset = ["col1"], inplace=True)

missing_values = train_df.isna().sum()

print("missing values after dropping the empty rows”, missing_values)

#The wikipedia dataset is very large with more than 100800 rows. In order to avoid Out of memory issues, the data has been sliced.
if(train_data == "wiki" and (embedding == “stacked” or embedding== "ELMO" }):

train_df - train_df[:6000]

print(train_df.col2.value_counts())

[+ Missing values in data coll 13
col2 2}
dtype: intea
Missing values after dropping the empty rows coll a
wlz2 @

Performing the train-test split

(8]

X_train, X_test, ¥_train, Y_test - train_test_split(train_df['col1'], train_df['col2'], random state-42, test_size-0.26) #Train-Test Split
train_df = pd.DataFrame()

train_df['text'] = X_train

train_df['label’] = ¥ train

Plotting the class distribution

[2

import seaborn as sns
sns.set(style="darkgrid")

ax = sns.countplot(x="label", data=train_df)
ax.set(xlabel="cyberbullying counts”)

C» [Text(e.5, @, 'Cyberbullying counts')]
10000

count

Cyberbullying counts

Upsampling the data to balance the data

[1e] print("Distribution of class before upsampling:\n",train_df.label.value_counts())

Separate majority and minority classes

of majority = train_df[train_df.label==0]

df_minority = train_df[train_df.label-=1]

Upsample minority class

df_minority_upsampled = resample(df_minority,
replace=True, # sample with replacement
n_samples=len(df_majority), # to match majority class
random_state=123) # reproducible results

Combine majority class with upsampled minority class
train_df = pd.concat([df_majority, df_minority_upsampled])

Display new class counts

print("Distribution of data after upsampling: \n",train_df.label.value_counts())
ax = sns.countplot(x="1label", data=train_df)

ax.set (xlabel="Cyberbullying counts™)

[Distribution of class before upsampling:

@ 9585

1 633

Name: label, dtype: intsa

Distribution of data after upsampling

1 9585

e 9585

Name: label, dtype: intea

[Text(e.5, @, 'Cyberbullying counts')]

Setting the data type of data for compatibility

[11] labels = train_df['label’]
labels = labels.astype('category')
train_df['text']=train_df['text'].astype(’str')
x_text=list(train_df["text'])

8. Processing Word Embeddings: ELMo and Flair
This section includes initializing of word embedding of ELMo and Flair embeddings.

Initializing of ELMO and Flair embeddings

[12] if(embedding == "ELMO" or embedding
import torch
Ipip install flair
import flair
Ipip install allennlp==0.9.0
from flair.models import TextClassifier
from flair.data import Sentence
Importing the Embeddings
from flair.embeddings import wordembeddings
from flair.embeddings import CharacterEmbeddings
from flair.embeddings import StackedEmbeddings
from flair.embeddings import FlairEmbeddings
from flair.embeddings import ELMoEmbeddings
from flair.embeddings import FlairEmbeddings
#22 Initialising embeddings (un-comment to use others) i
glove_embedding = Wordembeddings('glove')
#character_embeddings - CharacterEmbeddings()
flair_forward = Flairembeddings(’news-forward-fast')
flair_backward = FlairEmbeddings(' news-backward-fast')
elmo_embedding = ELMoEmbeddings()

“stacked"):

if(enbedding == "ELMO"):
stacked_embeddings = StackedEmbeddings(embeddings = [elmo_embedding])
if(embedding == "stacked"):

stacked_embeddings = StackedEmbeddings(embeddings = [flair_forward,flair_backward,glove_embedding])

Basic preprocessing and transformation of data for Flair stacked and ELMO
embedding

[13] if(embedding == "stacked” or embedding == "ELMO"):

create a sentence
CUDA_LAUNCH_BLOCKING=1
sentence = Sentence('This code is used for initializing of embedding'})

embed words in sentence
stacked_embeddings.embed (sentence)
for token in sentence:

print(token.embedding)

data type and size of embedding
print (type(token.embedding))

storing size (length)
z = token.embedding.size()[e]
print(z)

[13] from tqdm import tqdm ## tracks progress of loop ##
creating a tensor for storing sentence embeddings
s = torch.zeros(,z)
if torch.cuda.is_available():
s = s.cuda()
iterating Sentence (tqdm tracks progress)
for tweet in tqdm(x_text):
empty tensor for words
w = torch.zeros(9,z)
if torch.cuda.is_available():
W = w.cuda()
sentence = Sentence(tweet)
#sentence = sentence[:10]
#print(sentence)

stacked_embeddings.embed(sentence)
for token in sentence:
storing word Embeddings of each word in a sentence
w = torch.cat((w,token.enbedding.vien(-1,1)),0)
storing sentence Embeddings (mean of embeddings of all words)
s = torch.cat((s, w.mean(dim = 0).view(-1, 2)),@)

9. Tokenizing and mapping the word embeddings

This section performs the tokenizing and mapping of the embeddings

#Initializing the matrix by creating an empty matrix of @'s.
embedding_matrix = np.zeros((vocab, emb_dim))

#Mapping of word embeddings

if(emb_type == "stacked” or emb_type == "ELMO"):

for word,i in word index.items():
try:
word_sent = Sentence(word)
stacked_embeddings . embed (word_sent)
embedding_vector = word_sent[@].embedding.cpu().detach().numpy()
embedding matrix[i] = embedding vector
except IndexError:
embedding matrix[i] = np.random.normal(@,np.sqrt(0.25),emb_dim)
return embedding_matrix

elif(emb_type — "fasttext”):
embeddings_index = {}
#Loading the pretrained word vector file of ELMo.
T = open('/content/drive/My Drive/Colab Notebooks/wiki-news-3eed-1M.vec’)
for line in f:
values = line.split()
word = values[8]
coefs = np.asarray(values[1:], dtype="float32")
embeddings_index[word] = coefs
f.close()
print(‘Found %s word vectors.' % len(embeddings_index))
#Mapping the word embeddings from the vector file
k=0
for word, i in word_index.items():
embedding_vector = embeddings_index.get (word)
if embedding_vector is not None:
we found the word - add that words vector to the matrix
embedding matrix[i] = embedding_vector
else:
doesn't exist, assign a random vector
k=k+1
embedding matrix[i] = np.random.randn(emb_dim)
return embedding_matrix

embedding_weight = map_embeddings(embedding)
print("Embedding matrix after tokenization and mapping:”, embedding weight)

[C» Embedding matrix after tokenization and mapping: [[©.] 0. vee O

©.00000000e+00 0.00000000e+00]

[2.40953907¢-01 -1.04704559¢-05 1.27468466e-05 ... -4.11790013e-01

4.05389994e-01 7.85040021e-01]

[3.71650071e-03 -9.14466455¢-06 1.02699604€-02 ... -3.76159996e-01

-3.25019993e-02 8.06200027e-01]

[-4.05321596e-03 -1.18993332e-04 1.41220279¢-02 ... ©.00000000e+00

0.000000000+00 0.00000000e+00]

[-2.61018774e-03 -2.80036929e-05 -2.7532465 03 ... o.

10. Preparing the same test data for evaluation

The following section aims at processing the same domain test data and also importing and
processing the data for transfer learning

Basic pre-processing of the test data obtained from the train-test split

#same domain testing data preparation

X_test = X_test.astype('str')
temp=list(X_test)

len(temp)

tok = text.Tokenizer()

tok.fit_on_texts(temp)

test_seq = tok.texts_to_sequences(temp)
test_x1 = sequence.pad_sequences(test_seq, 300)
test y1 = ¥_test

Loading the test data for transfer learning and applying some basic pre-processing
required for testing

def load testdata(test _data):
#0ne test data
if(test_data == "wiki"):
test_df = pd.read_csv(‘/content/drive/My Drive/Colab Notebooks/cyberbullying wiki.csv')
1f(test_data == “formspring™):
test_df = pd.read_csv('/content/drive/mMy Driv
test_df . shape
test_df['col1’]=test_df['col1'].astype('str’)
temp=list(test_df['col1’])
len(temp)
tok = text.Tokenizer()
tok.Fit_on_texts(temp)
test_seq = tok.texts_to_sequences(temp)
test_x = sequence.pad_sequences(test_seq, 300)
test_y = test_df['col2']
return test_x,test_y

/Colab Notebooks/data.csv')

test_x,test_y = load_testdata(test_data)

11. Defining the evaluation function
Evaluation function

def evaluate_model(model, testX, testy):
temp = model.predict(testx)
y_pred = np.argmax(temp, 1)
y_true = testy
precision = precision_score(y true, y pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
F1_score = f1_score(y_true, y pred, average='weighted')
print("Prec " + str(precision) + "\n")
print("Reca + str(recall) + "\n")
print("f1 score: " + str(F1_score) + "\n"
return precision, recall, f1_scare

12. Model training and testing

This step involves defining various DNN models and configuration of layers.

CNN

def model_training(model_type,emb_dim)

Y_train_dm = pd.get_dummies(labels)
units = 2

if(model_type == “CNN"):
#Defining and configuring the layers
model = Sequential()
embedding_layer = Embedding(vocab, emb_dim, weights=[embedding weight], input length=300, trainable=False)
model.add(embedding_layer)
model.add(ConviD(128, 5, activation='relu'))
model. add(GlobalMaxPooling1D())
model . add(Dropout (0. 25)
model . add(Dense(units, activation="sig
model.compile(optimizer="adam’, los
print(model.summary())
history = model.fit(X_ques, Y_train_dm, batch_size=128, epochs=18, verbose=1, validation_split=0.2)
print('\@33[1m'+'\nResults on Evaluation of same dataset:-\n'+'\@33[em ')
evaluate_model (model,test_x1, test y1)
print('\@33[1m'+'Results on Evaluation of transfer learning:- \n '+'\@33[em’)
evaluate_model(model,test_x, test y)

)

nary_crossentropy’, metrics=['acc'])

BLSTM

if(model_type == "BLSTM"):
model = sequential()
model. add(Embedding(vocab,
emb_dim,
embeddings_initializer=Constant(embedding weight),
input_length=30a,
trainable=True))

model. add(Spatialbropout1n(e.2))

model. add(Bidirectional (CUDNNLSTM(64, return_sequences=True)))

model. add(Bidirectional (CUDNNLSTM(32)))

model. add(Dropout(@.25))

model.add(Dense(units, activation='sigmoid'))

model.compile(loss = ‘categorical_crossentropy’, optimizer='adam’,metrics = ['accuracy’])
print(model. summary())

history = model.fit(X_ques, Y_train_dm, epochs=18, batch_size=128,verbose = 1,validation_split = 8.2)
print('\@33[1m'+'\nResults on Evaluation of same dataset:-\n'+'\@33[em °)

evaluate_model (model,test_x1, test_y1)

print{"\@33[1m'+ Results on Evaluation of transfer learning:-\n "+'\@33[ém")
evaluate_model(model,test_x, test_y)

LSTM

if(model_type == "LSTM")
model = Sequential()
model. add(Embedding(vocab, emb_dim,weights = [embedding weight], input length=38e, trainable=True))
model. add(Dropout(@.25))
model. add(LSTM(308))
model, add (Dropout(e.58))
model.add(Dense(units, activation="sigmoid’})
model. compile(loss="categorical_crossentropy’,
optimizer='adam’,
metrics=['accuracy'])
print(model. summary())
history = model.fit(X ques, ¥ train_dm, batch size=128, epachs=10, verbose=1, validation split=0.2)
print{‘\833[1m'+'\nResults on Evaluation of same dataset:-\n'+'\@33[em ')
evaluate_model (model, test_x1, test_y1)
print('\@33[1m'+ Results on Evaluation of transfer learning:-\n '+'\@33[om ')
evaluate_model (model ,test_x, test_y)
return history

The following image shows the selection of the embedding dimensions as per the embedding
method used. The functions for training is passed to the model training function and finally
the parameters for model loss graph is set.

#5etting the embedding dimensions as per the type of word embedding method used.

1f (embedding =
emb_dim = 300

if(embedding =
emb_dim = 3072

if(embedding == "stacked"):
emb_dim = 2148

print(emb_dim)

print(model_type)

#Finally training the model

history = model_training(model_type,emb_dim)

s#plotting the model training and validation loss.
plt.plot (history.history['loss'])
plt.plot(history.history['val_loss'])

plt.title(model loss')

plt.ylabel(loss')

plt.xlabel(epoch’)

plt.legend(["train’, 'validation'], loc='upper left')
plt.show()

Output of the model training and testing

C» 2148
Ch
WARNING: tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourcevariable.__init__ (from tensorflow.python.ops.resou
Instructions for updating:
If using Keras pass *_constraint arguments to layers.

WARNING : tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/nn_impl.py:183: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a fi
Instructions for updating:

use tf.where in 2.0, which has the same broadcast rule as np.where

Model: “sequential_1"

Layer (type) Output Shape Param #
embedding_1 (Embedding) (None, 300, 2148) 35371116
convid_1 (Convip) (None, 296, 128) 1374848
global_max_poolingld_1 (Glob (None, 128)]
dropout_1 (Dropout) (None, 128)]

dense_1 (Dense) (None, 2) 258

Total params: 36,746,222
Trainable params: 1,375,106
Hon-trainable params: 35,371,116

Train on 15336 samples, validate on 3834 samples
Epoch 1/18

15336/15336 [] - 15s 993us/step - loss: ©.3744 - acc: ©.8355 - val_loss: ©.2366 - val_acc: 0.9429
Epoch 2/1@

15336/15336 [1 - 7s a67us/step - loss: ©.1248 - acc: ©.9682 - val loss: ©.1245 - val acc: @.9853
Epoch 3/10

15336/15336 [===s==s==sssssssssssssssssssss] - 7s 465us/step - loss: @.8537 - acc: 0,9903 - val_loss: @.0288 - val_acc: 1,0000
Epoch 4/10

15336/15336 [] - 7s 468us/step - loss: @.@3@1 - acc: 0.9957 - val_loss: 0.0111 - val_acc: 1.0000
Epoch 5/1@

15336/15336 [======s==s=====ss==s==ssss=s== 1 - 7s 469us/step - loss: ©.8162 - acc: ©.9981 - val_loss: 0.0869 - val_acc: 1.0000
Epoch 6/10

15336/15336 [1 - 75 as9us/step - loss: @.0116 - acc: ©.9987 - val loss: @.8846 - val acc: 1.0000

Epoch 7/10
15336/15336

- 75 470us/step - loss: ©.8892 - acc: ©.9992 - val_loss: 0.0831 - val_acc:

0000

Epoch 8/10
15336/15336 [=====] - 7s 470us/step - loss: ©.8075 - acc: ©.9993 - val_loss: 9.0017 - val_acc: 1.0000
Epoch 9/10
15336/15336 [============= =] - 7s 470us/step - loss: ©.8870@ - acc: ©.9988 - val_loss: ©.8028 - val_acc: 1.8000
Epoch 18/18
15336/15336 [===== =] - 7s 470us/step - loss: ©.8072 - acc: ©.9993 - val_loss: 9.0040 - val_acc: 1.0000

Results on Evaluation of same dataset:-
Precision: @.89568993887183%6

Recall: ©.83980843052837573

f1 score: @.8977345512524254

Results on Evaluation of transfer learning:-
Precision: 8.7844569152142045

Recall: @.7884847752537457

1 score: 8.78646008661161946

model loss

wain
“alidation
030

025 \
020 \
015

010 N

00s ~

loss.

000

References

Agrawal, S. and Awekar, A. (2018) ‘Deep learning for detecting cyberbullying across
multiple social media platforms’, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10772
LNCS(Table 2), pp. 141-153. doi: 10.1007/978-3-319-76941-7_11.

